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Abstract

The discovery of preclinical Alzheimer's disease (preAD) provides a wide time win-

dow for the early intervention of AD. The coupling relationships between glucose

and oxygen metabolisms from hybrid PET/MRI can provide complementary infor-

mation on the brain's physiological state for preAD. In this study, we purpose to

explore the change of coupling relationship among 27 normal controls (NCs),

20 preADs, and 15 cognitive impairments (CIs). For each subject, we calculated the

Spearman partial correlation between the fractional amplitude of low-frequency

fluctuations (fALFF) and the regional homogeneity (ReHo) from functional image

(fMRI), and the standard uptake value ratio (SUVR) from [18F] fluorodeoxyglucose

positron emission tomography (18F-FDG PET), in the whole-brain and default mode

network (DMN) as a novel potential biomarker. The diagnostic performance of this

biomarker was evaluated by the receiver operating characteristic analysis. Signifi-

cant Spearman correlations between the FDG SUVR and the fALFF/ReHo were

found in 98% of subjects. For the DMN-based biomarker, there was a significant

decreasing trend for the preAD and CI groups compared to the NC group, whereas

no significant difference in preAD based on whole-brain. The correlation ρ value for

the FDG SUVR/ReHo showed the highest area under curve of the preAD classifica-

tion (0.787). The results imply the coupling relationship changed during the preAD

stage in the DMN area.
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1 | INTRODUCTION

Alzheimer's disease (AD) is a neurodegenerative disease character-

ized by progressive cognitive decline. Amyloid-β (Aβ) and tauChangchang Ding and Wenying Du should be considered joint first author.
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accumulation occurs in the forms of amyloid plaques and neurofibril-

lary tangles in the brain of an AD patient, which is accompanied by

neural degeneration and loss (Chételat, 2013; Duan et al., 2016;

Wang et al., 2020). The brain alternations due to AD may precede

memory impairment, which can be detected by neuroimaging

methods (Balsis et al., 2018; Habib et al., 2017; Sun et al., 2016).

With the progress of AD research, the focus has gradually shifted to

the early stage of the disease, for example, preclinical AD (preAD),

which refers to the stage without cognitive impairment (CI) but with

abnormal AD biomarkers (Aβ+). The discovery of preAD can provide

a wide time window for the early intervention of AD (Jessen

et al., 2020; Molinuevo et al., 2017; Palaniyappan & Liddle, 2014;

Wang et al., 2020).

Glucose and oxygen metabolisms are closely related, and both are

concerned with the nerve activity in the resting state (Aiello

et al., 2015; Baron et al., 1984; Dong et al., 2021; Jueptner &

Weiller, 1995). These two types of metabolisms are relatively stable in

a normal human brain. However, the coupling relationship between

the two metabolisms may be damaged by neurodegenerative disor-

ders, such as AD (Aiello et al., 2015; Marchitelli et al., 2018). To

explore the above changes, scholars have used neuroimaging tech-

niques to present the two metabolisms. Some examples are [18F]

fluorodeoxyglucose positron emission tomography (18F-FDG PET),

which presents glucose metabolism, and resting-state functional mag-

netic resonance imaging (rs-fMRI), which represents oxygen metabo-

lism. In addition, extracted semi-quantitative indicators, including

standardized uptake value ratio (SUVR) from FDG PET, fractional

amplitude of low-frequency fluctuations (fALFF), and regional homo-

geneity (ReHo) from fMRI and the calculated the correlation ρ value

between the FDG SUVR and the fALFF/ReHo present the real-time

coupling relationship in vivo.

Consequently, hybrid FDG PET/MRI scans have been used to

explore the variation in the correlation between the glucose and

oxygen metabolisms in the resting state in normal control (NC) and

AD subjects by calculating the correlation ρ value between the

FDG SUVR and the fALFF/ReHo. For instance, Aiello et al. found a

significant and stable correlation between the FDG SUVR and the

fALFF/ReHo in the global brains of NC subjects, which indicated

that the correlation ρ value is useful to represent the coupling rela-

tionship (Aiello et al., 2015). Based on this, Marchitelli et al. further

determined a significant coupling reduction in patients with CI at

the entire brain level (Marchitelli et al., 2018). However, whether

the coupling relationship changes in preAD needs further

exploration.

Therefore, in the present study, first, we aimed to explore

whether the correlation ρ value between the FDG SUVR/fALFF and

the SUVR/ReHo in the preAD stage varies compared to that in NC

subjects. Because we proposed that the changes may be small and

local, we compared the ρ values at both the global brain and default

mode network (DMN) levels. DMN is well known as an important

brain region for AD disease spectrum. Second, we aimed to explore

the diagnosis performance of the correlation ρ values as biomarker

among NC, preAD, and CI groups.

2 | MATERIALS AND METHODS

2.1 | Subjects

In this study, we examined 62 right-handed and Mandarin-speaking

subjects with ages ranging 50–79 years, comprising 27 NC subjects,

20 preADs, and 15 CI patients. The data were obtained from the Sino

Longitudinal Study on Cognitive Decline (SILCODE) project (Li, Wang,

Su, Hu, & Han, 2019) (ClinicalTrials.gov Identifier #NCT03370744).

The entire group of the subjects underwent routine clinical and stan-

dard laboratory assessments, including a neurological examination,

neuropsychological evaluation, brain simultaneous resting-state FDG-

PET, and fMRI acquisition. The Aβ values of all the NC and preAD

subjects and a part of the CI subjects (N = 7) were selected by 18F-

florbetapir (18F-AV45) PET. Moreover, all the subjects were required

to obtain written informed consent prior to enrollment.

NC was defined as the subjects with normal performance in neu-

ropsychological tests and negative amyloid burden (Aβ-) in 18F-AV45

PET scans. PreAD was defined with the criteria based on the National

Institute on Aging-Alzheimer's Association (NIA-AA; Sperling

et al., 2011) and International Working Group-2 guidelines (Dubois

et al., 2014) as positive amyloid burden in AV45-PET relative to the

population with normal cognitive level. The CI group comprised sub-

jects with amnestic mild CI (aMCI) or AD dementia. The inclusion

criteria for aMCI were based on the actuarial neuropsychological

method proposed by Jak and Bondi (Bondi et al., 2014). The inclusion

of AD dementia was based on the Diagnostic and Statistical Manual

of Mental Disorders Fifth Edition and the diagnostic guidelines for

dementia due to AD established by NIA-AA workgroups (McKhann

et al., 2011). The detailed definitions of preAD and CI are provided in

the Supporting Information.

All the subjects underwent neurological examination, which com-

prised the Chinese version of the mini-mental state examination

(MMSE), basic version of Montreal cognitive assessment (MoCA-B),

Hamilton depression rating scale (HAMD), Hamilton anxiety rating scale

(HAMA), subjective cognitive decline (SCD-9), shape trail test A (STT-A),

shape trail test B (STT-B), animal fluency test (AFT), Boston naming test

(BNT), geriatric depression scale (GDS), long-term delayed recall (N5),

and recognition (N7). The exclusion criteria were current major psychiat-

ric diagnoses (e.g., severe depression or anxiety), other neurological con-

ditions or those which can cause cognitive decline (e.g., Parkinson's

disease, encephalitis, or thyroid dysfunction) instead of AD spectrum dis-

orders, and the inability to complete the study protocol or presence of

contraindications for MRI. Furthermore, the subjects with an MMSE

score of less than 27 in the normal cognitive group and more than 26 in

the CI group were excluded (Folstein, Folstein, & McHugh, 1975).

2.2 | Image acquisition

An integrated 3.0 T TOF PET/MR (SIGNA PET/MR, GE Healthcare,

Milwaukee, Wisconsin) at the Xuanwu Hospital of Capital Medical

University was used to simultaneously acquire the PET and MRI data.
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The parameters for the three-dimensional (3D) T1-weighted MRI

images acquired by a spoiled gradient-recalled sequence were as fol-

lows: repetition time (TR) = 6.9 ms, echo time (TE) = 2.98 ms, inver-

sion time (TI) = 450 ms, flip angle = 12�, voxel size = 1 � 1 � 1 mm3,

field of view (FOV) = 256 � 256 mm2, matrix size = 256 � 256, slice

thickness = 1 mm, and slice number = 192. Resting-state fMRI was

obtained with a single-shot gradient-echo planar imaging sequence

with the following parameters: TR = 2000 ms, TE = 30 ms, flip

angle = 90�, voxel size = 3.5 � 3.5 � 4 mm3, FOV =

224 � 224 mm2, matrix size = 64 � 64, slice thickness = 4.0 mm,

slice number = 28, and slice order = interleaved.

In this study, all the subjects underwent 18F-FDG PET/MRI scans.
18F-AV45 PET was performed to assess the cortical Aβ burden for all

the NC and preAD subjects and a part of the CI patients (N = 7). The

interval between the recording of FDG-PET and AV45-PET was more

than 3 days to eliminate the influence of the first tracer. For FDG-

PET, each subject was instructed to fast for a minimum of 6 hr, and a

35-min dynamic scan was acquired approximately 40 min after an

intravenous injection of 3.7 MBq/kg of 18F-FDG. For Aβ-PET, a

35-min dynamic scan was acquired approximately 40 min after an

intravenous injection of 7–10 mCi 18F-AV45. The PET data were

acquired in the 3D acquisition mode and using a time-of-flight

ordered subset expectation maximization algorithm with the following

parameters: eight iterations, FOV = 350 � 350 mm2, 32 subsets

matrix = 192 � 192, and full width at half maximum (FWHM) = 3.

2.3 | Structural MRI processing

The 3D high-resolution T1-weighted images were captured by a

standard voxel-based morphometric analysis using a computational

anatomy toolbox (CAT12, http://dbm.neuro.uni-jena.de/cat/) on a

MATLAB 2016b platform. For each T1 image preprocessing, first,

image registration was performed, followed by segmentation into

probabilistic gray matter (GM), white matter (WM), and cerebrospinal

fluid (CSF). Each GM image was normalized to the Montreal Neuro-

logical Institute (MNI) space by diffeomorphic anatomical registration

via exponentiated lie algebra, and finally smoothed using an 8-mm

Gaussian-smoothing kernel.

Brain atrophy has been proved to be closely related to the pathol-

ogy and memory impairment in AD (Gupta, 2020; Pegueroles

et al., 2017). In this study, CAT12 was also used to automatically cal-

culate the bilateral hippocampal volume (HPV), bilateral basal fore-

brain volume (BFV), GM volume (GMV), and total intracranial volume

(TIV) as general indicators for comparison with the FDG-PET/fMRI

correlation metrics. Briefly, local GM and WM volumes are

conserved by modulating the image intensity of each voxel by the

Jacobian determinants of the computed deformation fields during the

normalization. The anatomical structures of the hippocampus and

the bilateral basal forebrain were extracted from normalized and mod-

ulated GM maps based on a neuromorphometrics atlas (http://

neuromorphometrics.com/). The TIV of each subject was estimated

by adding the segmented GM, WM, and CSF volumes. In this study,

GM and DMN binary spatial masks, also based on structural MRI,

were used to extract the voxel values from FDG-PET and fMRI

images.

2.4 | Resting-state fMRI image preprocessing

Resting-state fMRI images were preprocessed using the Data

Processing Assistant for Resting-State fMRI (DPARSF, http://www.

rfmri.org/DPARSF) software implemented on the MATLAB 2016b

platform.

To minimize the influence of magnetic field inhomogeneity during

the initial scanning, the data of the first 10 time points were removed.

Slice-timing corrections followed by head motion correction and base-

line drift removal were conducted on the remaining 230 time point

data to eliminate the impact of different acquisition times. Studies

with an estimated maximum head motion larger than 3.0 mm and/or

3.0� were excluded. Multiple linear regression analysis was performed

on 24 head movement parameters (12 movement parameters and

their first derivatives) and mean time series of WM, CSF, and global

brain to remove additional false physiological noise sources. The

resulting images were normalized to the MNI standard space using

the transformation parameters of the structural image normalized to

the MNI standard space with resampling to 3 mm isotropic voxels.

Subsequently, they were smoothed by a 4-mm FWHM Gaussian

smoothing kernel (Yan et al., 2020).

2.5 | PET image processing

The 18F-FDG PET and 18F-AV45 PET images were preprocessed using

a statistical parametric mapping software (SPM12, https://www.fil.

ion.ucl.auk/spm/software/spm12/) with MATLAB 2016b.

For 18F-FDG PET, all the PET images were co-registered with

T1-weighted 3D MRI images. Partial volume correction (PVC) was

applied to the images after registration to minimize the partial volume

effects on the PET measurements. PVC for removing the partial vol-

ume effect on the PET images was based on the Muller–Gartner algo-

rithm and a three-compartment model (Gonzalez-Escamilla, Lange,

Teipel, Buchert, & Grothe, 2017). The PET images after the PVC were

spatially normalized to the MNI space using the transformation

parameters of T1 MRI image standardization to the MNI space.

Finally, the resulting images were smoothed by an 8-mm FWHM

Gaussian smoothing kernel. The SUVR of each PET image was calcu-

lated with the global brain under the GM mask as the reference area.

For 18F-AV45 PET, in brief, the PET images were registered into

structural images and subsequently spatially normalized to the MNI

space using the transformation parameters from the spatial standardi-

zation of the MRI images. This was followed by smoothing with an

8-mm FWHM Gaussian kernel. The 18F-AV45 PET images were nor-

malized using the cerebellum based on Anatomical Automatic Labeling

(AAL) template (area: 91–116) as a reference region to obtain the

SUVR. In this study, normal cognitive subjects were classified as
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Aβ positive (Aβ [+]) or Aβ negative (Aβ [�]) in relation to a cutoff of

1.18 SUVR in the AV45 PET scans (Chen et al., 2015).

2.6 | Rs-fMRI metrics

The spontaneous activity of the brain is closely related to the cogni-

tive activity in the resting state. In this study, fALFF and ReHo were

used based on previous studies (Aiello et al., 2015; Marchitelli

et al., 2018).

The fALFF is the ratio of the power in the low-frequency range

(0.01–0.1 Hz) and the total power in the entire detectable frequency

range of each voxel time process. It quantifies the amplitude of the

low-frequency oscillation (LFO) to represent the relative LFO contri-

bution to the entire frequency range (Zou et al., 2008; Zuo

et al., 2010). The fALFF can effectively inhibit the energy of the non-

physiological brain regions affected by noise and CSF and improve

the sensitivity and specificity of spontaneous nerve activity signal

detection.

ReHo reflects the spontaneous neural activity in the brain from

the perspective of the interconnections between neurons. The theo-

retical basis is that under certain conditions, the voxels in the brain

region and the surrounding voxels have high temporal consistency. In

a time series, the similarity between a certain voxel in the brain and its

adjacent 27 voxels is calculated, and Kendall's coefficient of harmony

(KCC; Zang, Jiang, Lu, He, & Tian, 2004) is obtained. The KCC value is

used to represent the consistency of the time series between non-

adjacent voxels around the brain area, which indirectly reflects the

synchronous consistency of the neuronal activities in local brain

regions.

After calculating the fALFF and ReHo maps, each map was

normalized to obtain a z-score map by calculating the ratio of the

difference between the average value of each voxel and GM voxel to

the SD. In this study, global and DMN ReHo/fALFF were defined as

the GM voxel means under GM and DMN masks, respectively, (Yeo

et al., 2011) as conventional metrics for evaluating spontaneous brain

activity.

2.7 | FDG-PET/fMRI correlation metrics

Previous findings of CI have weakened the coupling relationship

between the glucose metabolism and the functional activity in the

entire brain (Aiello et al., 2015; Marchitelli et al., 2018). To evaluate

the relationship for preAD, we performed the same operations on
18F-FDG PET and fMRI as in the study of Aiello et al.

After preprocessing and standardizing into the z-score, the FDG

SUVR maps, GM probability, and fALFF and ReHo maps were trans-

formed into one-dimensional vectors using a GM or DMN mask.

Spearman's rank correlation (ρ) was performed between the one-

dimensional vector from two imaging modalities, and the regression

of the GM probability value was used to minimize the bias caused

by unnecessary structural atrophy. Therefore, the global or DMN

FDG-PET/fMRI correlation was calculated using a GM or DMN mask

and the correlation coefficients—global SUVR/fALFF (ρ), global SUVR/

ReHo (ρ), DMN SUVR/fALFF (ρ), and DMN SUVR/fALFF (ρ)—defined

as a category of PET/fMRI correlation metrics to analyze the changes

in preAD and CI stages. To define the high coupling and lower cou-

pling regions, we used the AAL atlas (116 brain regions) to calculate

the coupling relationships at the level of brain regions. Spearman cor-

relation coefficient value .3 was chosen as the threshold to discrimi-

nate high coupling and low coupling regions (Mukaka, 2012).

2.8 | Statistical analysis

In this study, scalar statistical analysis was conducted using IBM SPSS

statistics V25.0, and voxel-based statistical evaluation was performed

in Data Processing & Analysis for Brain Imaging (DPABI, http://rfmri.

org/dpabi). The statistical significance level was set as p < .05.

2.8.1 | Demography and neuropsychology

A chi-squared test was conducted to evaluate the gender effect

among the samples, and analysis of variance (ANOVA) was used to

evaluate the statistical differences in the age, MMSE, and other neu-

ropsychological scale scores of the three groups (NC, preAD, and CI).

2.8.2 | Spatial distribution difference analysis

To verify the repeatability of the SUVR, fALFF, and ReHo, an indepen-

dent two-sample t-test at whole brain level was performed on the

complete individual datasets of the NC and CI groups (NC > CI), and

NC and preAD groups (NC > preAD) under regression of the gender,

age, and education. In addition, the GM probability map was included

as a based-voxel covariate to deal with the variability in the GM den-

sity in the different populations due to the effect of the GM atrophy

on these comparisons (Xie et al., 2015). Finally, Gaussian random field

(GRF) correction (minimum, z > 2.5; voxel level p < .01, cluster level

p < .05) was applied to each t-map obtained by the two-sample t-test,

followed by the observation of the group differences in the spatial

distribution.

2.8.3 | Conventional and FDG-PET/fMRI
correlation metrics

To observe the distribution of the FDG-PET/fMRI correlation

metrics between the groups, ANOVA was used to compare the HPV,

BFV, GMV, and TIV in the structural images. The quantified functional

indicators (global fALFF, global ReHo, DMN fALFF, and DMN ReHo)

and the FDG-PET/fMRI correlation metrics among the groups were
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also employed to explore if these indicators can differentiate between

the groups.

2.8.4 | Correlation analysis with Aβ

AD is characterized in the late stages by Aβ plaques and neurofibrillary

tangles. To explore if there exists a correlation between the FDG

SUVR, fALFF, ReHo, and Aβ SUVR in NC and preAD subjects, the par-

tial Pearson correlation between the global AV45 SUVR, conventional

indicators, and FDG-PET/fMRI correlation metrics was calculated

using the SPSS software for a statistical significance of p < .05. Subse-

quently, the subjects who underwent AV45-PET in the CI group were

added to explore the changes in the correlation caused by CI.

2.8.5 | Classification performance analysis

Receiver operating characteristic (ROC) analysis was performed to

explore the diagnostic performance of the conventional indicators

and the FDG-PET/fMRI metrics among the three groups. The ROC

curve of each indicator was drawn, and the area under the curve

(AUC) calculated using the SPSS software was considered statisti-

cally significant when p < .05. Subsequently, the Youden index was

used to determine the optimal threshold of the ROC curve and its

corresponding sensitivity and specificity.

3 | RESULTS

3.1 | Demography and neuropsychology

Based on the chi-square test and the ANOVA analysis, there were no

significant difference in the gender, age, and education among the

groups. There were significant differences in the MMSE, MoCA-B,

SCD-9, STT-A, STT-B, AFT, and BNT scores of the CI and NC groups

(p < .05), even including the preAD group. In addition, there was a sig-

nificant difference in the HAMA scale scores only of the preAD and

CI groups (p < .05). The demographic data and cognitive psychology

evaluation of the NC, preAD, and CI groups are summarized in

Table 1.

3.2 | Spatial distribution difference analysis

Based on the independent two-sample t-test, compared with the NC

group, in the CI group, the areas of significant metabolic decline were

mainly distributed in the DMN regions, such as angular gyrus, inferior

parietal lobule, precuneus, middle temporal gyrus, inferior temporal

gyrus, and posterior cingulate cortex. Moreover, the areas with signifi-

cant decrease were symmetrical in the spatial distribution (Figure 1a).

ReHo and fALFF indexes failed to pass GRF correction. The results of

two-sample t-test for ReHo and fALFF were significant (cluster > 30),

whereas did not pass the GRF correction. The areas in which the

TABLE 1 Data and cognitive
psychology evaluation

Characteristics NC preAD CI

Gender (M/F) 11/16 5/15 5/10

Age (year) 65.07 ± 3.44 67.10 ± 5.50 69.33 ± 10.81

Education 13.30 ± 2.32 12.65 ± 2.63 12.67 ± 3.40

MMSE 29.11 ± 0.88a 29.20 ± 0.98b 19.20 ± 5.58a,b

MoCA-B 26.67 ± 1.70a 26.70 ± 1.79b 14.33 ± 4.76a,b

SCD-9 4.22 ± 2.46a 4.40 ± 2.03b 6.50 ± 1.66a,b

HAMD 2.56 ± 3.06a 4.00 ± 3.63 5.87 ± 5.28a

HAMA 3.41 ± 3.26 4.25 ± 2.55 6.00 ± 5.05

STT-A 54.93 ± 13.96a 57.005 ± 22.21b 127.46 ± 65.37a,b

STT-B 115.04 ± 19.82a 132.77 ± 35.68b 289.56 ± 192.47a,b

AFT 20.44 ± 4.82a 19.65 ± 4.36b 9.73 ± 3.75a,b

BNT 26.07 ± 2.49a 25.80 ± 2.69b 17.40 ± 5.25a,b

GDS 1.93 ± 2.65 2.60 ± 2.13 2.64 ± 2.02

N5 8.23 ± 2.37a 7.80 ± 1.69b 0.86 ± 1.55a,b

N7 22.55 ± 1.37a 22.35 ± 1.88b 15.14 ± 3.02a,b

Note: Data are mean ± SD.

Abbreviations: AFT, Animal Fluency Test; BNT, Boston Naming Test; CI, cognitive impairment; GDS,

Geriatric Depression Scale; HAMD, Hamilton Depression Rating Scale; HAMA, Hamilton Anxiety Rating

Scale; M/F, Male/Female; MMSE, Mini Mental Status Examination; MoCA-B, Basic Version of Montreal

Cognitive Assessment; NC, normal control; preAD, preclinical Alzheimer's disease; SCD-9, Subjective

Cognitive Decline; STT-A, Shape Trail Test A; STT-B, Shape Trail Test B.
ap < .05 NC versus CI.
bp < .05 preAD versus CI.
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ReHo of the CI group decreased compared to that of the NC group

were mainly distributed in the right supramarginal, left middle temporal

gyrus, and angular gyrus (Figure 1b), consistent with previous research.

In addition, the fALFF values of the CI group decreased in the left angu-

lar gyrus and precuneus (Figure 1c). It is worth noting that we have also

performed two sample t-tests based on the voxels of the NC and

preAD groups for the SUVR, ReHo, and fALFF, respectively; however,

no clear voxel clusters were found after GRF correction.

3.3 | Conventional and FDG-PET/fMRI correlation
metrics

There was no statistical difference between the preAD and NC groups

in terms of either the conventional structural or functional indicators.

Among the structural indicators, there were significant differences in

the HPV, left BFV, and GMV of the CI group and the other groups

(p < .05). Regarding the functional indicators, there were significant

differences in the DMN SUVR, DMN fALFF, and DMN ReHo of the

CI group and the other groups. Moreover, there was a significant dif-

ference in the global SUVR of the CI and NC groups. The details of

the results based on the conventional metrics are summarized in

Table S1 and shown in Figure S1.

Regarding the subject FDG-PET/fMRI correlations, there was a

strong correlation between the FDG SUVR/fMRI at both the global

brain and DMN levels. Specifically, the global SUVR/fALFF (ρ) (NC:

�0.06–0.45, preAD: �0.35–0.31, CI: 0–0.59) and the global SUVR/

ReHo (ρ) (NC: 0.21–0.57, preAD: 0.07–0.51, CI: �0.05–0.44) ranged

from weak to strong. ANOVA showed that the global SUVR/fALFF (ρ)

and the SUVR/ReHo (ρ) of the CI group were lower compared to those

of the NC group (p = .041 and p < .001, respectively). In comparison, in

the preAD group, both correlation metrics did not change significantly

(p > .05) (Figure 2a,b). The DMN SUVR/fALFF (ρ) was found to be sta-

tistically significant in 95.16% of the subjects (NC: �0.06–0.46, preAD:

0–0.59, CI: �0.17–0.29) and DMN SUVR/ReHo (ρ) (NC: 0.21–0.55,

preAD: 0.09–0.49, CI: �0.15–0.41) in all the subjects (p < .05). Com-

pared with the global brain-based FDG-PET/fMRI correlation metric,

preAD caused the DMN SUVR/fALFF (ρ) (p < .024) and the DMN

SUVR/ReHo (ρ) (p = .002) to significantly decrease (Figure 2c,d).

Figure 3 showed results on high coupling and low coupling regions.

The high coupling regions of SUVR/fALFF (ρ) in NC and preAD groups

were mainly distributed in the bilateral rectus, bilateral posterior cingu-

late gyrus, bilateral lingual, bilateral precuneus, bilateral thalamus, and

cerebellum. The low coupling regions were mainly distributed in the

bilateral precuneus, bilateral lingual, and right parahippocampal

(Figure 3a). For SUVR/ReHo (ρ), the high coupling regions in NC and

preAD groups were mainly distributed in the frontal lobe, bilateral

precuneus, bilateral calcarine, bilateral lingual, bilateral posterior cingu-

late gyrus, and bilateral middle temporal gyrus. The low coupling regions

were mainly distributed in the bilateral middle temporal gyrus and right

inferior temporal gyrus (Figure 3b). In summary, the results showed that

most of the high coupling regions were distributed in the DMN region.

3.4 | Correlation analysis with Aβ

Pearson partial correlation analysis demonstrated that the AV45

SUVR was significantly correlated with the global SUVR/ReHo

F IGURE 1 Voxel-based spatial distribution differences among groups. Figure shows Montreal Neurological Institute (MNI) surface rendering
with both transverse views, overlaid with results from between-group statistical analysis using NC > CI contrast. Default mode network (DMN) is
main area where CI decreases glucose metabolism and functional activities. Area of metabolic decline (FDG SUVR) in CI group compared with NC
group (a), expressed as z-scores (p < .05) and are corrected for Gaussian random field (GRF) correction method (voxel level p < .01, cluster level
p < .05). The results of ReHo (b) and fALFF (c) were significant (cluster >30) without GRF correction. CI, cognitive impairment; FDG,
fluorodeoxyglucose; fALFF, fractional amplitude of low-frequency fluctuations; IPL, inferior parietal lobule; ITG, inferior temporal gyrus; MTG,
middle temporal gyrus; NC, normal control; PCC, posterior cingulate cortex; ReHo, regional homogeneity; SUVR, standardized uptake value ratio
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(ρ) (p = .017, r = �.348, Figure 4a), DMNSUVR/fALFF (ρ) (p < .008,

r = �.384, Figure 4b), and DMN SUVR/ReHo (ρ) (p < .001, r = �.584;

Figure 4c) in the cognitive normal subjects. In the entire process of

cognitive decline, the significance of this correlation remained stable,

and the correlation became more significant with the addition of the

CI group (all p ≤ .001, Figure 4d–f). No correlation was found between

the AV45 SUVR and the conventional indicators in normal cognition

(all p > .05). There was a linear correlation between the AV45 SUVR

and the DMN SUVR (p = .001, r = �.453), DMN fALFF (p = .009,

r = �.351), and DMN ReHo (p = .004, r = �.383) after the addition

of the CI subjects (Figure S2).

3.5 | Classification performance analysis

There were statistically significances in diagnosis of preAD based

on the AUC of the ROC curves (Figure 5c) drawn using the

DMN SUVR/fALFF (ρ) (p = .048, 95% confidence interval

(CInt) = [0.515–0.826]) and the DMN SUVR/ReHo (ρ) (p = .001,

95% CInt = [0.656–0.980]). However, this was not the case when

the conventional indicators were used. Youden's cutoffs of the DMN

SUVR/fALFF (ρ) and DMN SUVR/ReHo (ρ) were 1.302 and 1.478,

respectively. The sensitivity and specificity of the latter metric were

77.8% and 70.0%, respectively; comparatively, the former had higher

F IGURE 2 Resting-state correlation between FDG SUVR and fMRI indicators within gray matter voxels in individual subjects (all 62).
(a) Spearman rank correlation between FDG SUVR and fALFF in normal control (NC), preclinical Alzheimer's disease (preAD), and cognitive
impairment (CI) at global brain level, respectively. (b) Same as (a), except that correlation is based on SUVR and ReHo. (c) Same as (a) but at default
mode network (DMN) level instead of global brain. (d) Same as (b) but at DMN level instead of entire brain. FDG, fluorodeoxyglucose; fALFF,
fractional amplitude of low-frequency fluctuations; ReHo, regional homogeneity; SUVR, standardized uptake value ratio. *p < .05,
**p < .01, ***p < .001
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F IGURE 3 Location of high coupling and low coupling regions based on AAL template. The cold color shows low coupling region, and the
warm color shows high coupling region. (a) The coupling strength of SUVR/fALFF (ρ) in NC and preAD groups. (b) The coupling strength of SUVR/
ReHo (ρ) in NC and preAD groups. AAL, Anatomical Automatic Labeling; fALFF, fractional amplitude of low-frequency fluctuations; NC, normal
control; preAD, preclinical Alzheimer's disease; ReHo, regional homogeneity; SUVR, standardized uptake value ratio

r = −.348; p = .017 r = −.384; p = .008 r = −.584; p < .001

r = −.472; p = .001 r = −.514; p < .001 r = −.730; p < .001

F IGURE 4 Correlation between Amyloid-β (Aβ) and FDG-PET/fMRI correlation metrics. These figures depict partial correlation between
FDG-PET/fMRI correlation metrics and AV45 SUVR in cognitively normal and entire disease development population, respectively, which has
statistical significance (p < .05). (a–c) figures show partial correlation between global SUVR/ReHo (ρ), DMN SUVR/fALFF (ρ), and DMN SUVR/
ReHo (ρ) and AV45 SUVR, respectively, in cognitively normal group (NC + preAD). (d–f) figures are same as (a–c) but for entire disease
development population (NC + preAD + CI). CI, cognitive impairment; DMN, Default Mode Network; FDG, fluorodeoxyglucose; fALFF, fractional
amplitude of low-frequency fluctuations; NC, normal control; preAD, preclinical Alzheimer's disease; ReHo, regional homogeneity; SUVR,
standardized uptake value ratio
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sensitivity (85.2%) but lower specificity (45.0%). Moreover, all the

parameters at the entire brain level for the diagnosis of preAD were

not very effective (Figure 5a). The results of the AUC analysis of all

the indicators for the diagnosis of preAD are summarized in

Table S2. The ROC curve of lasso classification of clinical information

is shown in Figure 6, and the classification effect is lower than DMN

SUVR/ReHo (ρ).

From the ROC analysis of the CI subjects we found that the

global SUVR/fALFF (ρ), global SUVR/ReHo (ρ), DMN SUVR/fALFF

(ρ), and DMN SUVR/ReHo (ρ) presented excellent diagnostic per-

formance (Figure 5b,d). There AUCs were 0.765 (p = .005, 95%

CInt = [0.608–0.922]), 0.815 (p = .001, 95% CInt = [0.664–

0.966]), 0.817 (p = .001, 95% CInt = [0.686–0.948]), and 0.919

(p < .001, 95% CInt = [0.830–1.000]), respectively. In addition, the

conventional indicators (global ReHo, DMN fALFF, and DMN

ReHo) also showed good diagnostic performance but lower than

the FDG-PET/fMRI correlation metrics (Figure 5c,d). The details

are summarized in Table S2. In summary, the FDG-PET/fMRI corre-

lation metrics under the DMN area present better diagnostic per-

formance compared with global level for both preAD and CI, and

the performance of the metrics based on ReHo are slightly better

than that based on the fALFF.

4 | DISCUSSION

In our study, we used hybrid PET/MRI scanners to evaluate the cou-

pling relationship between glucose consumption assessed via FDG-

PET and oxygen metabolism determined by rs-fMRI simultaneously.

Importantly, the preAD group was the target group, and we compared

the FDG SUVR/ReHo (ρ) and the SUVR/fALFF (ρ) in the NC, preAD,

and CI groups in both the global cortex and DMN region. The main

findings were as follows:
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F IGURE 5 Receiver operating
characteristic (ROC) curves.
(a) ROC curves of fALFF, ReHo,
DMN SUVR/fALFF (ρ) and SUVR/
ReHo (ρ) between NC and preAD
groups at global brain level.
(b) ROC curves of fALFF, ReHo,
DMN SUVR/fALFF (ρ) and SUVR/
ReHo (ρ) between NC and CI

groups at global brain level.
(c) Same as (a) but at DMN level.
(d) Same as (b) but at DMN level.
CI, cognitive impairment; DMN,
Default Mode Network; fALFF,
fractional amplitude of low-
frequency fluctuations; NC, normal
control; preAD, preclinical
Alzheimer's disease; SUVR,
standardized uptake value ratio;
ReHo, regional homogeneity

F IGURE 6 Receiver operating characteristic (ROC) curve using
lasso for clinical information to distinguish NC and preAD. AUC, area
under the curve; NC, normal control; preAD, preclinical Alzheimer's
disease
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1. We found that the correlation ρ value of the FDG SUVR/fALFF

and the SUVR/ReHo based on DMN region in the preAD stage

changed compared to that in the NC subjects. This change was

magnified in the CI stage. This suggests that the coupling relation-

ship between the glucose and oxygen metabolisms changes in the

early pathogenesis of AD spectrum.

2. Potentially, the FDG SUVR/ReHo (ρ) in the DMN may be a useful

biomarker to differentiate NC, preAD, and CI patients.

As shown in Figure 2, CI causes the SUVR/ReHo (ρ) and the

SUVR/fALFF (ρ) to significantly weaken compared to those of the NC

group at the entire brain level. This is consistent with published stud-

ies, proving the reliability of the experimental results and the small

impact of PET/MRI scanners (Marchitelli et al., 2018). There is no

significant change in preAD at the entire brain level; however, when

focusing on the DMN region, preAD significantly weakens the correla-

tion ρ value, which gradually declines during the entire disease. This

phenomenon suggests that the change in this coupling relationship

starts locally and finally spreads over the entire brain from the patho-

logical level.

As shown in Figure 5, the sensitivity and specificity of the ROC

analysis based on the DMN SUVR/ReHo (ρ) for preAD and CI are rela-

tively higher compared to those of the other indicators. Although both

the fALFF and ReHo have significant correlations with the FDG SUVR

at the individual level, the global or DMN SUVR/ReHo (ρ) is better

than the global or DMN SUVR/fALFF. This may be explained as

follows: the fALFF is an indicator in the frequency domain. Some

scholars believe that in the fALFF method, the grading of the power

spectrum causes the power in the low-frequency region (such as the

ventricle and sagittal sinus) to be suppressed and change the spectrum

distribution (Bu et al., 2019). The fALFF cannot detect subtle informa-

tion to achieve the best distinction; therefore, even if it is significantly

correlated with the FDG SUVR, it may be insufficient to find signifi-

cant changes in preAD from the perspective of correlation. ReHo

reflects the synchronization of the time series of each voxel and its

adjacent voxels in the entire brain, which essentially reflects the

similarity of the time series between the voxels, instead of the inten-

sity of the activity. It can better reflect the consistency between the

voxels and the surrounding voxels, and therefore, is more sensitive to

the regulation of neurons and peripheral neurons. The regional regula-

tion of glucose metabolism is consistent with ReHo by the neuro-

vascular regulation, and therefore, the pathological changes of preAD

cause abnormal changes in the neurovascular regulation in the brain,

which may indirectly have a greater impact on the SUVR/ReHo (ρ)

relative to SUVR/fALFF (ρ).

In addition, compared to NC subjects, our study found a

decreased glucose metabolism in the angular gyrus, inferior parietal

lobule, precuneus, and posterior cingulate cortex in the CI patients.

Most of these brain areas are located in the DMN region, which

is consistent with previous studies (Gordon et al., 2018; Jack

et al., 2017; Landau et al., 2011). Abnormal spontaneous activity in

the angular gyrus, right supramarginal cortex, and left middle temporal

cortex were found in the resting-state fMRI (Han et al., 2011; Pan

et al., 2017). Our findings are in agreement with those reported by a

previous study (Marchitelli et al., 2018). This agreement suggests that

our calculated metrics are reliable.

Finally, the SUVR/ReHo (ρ) in the DMN was found to gradually

decrease with increasing accumulation of Aβ. The DMN is the most

vulnerable network to amyloid deposition (Buckner et al., 2005; Shin

et al., 2010; Sperling et al., 2009), showing abnormalities in multiple

modalities (Grothe & Teipel, 2016). Precuneus and posterior cingulate

cortex, as the key nodes in the DMN, also are highly vulnerable to var-

ious pathological changes (Gordon et al., 2018; Malpas et al., 2018),

which was further confirmed in this study. Compared with the entire

brain level, in the brain region of the DMN, the metabolism, spontane-

ous activity, and energy–oxygen coupling are related to the global Aβ

deposition. The DMN SUVR/ReHo (ρ) is most sensitive to the deposi-

tion in the AD progression. As a progressive degenerative entity, the

atrophy or metabolic decline of AD is more severe in the late stage of

the disease than that in the early stage. Thus, the correlation between

the Aβ and the SUVR/fALFF (ρ) or SUVR/ReHo (ρ) became more

significant when the CI patients were added to the analytical sample.

Several limitations should be considered. (a) The sample size in

this experiment was relatively small. The reliability and repeatability of

the coupling relationship should be validated by a relatively larger

external multi-center data set. We should notice that the image acqui-

sition scanning protocols differ across different sites. Various fMRI

scanning parameters (echo time, voxel size, scan time duration, etc.,)

in different sites may result in the inconsistency of fALFF and ReHo

(Li, Jin, et al., 2019); and various PET scanning parameters (injected

FDG amount, dynamic scan time, etc.,) may also result in the inconsis-

tency of FDG SUVR. Therefore, the deviations may appear when we

calculated SUVR/fALFF (ρ) or SUVR/ReHo (ρ) in different sites. It

needs to investigate how to reduce the impact of multi-center data in

the future. (b) In this exploratory study, we only used the Spearman

partial correlation model to express the coupling relationship between

the glucose and oxygen metabolisms. Other models may be more

practical, which requires more studies in the future. (c) The data used

in this study were only cross-sectional, and longitudinal follow-up data

need to be further added to validate our experimental results.

5 | CONCLUSION

The coupling relationship between glucose and oxygen metabolisms

changed in the preAD stage compared to that in the NC group. The

FDG SUVR/ReHo (ρ) in the DMN may be a useful biomarker to differ-

entiate NC, preAD, and CI patients. In addition, this study indicated

that hybrid PET/MRI scans are useful in the investigation of the

preAD stage.
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