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Seizures and neurologic involvement have been reported in patients infected with Shiga

toxin (Stx) producing E. coli, and hemolytic uremic syndrome (HUS) with neurologic

involvement is associated with more severe outcome. We investigated the extent of

renal and neurologic damage in mice following injection of the highly potent form of

Stx, Stx2a, and less potent Stx1. As observed in previous studies, Stx2a brought

about moderate to acute tubular necrosis of proximal and distal tubules in the kidneys.

Brain sections stained with hematoxylin and eosin (H&E) appeared normal, although

some red blood cell congestion was observed. Microglial cell responses to neural

injury include up-regulation of surface-marker expression (e.g., Iba1) and stereotypical

morphological changes. Mice injected with Stx2a showed increased Iba1 staining, mild

morphological changes associated with microglial activation (thickening of processes),

and increased microglial staining per unit area. Microglial changes were observed in the

cortex, hippocampus, and amygdala regions, but not the nucleus. Magnetic resonance

imaging (MRI) of Stx2a-treated mice revealed no hyper-intensities in the brain, although

magnetic resonance spectroscopy (MRS) revealed significantly decreased levels of

phosphocreatine in the thalamus. Less dramatic changes were observed following Stx1

challenge. Neither immortalized microvascular endothelial cells from the cerebral cortex

of mice (bEnd.3) nor primary human brain microvascular endothelial cells were found

to be susceptible to Stx1 or Stx2a. The lack of susceptibility to Stx for both cell types

correlated with an absence of receptor expression. These studies indicate Stx causes

subtle, but identifiable changes in the mouse brain.

Keywords: bacterial toxin, H&E staining, microglia activation, Iba1 antibody, mouse brain

INTRODUCTION

Disease due to Shiga toxin (Stx)-producing Escherichia coli (STEC) is a significant cause of
foodborne illness, with an estimated 265,000 cases annually (Scallan et al., 2011). In addition to
hemorrhagic colitis, the systemic complication, hemolytic uremic syndrome (HUS), occurs when
the protein toxin, Stx gains access to the circulation. Stx is an AB5 toxin, and consists of a single
A-subunit of 32 kDa and 5 identical B-subunits of 7.7 kDa (Donohue-Rolfe et al., 1984). The
A-subunit is an enzymatically active N-glycosidase that inhibits protein synthesis by removing a
single adenine at position 4324 from the 28S rRNA of the eukaryotic ribosomal 60S subunit (Endo
et al., 1988). The B-pentamer promotes cell-association by binding to globotriaosyl ceramide (Gb3)
expressed on mammalian cells and delivery of the A-subunit to the cytoplasm. Recent studies have
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shown that A- and B-subunit assembly occurs on the surface
of cells (Pellino et al., 2016). Stx includes two major antigenic
forms, Stx1 and Stx2, which share approximately 60% amino
acid identity (Strockbine et al., 1986), and subtypes of Stx2
(a–h) can share >90% amino acid identity (Scheutz et al.,
2012). Epidemiological and molecular typing studies indicate
that strains producing Stx2 subtype a (Stx2a) are most commonly
associated with life-threatening human disease (Ostroff et al.,
1989; Boerlin et al., 1999; Eklund et al., 2002; Persson et al., 2007).

Damage to the vasculature and kidney play a prominent role
in the development of HUS (Tarr et al., 2005). Platelet thrombus
formation in the microvasculature compromises blood flow to
the kidney. Hemolytic anemia develops when red blood cells
are mechanically sheared as they squeeze through the occluded
vessels. In addition, neurologic complications are also seen in
HUS, and include movement disorders, diplopia, dysphasia,
facial palsy, alteration in consciousness, seizures, and coma
(Cimolai and Carter, 1998; Magnus et al., 2012; Trachtman et al.,
2012). HUS with neurologic involvement is associated with more
severe outcome. In the Germany outbreak in 2011, 48% of the
hospitalized patients in Germany developed severe neurological
symptoms (Magnus et al., 2012), some were readmitted to the
hospital after kidney damage had resolved (Jansen and Kielstein,
2011).

The molecular basis for neurologic symptoms during STEC
infection is unclear. There is little evidence of cellular death
in the brain, and permanent neurologic damage is typically
not observed in human patients after resolution of the
acute symptoms. Evidence of neurologic involvement has
been reported in Stx2-treated mice, and like humans, mice
display little evidence of gross cellular damage. In this study,
we monitored Stx-treated mice treated at doses that induce
injury to the kidney for evidence of neurologic damage using
histologic examination and non-invasive MRI. Microglial cells
were examined as early indicators of neural injury (Kreutzberg,
1996). Due to their distribution and morphology, microglia
are in constant and intimate contact with multiple signals
originating from nearby neurons and macroglia. Responses to
damage can include up-regulation of surface marker expression
(e.g., Iba1) and stereotypical morphological changes from the
ramified morphology of “resting” microglia to the “activated”
macrophage-like state (Ito et al., 1998; Imai and Kohsaka, 2002).
Subtle changes in the brains of the mice were seen using both
MRS and histology.

MATERIALS AND METHODS

Bacterial Toxins
Purified recombinant Stx1 (cat. # NR-857) and Stx2a (cat. #
NR-4478) were obtained from BEI resources. Stx was diluted
in tissue culture grade PBS (pH 7.4) for all inoculations.
Lipopolysaccharide (LPS) content was determined by the limulus
amoebocyte lysate (LAL) assay (Lonza).

Mouse Studies
All animal studies were approved by the Institutional Animal
Care and Use Committee (IACUC) of the University of

Cincinnati, and conducted in strict accordance with the
recommendations of the Guide for the Care and Use of
Laboratory Animals. Outbred male CD-1 mice, 13–15 g obtained
from Charles River Laboratories (Wilmington, MA) were housed
in filter-top cages with access to food and water ad libitum.
Mice were challenged by intraperitoneal (IP) injection.Mice were
observed twice daily for signs of illness, and weighed once a day.

Brain and Kidney Histology
Mice were given Stx2a at 7 ng/ml and Stx1 at 1500 ng/ml. PBS
alone served as the negative control. At the indicated times post-
challenge, animals were anesthetize by IP injection of 100µl,
2.5% avertin (2,2,2-Tribromoethanol) and perfused intracardially
with 100 ml sterile PBS containing 20 units/ml heparin sodium
salt to prevent clotting. Organs were fixed by perfusion with
200ml of 4% paraformaldehyde prepared by dissolving 20 g of
paraformaldehyde powder in 500ml of heated PBS solution,
cooled, adjusted to pH 6.9 and filter sterilized. After perfusion,
organs were removed and stored in 4% paraformaldehyde.

For brain histology studies, the tissues were washed in PBS
with 3 changes over a period of 15min and embedded in 5.0% low
gelling temperature agarose (Sigma Type XI, A-3038) in 20mm
peel-a-way disposable plastic tissue embedding molds (Thermo
Scientific, cat no: 2219). Forty micron thick brain samples were
sectioned on the vibratome and stored in 4% paraformaldehyde
until stained. For kidney histology, thin sections of 5 micron
thickness were cut using Leica CM 1900 cryostat and mounted
on slide until stained. For hematoxylin and eosin staining, brain
and kidneys were processed by fixing in 4% paraformaldehyde
solution, and then dehydrated in graded alcohol, cleared by xylol
and embedded in paraffin.

Microglial Staining
Rabbit polyclonal antibody against Iba1 (ionized calcium binding
adaptor molecule-1) was used as the marker for microglial
detection. The protocol was followed as laid down in the
Vectastain Elite ABC system kit from Vector Laboratories.
Briefly, brain sections were incubated with blocking buffer (1.5%
normal goat serum (Vector Laboratories, cat no: S-1000) and 1%
Bovine Serum Albumin in 1X PBS) for 2 h at room temperature
(RT) followed by incubation with anti-Iba1 antibody, 0.5µg/ml
(Wako Catalog No. 019-19741) in blocking buffer (1.5% normal
goat serum (Vector Laboratories, cat no: S-1000) and 1% Bovine
Serum Albumin in 1X PBS) overnight at 4◦C. The sections were
washed with 1X PBS, 3 times and incubated with Biotinylated
anti-Rabbit IgG Antibody (1:200) in blocking buffer for 1 h at RT
and further washed with 1X PBS, 3 times prior to incubation with
Vectastain Elite ABC (Reagent A (1:50) and Reagent B (1:50) in
0.01M PBS) for 1 h at RT. The sections were washed three times
and incubated in peroxidase solution (0.01% hydrogen peroxide
and 0.05% DAB (3, 3′-diaminobenzidine) HRP substrate in 0.05
M Tris buffer) for color development.

Magnetic Resonance Spectroscopy (MRS)
Forty eight to seventy two hours after IP injection with Stx2a
(3 ng) or PBS animals were transferred to Cincinnati Children’s
Hospital and Medical Center, Department of Radiology, Imaging
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Research Center. All of the Stx2a-treated mice were symptomatic
at the time of imaging, as evidenced by lack of weight gain,
weight loss and/or lethargy, and the mice that were most severely
affected were imaged first. For the toxin-treated animals, two
were imaged on day 2, and two were imaged on day 3. For the
control animals, two were imaged on day 2 and one was imaged
on day 3. Animals received standard MRI brain scans and MRS
data was collected from the thalamus and cortex. Unprocessed
MRS signals were analyzed using the LCModel software package
(version 6.2-0), data where the % standard deviation exceeded
15% were rejected.

Statistical Analysis
Images of immunohistochemically developed slides were
captured using an Aperio ScanScope slide scanner (Aperio,
Vista, CA) to create whole-slide digital images. Images
were subsequently analyzed using ImageScope Positive-
Pixel Count Algorithm (Aperio) for systematic identification
and quantitation of deposited DAB generating a pseudo-colored
markup image representing staining intensities. Staining
intensities were assigned using as parameters the following
selections for input upper limits: weak positive (70, yellow on
markup image), medium positive (100, orange) and strong
positive (180, brown). This set of algorithm settings was
used on all positive and negative control tissues with manual
comparisons of multiple fields to ensure validity of the selected
settings. Analysis of variance was used to determine the
significant difference in the survival curve among intoxication
groups as well as for the brain microglial study followed by
Bonferroni post-tests (GraphPad Prism 5, GraphPad Software,
Inc.). P-values < 0.05 were considered significant.

Endothelial Cell Culture
Human cerebral cortex microvascular endothelial cells (HBMEC,
ACBRI 376, Lot 376.04.0H.0U.0Y) were obtained from Cell
Systems Corporation (Kirkland, WA) and were propagated
in Complete Classic Medium with serum, CultureBoost and
Bac-Off R© antibiotic (Cell Systems, Kirkland, WA). Cells were
harvested with the Passage Reagent System (Cell Systems)
according to manufactures protocol. The BALB/c bEnd.3 cell
line was a gift from Dr. Jerry Lingrel and was maintained
in DMEM with 10% FBS and Pen/Strep. Primary neonatal
dermal microvascular endothelial cells (dHMEC, CC-2516, Lot
0000317328) were obtained from Clonetics (Lonza, Walkersville,
MD) and propagated in Endothelial Cell Mediumwithout phenol
red (ScienCell, Carlsbad, CA). Cells were harvested with TrypKit
(Lifeline Cell Technologies, Walkersville, MD) according to
manufacturer’s protocol. The CDC.HMEC-1 line wasmaintained
in MCDB 151 medium supplemented with 10mM L-glutamine,
10 ng/ml epidermal growth factor, 1µg/ml hydrocortisone, 10%
fetal bovine serum (FBS), 50µg/ml gentamycin sulfate and 100
µg/ml kanamycin sulfate.

Endothelial Cell Toxicity Assay
Stx was serially diluted in 20µl of medium in sterile, black,
clear, flat-bottom 96-well plates (Corning, Tewksbury, MA).
Cells (in 60µl of medium) were added to toxin-containing

wells at subconfluent or confluent numbers, as follows: BMEC
(subconfluent 1.5 × 103 cells per well, confluent 8 × 103 cells
per well), bEnd.3 and dHMEC (subconfluent 6 × 103 cells per
well, confluent 12 × 103 cells per well). Toxin-treated cells were
incubated at 37◦C in 5% CO2. After 42 h the medium was
removed and 50 µl of fresh medium containing 10% (vol/vol)
alamarBlue (AbD Serotec, Raleigh, NC) was added. Cells were
incubated in the presence of alamarBlue for a total of 3 h.
Fluorescence was read at 590 nm on a FLX-800 fluorimeter
(BioTek, Winooski, VT) every 30 min and values within the
linear range, before depletion of substrate, are reported. In assays
using TNF-α, cells were plated at the subconfluent or confluent
densities in 60µl of medium and incubated overnight. TNF-
α (10 ng/ml) was added the next day and 24 h later toxin was
added. Cells were incubated for an additional 42 h and analyzed
as described above. Dose-response curves were plotted as the
percent relative fluorescence units (RFU) of untreated cells verses
toxin concentration.

Flow Cytometry to Detect Gb3
5 × 104 cells were cooled on ice for 30min and all subsequent
incubations were carried out on ice. Cells were incubated for
1 h with antibody to Gb3 (clone 38-13, Accurate Chemical and
Scientific Corporation, Westbury, NY) or PBS for controls. Cells
were washed, incubated for 1 h with fluorescein isothiocyanate
(FITC) conjugated α-rat IgM secondary antibody diluted 1:500
(AbD Serotec, product number MCA189F, Bio-Rad, Raleigh,
NC) and analyzed by flow cytometry (BD FACSCalibur; Becton
Dickinson, Franklin Lakes, NJ). Due to the limited number
of cells, analysis was performed by collecting 1 × 104 events
or all events collected for 5 min. Unstained cells (for labeled
primary antibody) or cells incubated with secondary antibody
(for unlabeled primary antibody) were used as negative controls.
Cells were gated for the live cell population based on the forward
and side scatter. Statistical analysis for flow cytometry was
performed by paired Student’s t-test using Prism5 (GraphPad
Software, La Jolla, CA).

Pretreatment with TNF-α
To assess the role of TNF-α on Gb3 expression, cells were
plated in 12-well plates and allowed to adhere overnight. TNF-
α (10 ng/ml) was added and 24 h later cells were harvested
and treated as described above. As a positive control for TNF-
α activity, stimulated HBMECs were stained for induction
of ICAM-1 expression and analyzed by flow cytometry.
Allophycocyanin (APC) labeled ICAM-1 (CD54) antibody was
diluted 1:200 (clone HA58, product number 353111, BioLegend,
San Diego, CA).

RESULTS

Weight Loss in Stx-Treated Mice
Stx toxicity was validated using standard assays. Groups of mice
were injected IP with PBS, purified Stx1 (1500 ng) or purified
Stx2a (7 ng), and weighed every 24 h post-injection (Figure 1).
Mice injected with PBS gained weight over the 72 h period
(Figure 1, closed circles). As observed previously, injection of
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FIGURE 1 | Weight gain in Stx-treated mice. Three groups of initially 16

mice were injected with either PBS (control), Stx1 (1500 ng), or Stx2a (7 ng),

and weighed prior to sacrificing four mice every 24 h for histological studies.

The average weight of the remaining mice at each time point is plotted. As

observed in previous studies, mice injected with PBS (circles) gained weight

over the 72 h period, while injection of Stx2a (triangles) resulted in a statistically

significant loss of weight at 24, 48, and 72 h post-injection (*P < 0.01, **P <

0.0032). Compared to the PBS alone injected population, mice injected with

Stx1 (squares) gained less weight, although the differences were not

statistically significant.

7 ng of Stx2a resulted in greater than 50% mortality (Fuller
et al., 2011) and statistically significant weight loss was observed
(Figure 1, closed triangles). In this study injection of 1500 ng of
Stx1 did not result in statically significant weight loss (Figure 1,
closed squares). These results demonstrate that Stx1 is not as
toxic as Stx2a. Stx2a, the more important toxin in human disease,
was the primary focus for subsequent studies.

Kidney Damage in Stx-Treated Mice
Kidney damage was assessed at 72-h post-injection (Figure 2).
Red blood cell congestion was observed in the Stx1 and Stx2a-
treated mice (Figure 2, yellow arrows), but not the control
mice. The failure of extensive perfusion in the presence of
the anticlotting agent, heparin, to eliminate the red blood cells
from the tissues suggests the presence of preexisting clots.
Increased spacing in the Bowman’s capsule was observed in the
glomeruli of the Stx2a-treated mice (Figure 2C, blue arrows). In
addition, the Stx2a-treatedmice displayed diffuse tubular dilation
in the renal cortexes, and minimal-to-moderate acute tubular
necrosis of distal tubules, characterized by tubules lined with
degenerating, necrotic, or sloughed epithelial cells (Figure 2F,
green arrows). Kidney lesions were present in the Stx1-treated
mice (Figures 2B,E, yellow and green arrows), but were less
severe than those observed in the Stx2a treated animals. Thus, as
observed in previous studies, Stx2a is more potent than Stx1, with
the smaller dose of Stx2a (7 ng) causing greater weight loss and
kidney pathology than the much larger dose of Stx1 (1500 ng).

Histologic Changes in the Mouse Brain
Coronal sections of mouse brain tissue were stained with H&E
(Figure 3), and few changes were observed. However, as observed
in the kidney, red blood cells were present in the brains of the

Stx2a-treated mice. They first appeared at 24 h post-injection
(data not shown), and at 48 and 72 h post-injection, large areas of
red blood cell congestion and clumping were evident throughout
the cortex (Figures 3C,F, green arrows). RBC congestion was not
observed in the brains of the Stx1-treated or control mice.

Stx Causes Microglial Cell Activation
Microglial cell responses are early indicators of neural
injury. These responses include up-regulation of surface-
marker expression and stereotypical morphological changes,
which include conversion from the resting, ramified form
(characterized by numerous, long branching processes and
a small cellular body), to the macrophage phagocytic form
(characterized by a large, ameboid shape, with few processes).
We used Iba1, the most commonly used marker to stain for
microglial activation (Hoogland et al., 2015). Compared to PBS
controls (Figure 4), mice injected with Stx2a showed increased
Iba1 staining, and mild morphological changes associated with
microglial activation (thickening of processes), which was more
pronounced at 72 h compared to 48 h.

Digital imaging was used to quantify changes over larger
and more diverse areas of the brain. The data was examined
in two different ways. Positive pixel count assesses signal
above background, corresponding to the area occupied by
microglial cells without regard to intensity. Total pixel intensity
indicates the amount of IbaI expression, and corresponds to
the level of microglial activation. Stx2a-treatment resulted in
statistically significant increased positive pixel numbers in the
cortex and nucleus amygdala at both 48 and 72-h post-injection
(Figure 5A). Significantly increased intensities were seen in all
areas of the brain, except the nucleus at 72-h post-injection
(Figure 5B). Stx1 only caused statistically significant increases in
positive pixel numbers for the cortex (Figure 5A).

Magnetic Resonance Imaging and
Spectroscopy
The brains of control mice and mice given a sublethal dose of
Stx2a (3 ng) were examined by MRI. Brain chemistry changes
upon death. Mice treated with Stx2a can deteriorate rapidly, and
a sublethal dose of toxin was used to ensure viability of the
animals; however all of the mice were symptomatic at the time
of imaging, as evidenced by weight loss and/or lethargy. Brain
scans from both the control mice and mice treated with Stx2a
were unremarkable and the Stx2a treated animals did not exhibit
hyperintensities in the thalamus or any other regions of the brain
(data not shown), consistent with the lack of obvious pathologic
changes in the H&E stained sections.

Brain metabolite concentrations in the thalamus and cortex
regions were determined by MRS, and values within the limit
of detection and with an acceptable range of standard deviation
are plotted (Figure 6). In the thalamus, the Stx2a-treated
mice had lower concentrations of all of the metabolites, but
only phosphocreatine reached statistical significance (Figure 6A,
PCr). No significant differences were seen in the metabolites of
the cortex (Figure 6B).
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FIGURE 2 | H&E staining of kidney tissue at 72 h post-injection. Transverse sections of kidney tissue showing glomeruli (A–C) and tubules (D–F) of mice from

Figure 1 injected with: PBS (A,D); 1500 ng Stx1 (B,E); 7 ng Stx2a (C,F). Stx2a-treated mice show increased spacing in the Bowman’s capsule (C, blue arrow). Red

blood cell congestion is seen in the Stx2a-treated mice (C,F, yellow arrows) and to a lesser extent in the Stx1-treated mice (B,E, yellow arrows), but not in the kidneys

of control mice. Tubular necrosis was seen in animals receiving Stx1 (E, green arrows), but these lesions were much more prominent in animals receiving Stx2a (F,

green arrows). Scale bar represent 50µm. Insert, orange arrow indicates approximate position of the magnified image.

FIGURE 3 | H&E staining of coronal sections of brain tissue. Mice from Figure 1 injected with PBS (A,D); 1500 ng Stx1 (B,E); 7 ng Stx2a (C,F) sacrificed at the

indicated times. Sections of the Stx2a injected mice show accumulation or congestion of red blood cells in the vesicles (C,F, green arrows), not seen in the sections

injected with PBS alone or Stx1. Scale bar represent 50 µm. Insert, entire brain scan where black arrow indicates approximate position of the magnified image.

Brain Endothelial Cells are not Susceptible
to Stx
We tested an immortalized line, bEnd.3, from BALB/c mice
and primary human microvascular endothelial cells (HBMECs)
isolated from the cerebral cortex for sensitivity to Stx1 and
Stx2a. Cells were incubated with 10-fold dilutions of purified
Stx1 or Stx2a, ranging in concentration from 0.5 to 5 × 10−6

µg/ml for bEnd.3 cells or 0.5 to 5 × 10−7
µg/ml for HBMECs.

After 42 h, mitochondrial metabolic activity was assessed by
the reduction of resazurin to the fluorescent resorufin. No loss

of metabolic activity was seen in the toxin-treated cells for

either the mouse bEnd.3 immortalized line (Figure 7A) or the

primary human brain endothelial cells (Figure 7B). Previous

reports suggested that sub-confluent cells are more sensitive to

Stx than confluent cells (Obrig et al., 1988), however in our

studies the level of cellular density did not alter susceptibility

(Figures 7A,B). In addition, previous studies reported pre-
treatment with TNF-α can sensitize cells to Stx2a (Ramegowda
et al., 1999; Eisenhauer et al., 2001). Pre-incubation of human
brain endothelial cells with TNF-α (10 ng/ml) did not sensitize
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FIGURE 4 | Mouse brain temporal lobe of the cortex region stained for the microglial marker, Iba1: Cross sections of brain tissue injected with PBS

control (A,C), and Stx2a (7 ng) B,D; (A,B), 48 h, (C,D) 72h post-injection. Compared to controls at 48 h, brains of mice injected with Stx2a show an increase in

the intensity of Iba1 staining of microglial cell bodies and processes (red arrows). At 72 h post-injection with Stx2a, morphologic change from the ramified (resting

stage) characterized by long branching processes, to the activated macrophage-like globular structure displaying few processes and a more intensely stained cell body

(D, green arrows) is observed. Scale bar represent 50 µm. Insert, entire brain scan where orange arrow indicates approximate position of the magnified image (n = 4).

the cells to the effects of Stx (Figure 7B). However, the
endothelial cells were responding to TNF-α, as evidenced by
up-regulation of cell-surface expression of ICAM-1, following
treatment with TNF-α (Figure 7E). Both primary neonatal
dermal microvascular endothelial cells (dHMEC; Figure 7C)
and immortalized human dermal microvascular endothelial cells
(CDC.HMEC-1; Figure 7D) showed a dose-dependent reduction
in metabolic activity following treatment with Stx1 or Stx2a,
confirming the activity of both toxins.

Stx Resistance Correlates with Lack of
Gb3 Expression
To determine the molecular basis for the lack of response to
Stx, flow cytometry was used to determine if both the mouse
and human cells were resistant to the effects of Stx due to a
lack of Gb3 receptor expression. For the bEnd.3 cells, equivalent
staining was seen in the presence or absence of the primary
antibody to Gb3, suggesting the mouse cells lacked expression of
Gb3 (Table 1). Slightly increased values of the geometric mean
fluorescence were observed for the human BMECs both without
and with TNF-α stimulation. Mean fluorescence for bEnd.3 cells
or HBMECs stained for Gb3 was not significantly greater than
unstained control cells (P > 0.05 paired t-test). CDC.HMEC-1
cells expressed Gb3 in agreement with the susceptibility of these
cells to toxin (Table 1).

DISCUSSION

Injection of purified Stx is sufficient to induce neurologic
symptoms in experimental animals, suggesting bacterial infection

is not needed. Neurologic symptoms in human disease can
include lethargy, irritability, cortical blindness, and seizures
(Sheth et al., 1986; Hahn et al., 1989; Nathanson et al., 2010).
Mice injected with purified Stx may display hind limb paralysis,
lethargy, shivering, abnormal gait and spasm-like seizures (Obata
et al., 2008). Baboons exhibit seizure episodes which progressed
to coma and death (Siegler et al., 2001, 2003). While the
neurologic responses to Stx can be dramatic, the overall changes
in the brain are mild. The goal of this study was to develop a
framework to understand how mild alterations in the brain can
lead to potentially life-threatening neurologic responses.

Neurologic symptoms aremost commonly observed following
infection with strains that produce Stx2a, not Stx1. Seven ng
of Stx2a resulted in highly reproducible weight loss and severe
kidney histology (Figure 2), while 1500 ng of Stx1 was much less
toxic. Increased expression of the microglial activation marker
Iba1 was observed for both toxins, but was more pronounced
in mice given the much smaller dose of Stx2a (Figure 5A). It is
likely that neurologic damage is infrequently observed following
infection with E. coli strains that only produce Stx1 because
sufficiently high doses of Stx1 are not easily achieved in vivo.

Stx can promote disease by differentmechanisms. Internalized
Stx cleaves the ribosomal RNA, causing protein synthesis
inhibition. In some cells, protein synthesis inhibition activates
apoptotic death pathways, resulting in death of the Stx-treated
cells (Jones et al., 2000; Ching et al., 2002; Fujii et al.,
2003). Several cell types in the kidney are known to be killed
by Stx (van Setten et al., 1997; Hughes et al., 1998; Fuller
et al., 2011; Dettmar et al., 2014), and we observed extensive
cellular necrosis and damage to the kidneys of the Stx2a-
treated mice. No hyperintensities were observed by MRI in the
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FIGURE 5 | Quantification of microglial Iba1 staining. Pixel count in the

indicated regions of the brain (top) of mice in Figure 4: injected with PBS

(open bars); 1500 ng Stx1 (gray bars); or 7 ng Stx2a (black bars) at 48 and 72

h post-injection. (A) total positive pixel count (corresponding to microglial cell

numbers). Compared to controls, for Stx2a treated mice statistically significant

increases in the total pixel numbers were seen in the cortex and nucleus

amygdela at 48 and 72 h. (B) total pixel intensity (indicative of microglial

activation). Statistically significant increases in pixel intensity were seen for

Stx2a at both 48 and 72 h throughout the brain with exception to the nucleus.

Aperio Imagescope v12 software was used to annotate areas of interest and

perform image analysis. (n = 4). P-values were *P < 0.05; **P < 0.04; and

***P < 0.02.

brains of living mice, indicating that unlike the kidney, massive
cellular death is not the mechanism by which Stx-induces brain
damage.

In other cells, Stx-mediated inhibition of protein synthesis
can activate cellular stress responses without causing death
(Iordanov et al., 1997; Foster and Tesh, 2002; Smith et al.,
2003). Activation of stress responses can alter the behavior

FIGURE 6 | Concentrations of brain metabolites. MRI is shown indicating

approximate placement of the sagittal and coronal voxel for thalamus (A) and

cortex (B). Average metabolite concentrations plotted as mean ± SD for

control, PBS injected (n = 3 mice) and 3 ng Stx2a-injected (n = 4 mice).

Metabolites detected include: PCr, phosphocreatine; Glu, glutamic acid; Ins,

myo-inositol; + Tau, taurine; GPC + Pch, choline-containing compounds;

NAA + NAAG; N-acetylaspartylglutamate + N-acetylaspartate; Cr + PCr,

creatine + phosphocreatine; and Glu + Gln, glutamic acid + glutamine. Two

tailed Student’s t-test was used to assess statistical significance (*P < 0.03).
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FIGURE 7 | Metabolic activity of Stx-treated microvascular endothelial cells. bEnd.3 immortalized mouse cerebral cortex microvascular endothelial cells (A),

primary human cerebral cortex microvascular endothelial cells (B), primary human neonatal dermal microvascular endothelial cells (C), and CDC.HMEC-1 immortalized

human dermal microvascular endothelial cells (D) were incubated with Stx1 (solid lines) or Stx2a (dashed lines) for 42 h. The toxin containing media was removed and

fresh media containing 10% alamarBlue was added. Cells were incubated for an additional 3 h and the fluorescent reduction of alamarBlue was measured every 30

min. The 1 h time point is shown except for subconfluent BMECs which depicts the 3 h time point. Graphs depict toxin-treated cells as a percent of untreated control

cells. Results are the average of three individual experiments and error bars correspond to standard deviation of the mean. TNF-α upregulates surface ICAM-1 (E).

Human brain endothelial cells were incubated with 10 ng/ml TNF-α for 24 h, stained for surface expression of ICAM-1 (CD54) and analyzed by FACS.

of the toxin-susceptible cell, as well as cells that are resistant
to the action of Stx. For example, macrophages respond to
Stx by producing pro-inflammatory cytokines (Tesh et al.,
1994; Harrison et al., 2005), which can induce global systemic

responses. Neurologic damage could result from activation of
cellular stress responses, either directly in the cells of the brain
or in response to mediators produced elsewhere in the body,
or both. While some studies have reported upregulation of
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TABLE 1 | Cell-surface Gb3 on cerebral cortex microvascular endothelial

cells.

Geometric mean fluorescent intensity

Cell type Secondary Gb3 and secondary

antibody alone antibody

bEnd.3 12.1± 0.4 12.4± 0.1

Human brain

endothelial cells

16.4± 1.4 18.7± 0.5

Human brain

endothelial cells with

TNF-α

16.4± 2.1 20.7± 1.7

CDC.HMEC-1 7.1± 1.5 29.8± 1.9

Results are reported as average and standard deviation for three experiments, except

CDC.HMEC-1 and TNF-α treated (n = 2).

stress responses by endothelial cells treated with Stx (Matussek
et al., 2003; Petruzziello-Pellegrini et al., 2012), in our studies,
both a mouse brain endothelial cell line and primary human
brain endothelial cells were resistant to Stx1 and Stx2a under
all conditions tested. It has long been known that primary
endothelial cells vary in their sensitivity to Stx and TNF-α
(Louise and Obrig, 1991). The published literature differs
on the inherent sensitivity of human BMECs. Studies using
commercially available cells have reported HBMECs to be fairly
resistant to Stx (Hughes et al., 2002; Stricklett et al., 2002), as
we report using cells obtained from Cell Systems Corporation.
However, two studies reported HBMECs to be highly sensitive
to Stx using cells they isolated (Fujii et al., 2008; Bauwens et al.,
2010). It is difficult to determine why inconsistent results are
seen.

One approach to identify cells that are altered, but not killed
by Stx, has been to focus on the cells that express the Stx receptor,
Gb3. While not all cells that express Gb3 are susceptible to Stx
(Storck et al., 2012), cells that lack Gb3 expression are resistant,
and mice lacking Gb3 expression are completely protected from
Stx-mediated death (Okuda et al., 2006). Porubsky et al. (2014)
found that when Gb3 expression was selectively deleted only
in renal tubule cells, about 65% of mice still succumbed to
neurological complications. Furthermore, when Gb3 expression
was deleted from both renal tubule cells and endothelial cells,
survival only increased by 25%. These results suggest that
neurologic damage is not just a secondary response to kidney
damage, and Gb3 expressing cells which do not reside in the
kidney or endothelium play a significant role in Stx mediated
complications and death.

Neurons within the mouse olfactory bulbs, cerebral cortex,
hippocampus, striatum, amygdale, cerebellum, hypothalamus,
thalamus and medulla oblongata stain positive for Gb3 (Obata
and Obrig, 2010). Obata et al. (2008) observed that Gb3 positive
motoneurons could also be labeled with Stx2a, and ultrastructural
studies of the brains of Stx-treated mice and rats exhibited
neuronal damage, including demyelinated axons, cytoplasmic
edema and degenerative phenotypes (Goldstein et al., 2007;
Obata et al., 2008; Tironi-Farinati et al., 2013). However, mouse
astrocytes, which are reported to lack Gb3 expression, exhibit
severe swelling and cellular breakdown following Stx injection

(Obata et al., 2008; Tironi-Farinati et al., 2013), suggesting these
cells are indirectly damaged following Stx challenge. In electron
microscopy, lamellipodia-like projections from either reactive
astrocytes or glial cells which lack Gb3 expression were observed
interrupting the pre- and post-neuronal synapses in the brains
of Stx-treated mice (Obata et al., 2008; Tironi-Farinati et al.,
2013). Obata et al. (2008) put forward a model where Stx
stimulates excessive neurotransmitter release. Since this is toxic
to neurons, astrocytes attempt to limit damage by occluding the
synapse with the inserted lamellipodium and by taking up excess
neurotransmitter. This model explains how damage to one cell
(the neuron) can cause responses in other cells, how loss of
motor control could occur in the absence of gross pathology,
and why the neurologic damage appears to be reversible in
humans.

While neurons can be a target for Stx, and Stx2 has been
immunolocalized in the brain parenchyma of mice (Armstrong
et al., 2006; Obata et al., 2008), Stx must bypass the blood
brain barrier to gain access to these cells. In studies tracking the
distribution of radio-labeled Stx in mice following intravenous
injection, at early time points neither Stx1 nor Stx2a were
detected in the central nervous system or brain stem of the
animals (Rutjes et al., 2002). However, at 48 h Stx2a, but not
Stx1, was detected in the brain (Armstrong et al., 2006). These
results suggest that there is a lack of immediate binding of Stx2
to endothelial cells in vivo , consistent with our studies that do
not support a role for Stx acting directly on brain endothelial
cells. However, over time Stx2 can access the brain tissues,
presumably requiring disruption of the blood brain barrier. This
could result as a secondary response following damage to other
organ systems. For example, pro-inflammatory responses can
alter the blood brain barrier. Alternatively, energy depletion
by lack of glucose and oxygen intake or electrolyte disorders
could damage the brain. The reduced levels of phosphocreatine,
a high-energy phosphate donor, seen by MRS in this study
indicate increased metabolic activity in the Stx2a-treated
mice.

Overall, our studies are consistent with the hypothesis that
systemic responses to Stx alter the blood brain barrier, allowing
access to the neurons. Our observation of red blood cell
congestion in both the kidney and brain is consistent with
vascular involvement, even though the brain endothelial cells
may not be a direct target for Stx early in disease. Furthermore,
symmetrical microglial activation occurring in many parts of the
brain suggests that local ischemic or hemorrhagic events are not
responsible for the neurologic damage, and a more global process
is operating. A more detailed understanding of the systemic
alterations induced by Stx could allow us to develop therapeutic
approaches to treat this currently untreatable disease.
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