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Abstract: Due to the chemically inert surface of MoS2, uniform deposition of ultrathin high-κ
dielectric using atomic layer deposition (ALD) is difficult. However, this is crucial for the fabrication
of field-effect transistors (FETs). In this work, the atomic layer deposition growth of sub-5 nm
La2O3/Al2O3 nanolaminates on MoS2 using different oxidants (H2O and O3) was investigated. To
improve the deposition, the effects of ultraviolet ozone treatment on MoS2 surface are also evaluated.
It is found that the physical properties and electrical characteristics of La2O3/Al2O3 nanolaminates
change greatly for different oxidants and treatment processes. These changes are found to be
associated with the residual of metal carbide caused by the insufficient interface reactions. Ultraviolet
ozone pretreatment can substantially improve the initial growth of sub-5 nm H2O-based or O3-based
La2O3/Al2O3 nanolaminates, resulting in a reduction of residual metal carbide. All results indicate
that O3-based La2O3/Al2O3 nanolaminates on MoS2 with ultraviolet ozone treatment yielded good
electrical performance with low leakage current and no leakage dot, revealing a straightforward
approach for realizing sub-5 nm uniform La2O3/Al2O3 nanolaminates on MoS2.

Keywords: atomic layer deposition; MoS2; La2O3/Al2O3; ultraviolet ozone

1. Introduction

Silicon complementary metal-oxide-semiconductor (CMOS) devices continuing shrink
in size, and keeping the generation of heat low has becoming extremely challenging [1,2].
One promising alternative approach is to use transition metal dichalcogenides (TMDs) due
to their extraordinary electronic and mechanical properties [3,4]. Particularly, molybdenum
disulfide (MoS2) with a natural bandgap (1.2~1.8 eV) has attracted plenty of researches for
its promising application in scaled low-power field effect transistors (FETs) and flexible
devices [5,6]. A crucial step in the manufacturing of FETs is the growth of ultrathin and
uniform high-k gate dielectric on MoS2. The mobility of MoS2 can be further improved after
high-k gate films deposition through the suppression of Coulomb scattering by the dielectric
mismatch effect between the MoS2 and high-k dielectric [7,8]. The most controlled approach
for obtaining nanoscale, high-quality growth of dielectrics is atomic layer deposition (ALD).
However, atomic layer deposition of ultrathin and uniform high-k gate films on MoS2 still
represents one of the key challenges to be addressed due to the lack of dangling bonds or
nucleation sites on the MoS2 surface. The physical adsorption of precursors on the surface
is considered to be a key element that enables the initial ALD reaction to take place [9].
Nevertheless, the weakly physical adsorption of precursors can be easily desorbed from
the surface by the subsequent purge gas [10]. The dielectric films easy to form pinhole-like
defects when it is directly deposited on MoS2 due to random nucleation at defects, edges,
and impurities, especially the thickness of the dielectric less than a few nanometers [11].
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However, to meet the demand of ultra-scaled FETs, the thickness of gate dielectric layer
needs to be extremely thin (<5 nm) for sufficient electrostatic coupling of the gate to the
semiconducting channel [12].

To cope with these challenges, the pretreatment of a MoS2 surface with oxygen
plasma [13], introduction of an additional seeding layer [14], ultraviolet ozone (UV-O3) [15],
water plasma treatment [16] have been demonstrated. Growth of sub-5 nm uniform Al2O3
film on MoS2 has been achieved [12]. La2O3 has a high dielectric constant (~26), large
band gap (~5.8 eV), and the drawback of moisture absorption can be greatly improved by
mixed with a less hygroscopic oxide Al2O3 [17,18]. It has been studied as the candidate
gate dielectric in the sub-22 nm technical process node. The La2O3/Al2O3 nanolaminate
processed film can provide a higher dielectric constant and better leakage current control
at the same physical thickness compared to the Al2O3 film. However, to date, the growth
of La-based binary or ternary compounds on MoS2 has not been investigated. Therefore,
in this paper, the ALD deposition of sub-5 nm La2O3/Al2O3 nanolaminates on MoS2 is
carried out and the properties of La2O3/Al2O3 nanolaminates on MoS2 are investigated.

2. Materials and Methods

In the experiment, n-type silicon (100) wafers with a resistivity of 2–4 Ω·cm were
cleaned by RCA method and a 60 s dip in diluted HF solution was used to remove the
native oxide, followed by 5 min of washing with deionized water. Then, the silicon wafers
were immediately transferred to an ultra-high vacuum RF magnetron sputtering system
chamber and a MoS2 target was cleaned in 10 min by pre-sputtering under the deposition
conditions. Afterward, few layers MoS2 film was directly deposited by RF magnetron
sputtering system with the RF power of 50 W at 400 ◦C. For sulfur compensation and
defects reduction, all wafers were annealed in the hydrogen sulfide at 700 ◦C for 60 min.
After that, some wafers were treated by UV ozone ProCleaner plus system under the
power of 11.04 mW·m−2 for 5 min at the room temperature to improve the surface of
MoS2. The Raman spectra of MoS2 before and after UV-O3 treatment is shown in Figure 1.
The two characteristics Raman modes (A1g and E1

2g) of the MoS2 can be observed and
their positions changed negligibly before and after UV-O3 treatment. It indicates that the
treatment causes minimal structural damage in MoS2. Moreover, the difference between
these two peaks is 27.3 cm−1, which indicated that the thickness of MoS2 is between five
and seven layers [19].
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Then, the wafers with or without UV-O3 treatment were transferred to the ALD cham-
ber to deposited La2O3/Al2O3 nanolaminates at 260 ◦C. Tris (isopropylcyclopentadienyl)
lanthanum (La(iPrCp)3) and trimethyl-aluminum (TMA) was used as the lanthanum and
aluminum precursor, respectively. H2O and O3 was used as the oxidant, respectively.
O3 was generated by the ozone generator using ultra-pure O2 (99.999%).10 deposition
sequence cycles of TMA/H2O/La(iPrCp)3/H2O and TMA/O3/La(iPrCp)3/O3 were used
to obtain H2O-based La2O3/Al2O3 nanolaminates and O3-based La2O3/Al2O3 nanolam-
inates, respectively. Before the ALD deposition sequence, a 4 s pulse time of TMA was
carried out firstly to form the physical adsorption on the surface. ~3 nm H2O-based
La2O3/Al2O3 nanolaminates and O3-based La2O3/Al2O3 nanolaminates were measured by
Woollam M2000D spectroscopic ellipsometry. After O3-based and H2O-based La2O3/Al2O3
nanolaminates deposition process, Al electrode was fabricated by photolithography pattern-
ing to form MOS capacitors after back Al electrode was prepared by magnetron sputtering.
Atomic force microscopy (AFM, Bruker Dimension Edge, Bruker Nano Inc., Billerica, WA,
USA), X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha, Thermo Fisher
Scientific Inc., Waltham, MA, USA) were used to character the properties of La2O3/Al2O3
nanolaminates on MoS2. The standard electrical measurements were performed at room
temperature using the Keithley 4200SCS characterization system (Tektronix Inc., Kent, WA,
USA).

3. Results and Discussion

Figure 2 shows the AFM results of La2O3/Al2O3 nanolaminates on MoS2. It can
be found that non-uniformity surface is observed for both O3-based and H2O-based
La2O3/Al2O3 nanolaminates on MoS2, which indicates that it is difficult to grow uni-
form ultrathin dielectric directly on MoS2. Meanwhile, a smoother surface is obtained for
O3-based La2O3/Al2O3 nanolaminates compared to H2O-based La2O3/Al2O3 nanolami-
nates on MoS2. This may be explained by that, O3 has higher reactivity due to its strong
oxidizing ability, it is easy to decompose to O2 and monatomic O during the ALD reactions,
the monatomic O radical diffusion and desorption will significantly affect the growth of
the film. Using ozone as oxidant enhances the Al2O3 film coverage and uniformity on
MoS2 due to ozone facilitates initial TMA precursor nucleation on the MoS2 [20], which is
consistent with the AFM results. After MoS2 treated with UV-O3, the improvement of the
uniform surface is observed for both O3-based and H2O-based La2O3/Al2O3 nanolami-
nates (and especially for O3-based La2O3/Al2O3 nanolaminates). The root mean square
(RMS) value of O3-based La2O3/Al2O3 nanolaminates decreases from 0.381 nm to 0.150 nm,
while the RMS value of H2O-based La2O3/Al2O3 nanolaminates decreases from 0.394 nm
to 0.186 nm after MoS2 suffered from UV-O3 treatment. Generally, the lack of reaction
surface for MoS2 lead to an increase of surface roughness after ALD deposition due to the
buildup of precursors and reaction products randomly occurred [11]. The improvement of
uniform and decrease of RMS value suggest that the initial surface nucleation of ultrathin
La2O3/Al2O3 nanolaminates on MoS2 can be improved by UV-O3 treatment.
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Figure 2. AFM results of sub-5 nm La2O3/Al2O3 nanolaminates on MoS2 with or without UV-O3

treatment.

To evaluate the dielectric electrical properties with nanometer resolution, conduc-
tive AFM measurements are carried out by applying a constant voltage between the
Pt-Ir coated tip and sample. Figure 3 shows the current images measured by conductive
AFM when applying a sample bias of 1 V. As shown in Figure 3, the density of leakage
dots in the H2O-based La2O3/Al2O3 nanolaminates is higher than that in the O3-based
La2O3/Al2O3 nanolaminates. The leakage dot is an indicator of conductive paths exist in
La2O3/Al2O3 nanolaminates. They are not only attributed to surface roughness, but also
possibly caused by local fluctuations in composition and/or structures, and/or by defects
in La2O3/Al2O3 nanolaminates [21]. The presence of many leakage dots indicates that
H2O-based La2O3/Al2O3 nanolaminates on MoS2 is not suitable for use as a gate dielectric
layer. After MoS2 treated with UV-O3 treatment, the leakage dots for both O3-based and
H2O-based La2O3/Al2O3 nanolaminates decreased. In particular, no leakage dot is ob-
served for O3-based La2O3/Al2O3 nanolaminates. It indicates that, with the help of UV-O3
treatment, ultrathin O3-based La2O3/Al2O3 nanolaminates on MoS2 can serve as the gate
dielectric due to its good leakage suppression properties.
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Figure 3. Conductive AFM images of sub-5 nm La2O3/Al2O3 nanolaminates on MoS2 with or
without UV-O3 treatment.

The changes in uniformity of La2O3/Al2O3 nanolaminates on MoS2 may be originated
from the interface due to the ALD process of growing La2O3/Al2O3 nanolaminates on
silicon is well established [17]. To reveal the changes that occurred at the interface, XPS mea-
surements are performed. Figure 4 shows the C1s spectra of La2O3/Al2O3 nanolaminates
on MoS2. There are mainly two peaks in the C1s spectra for all La2O3/Al2O3 nanolaminates
on MoS2, which are located at binding energies of 283.0 eV and 284.8 eV. These peaks
correspond to the metal carbide and adsorbed carbon, respectively [22]. Moreover, the
peak intensity of metal carbide in H2O-based ALD process decreases from 30.0 a.t.% to
15.8 a.t.% after MoS2 suffered from UV-O3 treatment, while that of O3-based ALD pro-
cess decreases from 11.9 a.t.% to 9.8 a.t.%. The lowest metal carbide content in O3-based
La2O3/Al2O3 nanolaminates on MoS2 with UV-O3 treatment suggests that the initial in-
terfacial reactions are greatly improved. The appearance of metal carbide is an indication
that poor interface reactions occur during the ALD process, which can originate from
the generation of intermediates or by-products of metal precursors. MoS2 suffered from
low-power UV-O3 treatment form the weak chemical bond of S-O on the surface without
hampering its electrical performance [15], which can supply the reaction interface groups at
the MoS2 surface during the ALD deposition. As a result, the residuals of the metal carbide
or its intermediate precursor during the first ALD reaction cycles can be reduced and the
roughness of the nanolaminates can be improved.
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In order to further confirm the residue in La2O3/Al2O3 nanolaminates on MoS2,
Figure 5 shows the Al2p spectra of La2O3/Al2O3 nanolaminates on MoS2. As shown in
Figure 5, the Al2p spectra can be fitted to two peaks, which located at the binding energy of
~74.6 eV and 73.8 eV, respectively. 74.6 eV belongs to the Al-O bond, and the lower 73.8 eV
is related to carbide [22]. The content of carbide in H2O-based La2O3/Al2O3 nanolaminates
decreases from 9.66 a.t.% to 3.88 a.t.% after MoS2 treated with UV-O3 treatment, while
that of O3-based La2O3/Al2O3 nanolaminates decreases from 2.98 a.t.% to 0.92 a.t.% after
MoS2 treated with UV-O3 treatment. The variation of carbide content in La2O3/Al2O3
nanolaminates on MoS2 is consistent with the C1s results. Due to lack of dangling bonds
or nucleation sites on MoS2, the initial reaction of ALD is dependent on weakly physical
adsorbed TMA precursors on MoS2 surface. UV-O3 treatment forms the weak S-O bonds on
MoS2 and facilitates the uniform physical adsorption of precursor, which is beneficial for the
improvement of initial ALD self-limiting surface reactions. O3 has a stronger ability than
water to split the C-H or Al-C bonds which attached to metal atoms in the deposition [18].
As a result, the concentration of metal carbide in O3-based La2O3/Al2O3 nanolaminates is
lower than H2O-based La2O3/Al2O3 nanolaminates.
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To determine the valence band offset (VBO) between La2O3/Al2O3 nanolaminates
and MoS2, the Kraut method is used which discussed in ref. [23],

∆EVBO =
(

E
Mo3p
CL − EV

)
bulk,MoS2

−
(

E
Al2p
CL − EV

)
thick nanolaminates

−
(

E
Mo3p
CL − E

Al2p
CL

)
thin nanolaminates/MoS2

(1)

where E
Mo3p
CL and E

Al2p
CL is the binding energy of the Mo3p and Al2p shallow core levels,

respectively. Ev is the binding energy corresponding to the valence band maximum (VBM).
The value of VBM is determined by the intercept of the slope at the leading edge of the
valence band spectrum with the base line. To correct the differential charging, the binding
energy calibration was performed using a gold standard sample. Figure 6 shows the core
level spectra of ~10 nm sputtered MoS2 with or without UV-O3 treatment. The energy
difference between the Mo3p core level and the VBM is 394.58 eV and 394.59 eV for the
clean MoS2 and MoS2 treated with UV-O3 treatment, respectively. These values are agreed
well with the values reported in ref. [24].

Figure 7 shows the XPS core level spectra of Mo3p and Al2p for La2O3/Al2O3 nanolam-
inates. The core level energies are obtained by curve fitting to ensure high accuracy
binding energy of the peak. In order to measure the band offset between La2O3/Al2O3
nanolaminates and MoS2, ~10 nm H2O-based and O3-based La2O3/Al2O3 nanolaminates
are prepared for use as bulk films, respectively. As shown in Figure 7, the energy difference
values between the core level energies are determined. Using these energy difference
values with Equation (1), the VBO values of the H2O-based and O3-based La2O3/Al2O3
nanolaminates on MoS2 can be derived. The VBO of 3.10 eV and 3.14 eV is obtained for
O3-based La2O3/Al2O3 nanolaminates on MoS2 and MoS2 with UV-O3 treatment, respec-
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tively. In addition, the VBO of H2O-based nanolaminates on MoS2 and MoS2 with UV-O3
treatment is 2.75 eV and 2.91 eV, respectively. The results indicate that the VBO is affected
by the different oxidants and UV-O3 treatment. The negligible VBO variations for O3-based
La2O3/Al2O3 nanolaminates suggest that it has a better stability compared to H2O-based
La2O3/Al2O3 nanolaminates.
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To obtain the conduction band offset (CBO) between La2O3/Al2O3 nanolaminates and
MoS2, the optical band gaps of La2O3/Al2O3 nanolaminates are measured. The optical band
gaps form the plots of (αE)2 versus photo energy E are shown in Figure 8. The extrapolation
of the linear part of (αE)2 –E down to (αE)2 = 0 gives the values of band gaps [25]. The
measured band gap value of O3-based and H2O-based La2O3/Al2O3 nanolaminates is
6.37 eV and 6.19 eV, respectively. These values are in good agreement with the reported
values of La2O3/Al2O3 gate stack or LaAlO3 films ranging from 6.1–6.4 eV [17,26]. The
results indicate that the O3-based La2O3/Al2O3 nanolaminates has a lager bandgap value
compared to the H2O-based nanolaminates. This may be caused by the lower content
of impurities found in O3-based La2O3/Al2O3 nanolaminates compared to H2O-based
nanolaminates.
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Using the calculated VBO and band gap values, the conduction band offset between
La2O3/Al2O3 nanolaminates and MoS2 can be attained by the following equation:

∆ECBO = ELa2O3/Al2O3 nanolaminates
g −EMoS2

g − ∆EVBO (2)

where ELa2O3/Al2O3 nanolaminates
g and EMoS2

g is the bandgap of La2O3/Al2O3 nanolaminates
and MoS2, respectively. The bandgap of 1.4 eV for MoS2 is used here [27]. According to the
Equation (2), the CBO of O3-based La2O3/Al2O3 nanolaminates on MoS2 and MoS2 with
UV-O3 treatment is 1.87 eV and 1.83 eV, respectively. Meanwhile, the CBO of H2O-based
La2O3/Al2O3 nanolaminates on MoS2 and MoS2 with UV-O3 treatment is 2.04 eV and
1.88 eV, respectively. The corresponding band diagrams are illustrated in Figure 9. It can be
seen that both La2O3/Al2O3 nanolaminates/MoS2 interface have a Type I alignment, where
the conduction band edge and valence band edge of MoS2 are located within the bandgap
of La2O3/Al2O3 nanolaminates. Furthermore, both CBO and VBO values of La2O3/Al2O3
nanolaminates on MoS2 provide excellent electron and hole barriers due to their values
larger than 1 eV, ensuring La2O3/Al2O3 nanolaminates suitability for FETs applications.
Remarkably, O3-based La2O3/Al2O3 nanolaminates has a higher VBO compare with H2O-
based La2O3/Al2O3 nanolaminates, which is better for p-channel FETs application.
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ment).

Figure 10 shows the I-V curves of La2O3/Al2O3 nanolaminates on MoS2 after fab-
ricated metal-oxide-semiconductor (MOS) capacitor. At the applied voltage of 2 V, for
O3-based La2O3/Al2O3 nanolaminates, the leakage current decreased from 1.2 × 10−2 mA
to 9.6 × 10−3 mA, while the breakdown voltage increased from 9.01 V to 10.21 V after MoS2
treated with UV-O3 treatment. The same trend is observed in H2O-based La2O3/Al2O3
nanolaminates. The leakage current decreased from 2.6 × 10−2 mA to 2.3 × 10−2 mA,
while the breakdown voltage increased from 6.76 V to 7.36 V after MoS2 treated with UV-O3
treatment. The breakdown voltage is obtained when the leakage current reaches 1 mA [28].
The decease of leakage current and increase of breakdown voltage may be attributed to
the uniformity of the La2O3/Al2O3 nanolaminates as well as the reduction of impurities
or residuals at the interface. The leakage current may originate either Poole-Frenckel or
Fowler-Nordheim mechanism from the point of view of quantum tunneling [29,30], which
has been confirmed in our measurement. The lowest leakage current and highest break-
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down voltage are obtained for O3-based La2O3/Al2O3 nanolaminates on MoS2 with UV-O3
treatment, making it a promising dielectric candidate for the application of MoS2 FETs.
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4. Conclusions

In this study, atomic layer deposition growth of sub-5 nm La2O3/Al2O3 nanolaminates
on MoS2 using different oxidants (H2O and O3) and the UV-O3 pretreatment on MoS2 are
investigated. Compared with H2O-based La2O3/Al2O3 nanolaminates on MoS2, better uni-
formity and lower leakage dots were observed for O3-based La2O3/Al2O3 nanolaminates
on MoS2. This is associated with the metal carbide concentration in La2O3/Al2O3 nanolam-
inates on MoS2, which is generated by insufficient interfacial reactions. UV-O3 treatment
can decrease the residuals of the metal carbide and improve the deposition of La2O3/Al2O3
nanolaminates on the MoS2 interface by introducing the weak S-O bonds to MoS2 surface,
leading to the properties of La2O3/Al2O3 nanolaminates being substantially improved. The
band offset values of both O3-based and H2O-based La2O3/Al2O3 nanolaminates/MoS2 are
larger than 1 eV, which can provide eligible electron and hole barrier height. In particular,
a higher valence band offset is obtained for O3-based La2O3/Al2O3 nanolaminates com-
pared to H2O-based La2O3/Al2O3 nanolaminates. Consequently, O3-based La2O3/Al2O3
nanolaminates on MoS2 exhibits smaller leakage current and higher breakdown voltage,
especially after MoS2 suffered from UV-O3 treatment. All results indicate that O3-based
La2O3/Al2O3 nanolaminates on MoS2 with UV-O3 treatment is a more appropriate process
to obtain sub-5 nm uniform La2O3/Al2O3 nanolaminates on MoS2 due to its good electrical
characteristics, providing important implications for its integration into transistors.
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