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ABSTRACT: Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder characterized by the 

progressive loss of cholinergic neurons, leading to the onset of severe behavioral, motor and cognitive 

impairments. It is a pressing public health problem with no effective treatment.  Existing therapies only 

provide symptomatic relief without being able to prevent, stop or reverse the pathologic process. While the 

molecular basis underlying this multifactorial neurodegenerative disorder remains a significant challenge, 

mitochondrial dysfunction appears to be a critical factor in the pathogenesis of this disease.   It is therefore 

important to target mitochondrial dysfunction in the prodromal phase of AD to slow or prevent the 

neurodegenerative process and restore neuronal function. In this review, we discuss mechanisms of action 

and translational potential of current mitochondrial and bioenergetic therapeutics for AD including:  

mitochondrial enhancers to potentiate energy production; antioxidants to scavenge reactive oxygen species 

and reduce oxidative damage; glucose metabolism and substrate supply; and candidates that target apoptotic 

and mitophagy pathways to remove damaged mitochondria. While mitochondrial therapeutic strategies have 

shown promise at the preclinical stage, there has been little progress in clinical trials thus far. 
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Alzheimer's disease (AD) is the most common form of 

dementia and affects millions worldwide. It is 

characterized by severe memory loss, with episodic 

memory being particularly impaired during the initial 

phases. Most AD cases occur sporadically, although 

inheritance of certain susceptibility genes enhances risk. 

A role for dysfunctional mitochondria in AD pathogenesis 

has been postulated [1-3].  

Cumulative evidence reveal that the regulation of 

mitochondrial turnover and function becomes impaired as 

a function of age in the brain and may contribute to 

neurodegeneration in AD [4]. Cerebral hypometabolism 

is evident in affected brain regions [5, 6] where 

mitochondrial structure is altered [7, 8]. The expression 

and activity of mitochondrial enzymes important for 

metabolism, including cytochrome c oxidase (COX), α-

ketoglutarate dehydrogenase complex, and pyruvate 

dehydrogenase complex is reduced [9-11]. AD brain 

mitochondria have reduced membrane potential, 

increased permeability, and produce excess reactive 

oxygen species (ROS) which damages proteins, lipids, 

and nucleic acids, and are believed to contribute to the 

pathogenesis of neurodegeneration.  Growing evidence 

suggest that elevated amyloid-β (Aβ) levels contribute to 

the mitochondrial abnormalities and although the 

mechanism is not clearly established, both amyloid 

precursor protein (APP) and Aβ are found in 

mitochondrial membranes and interact with 

mitochondrial proteins.  Overproduction of the APP and 

Aβ may affect dynamics of mitochondrial fusion/fission 

[12-14], impair mitochondrial transport, disrupt the 

electron transfer chain, increase ROS production [15-17], 
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and impair mitochondrial function [18-20]. These 

findings build a strong case for mitochondrial dysfunction 

in AD and effective treatment will likely include targets 

that address mitochondrial function [21-23]. 

 

Mitochondrial Biogenesis 

 

Mitochondrial biogenesis plays an essential role in 

maintaining an adequate functional neuronal 

mitochondrial mass by compensating for damaged 

mitochondria that have been eliminated. It is highly 

regulated and requires coordination and crosstalk between 

the nuclear and mitochondrial genomes [24]. While 

mitochondrial biogenesis occurs on a regular basis in 

healthy cells where mitochondria constantly divide and 

fuse with each other [25-27]; it also occurs in response to 

oxidative stress, increased energy demand, exercise 

training and certain diseases. The status of mitochondrial 

biogenesis in AD neurons is unclear [28].  Biogenesis is 

induced by the peroxisome proliferator-activated receptor 

γ coactivator-1α (PGC-1α) which activates different 

transcription factors, including nuclear respiratory factors 

1 and 2 proteins (NRF-1 and NRF-2) and the 

mitochondrial transcription factor A (TFAM) [4, 29, 

30];[28]. NRF-1 and NRF-2 regulate transcription of 

nuclear and mitochondrial genes involved in OXPHOS, 

electron transport (complex I–V), mtDNA 

transcription/replication, heme biosynthesis, protein 

import/assembly, ion channels, shuttles, and translation 

[31]. 

NRF-1 or NRF-2 also contribute to expression of 

nuclear encoded genes involved in biogenesis including 

[32]factor A (TFAM), mitochondrial transcription factor 

B1 or B2 (TFB1M or TFB2M), and mitochondrial RNA 

polymerase (POLRMT), and mitochondrial transcription 

termination factor (MTERF), mitochondrial DNA 

helicase (TWINKLE), single-stranded DNA-binding 

protein (mtSSB), and POLγB  [33] [34] but not POLγA 

and MTERF3 [34]. When newly formed daughter 

mitochondria have been incorporated into the 

mitochondrial network, mitochondria that have been 

damaged or that have lost membrane potential are 

specifically targeted for degradation via an autophagy-

like process termed as mitophagy [35, 36]. Mitochondrial 

biogenesis is thought to be impaired in AD where the 

quantity of mitochondria as well as levels of NRF 1, NRF 

2, and TFAM along with nuclear levels of PGC-1α are 

reduced in hippocampal tissues from AD brain compared 

to age matched control brain [37] [38] [39]. 

PGC-1α activity at both the transcriptional and post-

translational level is modulated by the nutrient supply and 
energy balance within the cell [40] and mitochondrial 

damage  [41] [42]. Furthermore, PPARs, mTOR (acting 

on YY1), and CREB (downstream of PKA signaling) 

transcriptionally activate PGC-1α to initiate 

mitochondrial biogenesis [40]. At the post-translational 

level, PGC-1α is regulated by both phosphorylation and 

acetylation events. AMP-dependent kinase (AMPK) can 

phosphorylate and activate PGC-1α while GCN5-

mediated acetylation inhibits PGC-1α activity [40]. 

Deacetylation of PGC-1α by NAD+ dependent SIRT1 

promotes mitochondrial biogenesis and ensures that the 

activity of PGC-1α is sensitive to both the energy and the 

redox balance in the cell [32]. PGC-1α co-activation of 

ERRα in turn promotes expression of mitochondrial 

SIRT3 that ensures effective scavenging of ROS at the 

mitochondria through activation of mitochondrial 

superoxide dismutase, amongst other mitochondrial 

sirtuin targets [43]. PARIS, a Parkin substrate, represses 

mitochondrial biogenesis by transcriptionally inhibiting 

PGC-1α expression [44].  

 

Mitophagy 

 

Mitophagy is the process by which damaged 

or dysfunctional mitochondria are selectively engulfed by 

autophagosomes and delivered to lysosomes to be 

degraded and recycled by the cell [45]. An excess of 

reactive oxygen species (ROS) may function as an 

autophagy trigger [46]  and dysfunctional mitochondria 

that overproduce ROS, are indeed selectively targeted for 

mitophagy [46].  

Central to mitochondrial and cellular homeostasis, 

mitophagy is modulated by the PTEN-induced putative 

kinase 1 (PINK1)/Parkin pathway [47] which primarily 

targets mitochondria devoid of membrane potential 

(ΔΨm). PINK1 accumulate on the outer membrane of 

dysfunctional mitochondria and recruit the E3 ubiquitin 

ligase Parkin [48] [49] [50] that ubiquitinate several 

OMM proteins that are consequently targeted by 

P62/SQSTM1 [51].  

P62 recognizes ubiquitinated substrates and directly 

interacts with autophagosome-associated LC3 to recruit 

autophagosomal membranes to the mitochondria [52]. 

Damaged mitochondria can also, independently of Parkin, 

increase FUNDC1 and Nix expression to recruit 

autophagosomes to mitochondria via direct interaction 

with LC3 [53] [54]. Ubiquitin ligases, like Smurf1, target 

depolarized mitochondria for mitophagy [55-57]. 

The transcription factor nuclear factor erythroid 2-

related factor 2 (Nrf2) partly regulates P62 expression due 

to the presence of an antioxidant response element (ARE) 

in its promoter region [58, 59]. Electrophilic natural 

products such as isothiocyanate compound, sulforaphane 

which upregulate Nrf2 by interfering with its regulator 
protein, the redox sensitive ubiquitination facilitator 

Keap1 (Kelch-like ECH-associated protein 1) can 

potentially induce P62 expression [60-62]. P62-mediated 
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mitophagy inducer (PMI) (HB229), was recently 

developed to upregulate P62 via stabilization of Nrf2 and 

promote mitophagy. This compound bypasses the 

upstream steps of the mitophagic cascade and acts 

independently of the ΔΨm collapse, and does not mediate 

any apparent toxic effects on mouse embryonic fibroblast 

(MEF) cells at the concentrations used in the assays [63].  

Parkin also modulates transport of mitochondria along 

microtubules to a perinuclear region where 

autophagosomes are concentrated [64] [48]. This is likely 

due to Parkin-mediated turnover of Miro, a protein 

required to tether kinesin motor protein complexes to the 

OMM [65]. HDAC6, a ubiquitin-binding protein 

deacetylase is also recruited to mitochondria by Parkin 

[66] along microtubules [67, 68]. Mitophagy is crucial for 

cellular homeostasis and its impairment is linked to 

several neurodegenerative diseases [69] [70]. However, 

selective pharmacologic modulators of mitophagy that 

would facilitate dissection of the molecular steps involved 

in the removal of mitochondria from the network via this 

pathway are not presently available. 

Mitochondrial Fission 

 

Mitochondrial fission occurs during mitochondrial 

biogenesis when intramitochondrial components are 

sorted and split into daughter mitochondria [71, 72] but 

also precedes the selective targeting of mitochondria for 

mitophagy or cellular apoptosis [73-76].  

Dynamin-related protein 1 (Drp1), a member of the 

dynamin family of GTPases, is the major protein involved 

in the division of membranes through translocation from 

the cytosol to the outer mitochondrial membrane where 

constricting rings are formed [77]. While fission occurs 

regardless of mitochondrial membrane potential, it is 

upregulated following mitochondrial depolarization, 

oxidation or nitrosylation, and ETC inhibition which 

trigger posttranslational modifications, including 

phophorylation, S-nitrosylation, ubiquitylation, and 

sumoylation on Drp1[66, 78] which result in 

mitochondrial fragmentation [79, 80].  

Drp1 lacks a pleckstrin-homology domain and 

requires membrane receptor proteins such as Fis1 to 

facilitate its association and polymerization at 

membranes. It can cause Bax oligomerization 

independent of its GTPase activity [81] while the anti-

apoptotic Bcl-XL promotes mitochondrial fission in 

neurons through interactions with Drp1 that promote its 

GTPase activity [82].  

In AD Aβ overproduction is associated with 

increased number of fragmented mitochondria, increased 

oxidative stress and loss of Δψm and ATP production that 

is associated with increased expression of Drp1 [83].  

Accumulated Aβ enhances Drp1 activity in neurons by 

increasing Drp1 S-nitrosylation at Cys644. Likewise, AD 

patients are characterized by having Aβ-Drp1 mediated 

mitochondrial fragmentation, mtDNA mutations [84] and 

decrease in oxphos [85]. 

Mdivi-1, a small molecule noncompetitive inhibitor 

of Drp1 GTPase activity that attenuates Drp1 mediated 

mitochondrial-fission in response to pro-apoptotic stimuli 

[86], has been developed and may potentially have 

therapeutic utility. Mdivi-1 application in vivo has been 

shown to for example protect cardiomyocytes against 

ischemia/reperfusion injury and attenuate retinal ganglion 

cell death after ischemic injury [87-89].  Mdivi-1 also 

partially rescues the mitochondrial damage due to 

inactivation of PINK1 [90]. Further research targeting 

therapeutics aimed at preserving mitochondrial function 

for the treatment of disease and injury may lead to 

improved clinical outlook for neurodegenerative diseases 

such as AD. 

 

Mitochondrial Membrane Potential  
 

The mitochondrial membrane potential (Δψm) is created 

when protons are pumped from the mitochondrial matrix 

to the intermembrane space as electrons pass through the 

ETC and as a prerequisite for oxidative phosphorylation. 

However, the higher (more polarized) Δψm, the more 

mtROS is generated presumably due to the slowed 

electron transport [91] [92] [93]. Indeed, ROS generation 

is decreased when Δψm is dissipated by either expressing 

mitochondrial uncoupling proteins (UCPs) [94] or using 

chemical uncouplers (Reynolds and Hastings, 1995), such 

as carbonyl cyanide p-(tri-fluromethoxy)phenyl-

hydrazone (FCCP) [95] [96]. Small decreases in 

membrane potential (mild uncoupling) can reduce ROS 

formation by limiting the life span of reduced electron 

transport chain (ETC) intermediates capable of generating 

ROS, in addition to decreasing local oxygen tensions [97-

99] [100]] without seriously compromising cellular 

energetics [98, 100]. However, several AD animal 

models, and AD patient brains show evidence of reduced 

ATP levels, declined complex IV activity, enhanced 

oxidative stress compared to controls [101] [102, 103] and 

decreased Δψm has been shown in AD animal models and 

in human cortical neurons ex vivo [102, 104, 105]. A 

redox-optimized ROS balance hypothesis, which states 

that physiological ROS signaling occurs within an 

optimized mitochondrial membrane potential, and 

oxidative stress can happen at either the extreme of high 

Δψm or low Δψm ([106] has been proposed  to reconcile 

this obvious discrepancy. It is based on the fact that the 

redox couples involved in substrate oxidation (NADH) 
are closely linked to the redox couples involved in 

antioxidant defenses (NADPH). It is therefore vital to 

balance an adequate level of Δψm to maintain matrix 
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NADPH rather than NADP+, which is necessary for 

mitochondrial antioxidant enzyme systems. This means 

that an increase in mitochondrial uncoupling of the ETC 

can increase ROS production primarily because the 

antioxidant system of the cell is compromised. It has now 

been shown that ROS can stimulate mitochondrial 

uncoupling [107, 108] and that the processes of 

uncoupling and ROS generation exist in a feedback loop 

[109] [108, 110]. 

Fatty acid (FA) cycling across the inner 

mitochondrial membrane is an important endogenous 

mild uncoupling pathway that prevents ROS release [111, 

112].  In the proton-rich intermembrane space, FA anions 

are protonated, become uncharged and flip-flop across the 

inner membrane lipid bilayer. Once in the mitochondrial 

matrix, the proton is released and the FA anion 

transported back to the intermembrane space by anion 

carriers, which include mitochondrial uncoupling proteins 

[113] [114], and the adenine nucleotide translocator [112] 

[115, 116]. Post-ischemic tissue survival in the brain has 

been shown to closely correlate with uncoupling proteins 

expression [117]. 

Mitohormesis 
 

While ROS can generate detrimental oxidative damage, 

they also play a crucial role in numerous signaling and 

stress responses [118, 119]. Mild oxidative stress may in 

fact promote longevity and metabolic health through the 

concept of mitochondrial hormesis (mitohormesis). 

Mitohormesis occurs when low levels of oxidative 

stress induced by either caloric restriction, exercise [120],  

or other stimuli trigger an adaptive response that improves 

overall stress resistance. This is likely via increased 

endogenous antioxidant defense, which eventually 

reduces chronic oxidative damage [121] and extends 

lifespan. Inhibition of glycolysis, impairment of insulin-

like signaling and certain mutations in mitochondrial ETC 

components, are also conditions that may promote 

longevity via ROS-dependent mitohormesis [122].  

Glucose restriction induces mitochondrial respiration and 

increases oxidative stress and extends C. elegans lifespan 

via the AMPK- pathway in a manner that is sensitive to 

the antioxidant N-acetyl cysteine, suggesting that 

oxidative stress is required for lifespan extension by 

dietary restriction [123]. Also treatment of C. elegans 

with low doses of the superoxide generating compound 

paraquat extend their lifespan [124].Mild inhibition of 

mitochondrial respiration extends the lifespan of 

organisms as diverse as yeast, worms, flies and mice [125] 

[126] [127] presumably through ROS stimulated HIF-1 

activation of gene expression that promote longevity 

[128]. Mild mitochondrial insults may also communicate 

a stress response to induce the expression of 

mitochondrial chaperones such as HSP-6 and HSP-60. 

This mitochondrial unfolded protein response (UPRmt) is 

thought to extend the life span of C. elegans by inhibiting 

the ETC [129, 130] . However, deletion of atfs-1, 

encoding for a transcription factor required for the 

induction of the UPRmt, does not avoid lifespan extension 

after inhibition of the ETC [129, 130], and constitutive 

activation of the UPRmt by gain of function mutations 

in atfs-1 does not extend lifespan [131]. These along with 

complementary evidence obtained from diverse model 

organisms, has led to the mitohormesis model [129].  

Although the evidence of mitohormesis in lifespan 

regulation in mammalian models is still lacking its 

translational implications should be considered as an ideal 

antioxidant therapy that prevents oxidative damage 

induced under pathological conditions without interfering 

with ROS needed for hormesis and cellular signaling. 

 

Caloric Restriction 

 
Caloric restriction (CR) involves consuming 20–40% 

lower calories than normal has been suggested as a 

promising intervention to increase both median and 

maximal lifespan in humans (Peterson et al, 2012). It can 

prevent or delay several diseases including cancer, 

cardiovascular diseases, neurodegenerative disorders, 

diabetes and autoimmune diseases [132] and has been 

reported to protect against age-related mitochondrial 

dysfunction [133] and reduce mtDNA damage [134]. In 

animal models of neurodegenerative diseases it promotes 

neurogenesis and enhances synaptic plasticity [135], 

improves cognitive capability, anti-inflammatory 

mechanisms, reduce neural oxidative stress, induce 

various stress and neurotrophic/neuroprotective factors 

models [136]. At the cellular level, CR alters Δψm and 

respiratory activity, which results in lower ROS 

generation and oxidative damage. CR also increases 

mitochondrial biogenesis and bioenergetic efficiency 

through Akt, which directly phosphorylates and activates 

endothelial nitric oxide synthase (eNOS) leading to nitric 

oxide (NO) production [137, 138] [139] [140, 141] [142].  

NO activates a NO/cGMP-dependent signaling pathway 

that induces PGC-1α, increasing mitochondrial 

biogenesis [143, 144]. This increase in mitochondrial 

biogenesis elicits the beneficial effects of CR [138, 139, 

142, 143]. Mice on 3 months CR have higher levels of 

mitochondrial DNA, PGC-1α, NRF-1, Tfam, expression 

of cytochrome c oxidase, and cytochrome c when 

compared with mice fed ad libitum, indicating increased 

mitochondrial biogenesis [139]. 2,4-dinitrophenol, a CR 
mimetic induces similar results [142]. Long term 

exposure to elevated ROS levels impairs eNOS activity 

[145, 146]. As a result eNOS functions in a negative 
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feedback loop preventing the generation of excessive 

ROS. In a CR trial CALERIE based on 25% CR, CR 

patients were shown to have less mtDNA damage, more 

mtDNA content, and increased expression of some 

antioxidant enzymes, suggesting that CR improves 

mitochondrial function and delays mitochondrial aging 

through reducing oxidative stress. The increase in 

expression of several proteins involved in mitochondrial 

biogenesis such as PGC-1α, Tfam, and SIRT1 was 

reported in CR patients compared to controls [147]. CR 

also attenuates the age-related decline of autophagy by 

activating Sirt1 which deacetylates autophagy proteins 

[148-150] and this is associated with increased longevity 

as inefficient mitochondria are replaced with new 

functional mitochondria [151, 152]. The net result is that 

CR reduces oxidative stress and enhances mitochondrial 

biogenesis in order to produce mitochondria that are more 

efficient in ATP production, have optimal oxidative 

capacity, and generate less ROS. 

 

Exercise                                                                                                                              

 

Exercise training alone or in combination with CR may 

also represent an efficient strategy to delay mitochondrial 

aging and age-related dysfunction in humans through 

mechanisms stimulating mitochondrial biogenesis and 

oxidative capacity and improving protein quality control 

[153]. Skeletal muscle biopsies of humans performing 

high- intensity interval training showed an increase in 

Sirt1, nuclear PGC-1α and Tfam, which lead to an 

increase in skeletal muscle mitochondria and improved 

exercise performance [154-156]. Biopsies performed in 

older men showed that even with aging, exercise increases 

mitochondrial DNA and mitochondrial respiratory chain 

activity which is likely related to increases in 

mitochondria biogenesis [157, 158]. While exercise 

training optimized mitochondrial function in elderly 

individuals [159] [160] when combined with a low 

carbohydrate (glycogen) diet increases the expression of 

PGC-1α to optimize the oxidative capacity of human 

skeletal muscle [161].  In the CALERIE trial, CR with 

exercise training resulted in a 38% reduction in the 

estimated risk of cardiovascular disease, an important 

age-associated pathology, compared to controls [162]. 

Indeed, increased physical activity or even simply 

adopting active style habits may clearly reduce the rate of 

mitochondrial decline and attenuate the age-related 

phenotype. This exercise-induced increase in 

mitochondrial biogenesis is mediated through ROS as 

demonstrated by oral administration of antioxidants to 

rats impairs the exercise-induced increase in mRNA and 
protein levels of PGC-1α, NRF-1 and Tfam and 

cytochrome c [163]. Similar observations are made in 

humans. The exercise induced increase in PGC-1α and 

PGC-1β ameliorate insulin resistance and initiate an 

adaptive response promoting endogenous antioxidant 

defense capacity. However, when the subjects diet was 

supplemented with antioxidants these effects were not 

observed [120]. Importantly, it was found that exercise 

training also increases brain mitochondrial biogenesis 

(mtDNA, and PGC-1α, SIRT1, and citrate synthase) and 

this may have important implications, not only with 

regard to fatigue, but also with respect to various central 

nervous system diseases and age-related dementia that are 

often characterized by mitochondrial dysfunction [153]. 

Therefore, exercise could be considered as a therapeutic 

option to reduce the negative effects of aging and decrease 

the risk of AD. 

 

Mitochondrial Stress Response Signaling                    

 
Mitochondria are the major source of cellular ROS and 

hence stress signaling that induces cellular senescence and 

apoptosis [118] [164] [165, 166] [167]. One of the major 

consequences of increased ROS and altered cellular redox 

state is the oxidation of thiol groups in cysteine residues 

in relevant proteins [118].  FoxO transcription factors are 

activated in response to elevated ROS levels to induce 

anti-oxidant responses (increased expression of catalase 

and SOD2), cell cycle arrest and/or cell death [168, 169]. 

Kinases that modulate cellular stress responses include 

mitochondrial Akt, GSK-3β, PKA, Abl, PKC, Src and 

Atm [170] [171-177]. Akt phosphorylates and inactivates 

GSK-3β, which can localize to the mitochondria. 

Mitochondrial GSK-3β phosphorylates MCL-1 and 

VDAC [174, 178] Sheldon et al., 2011) leading to MCL-

1 degradation and inducing apoptosis [178]; while 

phosphorylation of VDAC by GSK-3β results in 

increased mitochondrial membrane permeability, again 

predisposing to apoptosis [174, 179]. GSK-3β is also 

known to phosphorylate and promote the proteasomal 

degradation of c-Myc, cyclin D1, and β-catenin [180, 181] 

[182]. PKA can be translocated to mitochondria by 

hypoxia and other physiological stresses [183, 184] where 

it associates with the mitochondria through Rab32 and 

other A-kinase AKAPs [171] and phosphorylates VDAC 

[172], Drp1 [183], and other mitochondrial proteins. For 

example, hypoxia destabilizes AKAP121 through 

induction of SIAH2, a mitochondrial ubiquitin ligase, 

thereby limiting oxidative capacity under conditions of 

low oxygen. Interestingly, AKAP121 also appears to 

promote mitochondrial localization of Src-tyrosine kinase 

[185] where Src appears to regulate CO activity and 

respiratory activity [185] [186], and other mitochondrial 

substrates for Src family kinases are likely [187]. 
Increased ROS induces protein kinase C-delta (PKCδ) 

association with the mitochondria and this in turn recruits 

other signaling molecules, including the Abl tyrosine 
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kinase that is associated with loss of membrane potential 

and non-apoptotic cell death [175].  Impaired oxidative 

metabolism and decreased ATP levels in neurons activate 

AMPK [188]. AMPK can also be activated by drugs such 

as metformin that inhibits complex I or resveratrol that 

inhibits the F0F1 ATPase [170]. AMPK modulates 

mitochondrial metabolism and targets Acetyl CoA 

carboxylase-2 (ACC2) to the OMM where it regulates 

lipid metabolism by controlling production of malonyl 

CoA [170]. AMPK therefore plays a key role in 

mitochondrial homeostasis by ensuring that only 

functionally viable mitochondria are retained. Upon its 

activation it induces not only mitochondrial biogenesis 

through activation of PGC-1α [189, 190] but also initiates 

mitophagy through ULK1 activation and mTOR 

inhibition [183, 191]. ATM kinase inhibition has been 

shown to cause CNS neurodegeneration in animal models 

[192].  ATM kinase, which is partly located at the 

mitochondria, is activated upon mitochondrial uncoupling 

[193] and while its mitochondrial substrates are not 

known, loss of ATM in genetically engineered mouse 

models leads to mitochondrial dysfunction.  

 

 
Figure 1. Factors regulating mitochondrial function in AD. In AD, neuronal injury, inflammation and aging may 

impair mitochondrial function by inducing fission, increasing ∆ψm and ROS production leading to decreased ATP 

production. Mitochondrial function may be improved by enhancing mitochondrial biogenesis through caloric 

restriction and exercise. Damaged and dysfunctional mitochondria can be selectively eliminated by mitophagy. 

 

 

Immunoaging and Mitochondrial Function 

 

Immune function is compromised during the course of 

aging as well as in AD. Investigations of changes in 

adaptive immune function associated with aging indicate 

disturbances of T- and B-cell homeostasis and activation 

as well as that of marcophages [194, 195]. Large scale 

(BLSA and MESA) transcriptomic studies of CD4+ T-

cells and CD14+ monocytes from aged individuals show 

mitochondrial pathways, particularly OxPhos, as the most 

down-regulated (FDR <0.001) [196, 197]. The loss in 

OxPhos expression is significant as mitochondrial 

oxidative metabolism plays a critical regulatory role in 

immune function. Mitochondria serve as the scaffold for 
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NLRP3 inflammasome formation, where mitochondrial 

ROS and oxidative metabolism regulate caspase-1 

activation, the critical step in maturation of Il-1beta and 

Il-18. Mitochondrial oxidative metabolism regulates 

macrophage polarization, T-cell activation, differentiation 

and memory cell formation (for review see Weinberg et 

al., 2015 [198]). Thus, mitochondria not only sustain 

immune cell phenotypes but also are necessary for 

establishing immune cell phenotype and function. In a 

pro-inflammatory state this is accomplished by 

mitochondria shifting from producing ATP via oxidative 

metabolism to producing building blocks for 

macromolecule synthesis via anapleurosis and 

glutaminolysis. The shift from catabolism to anabolism is 

critical to affect cell expansion, production of 

inflammatory mediators and immune cell fate 

commitments. This may explain why the increase in 

serum pro-inflammatory cytokines occurs with age, 

giving rise to a chronic state of inflammation, termed 

inflammaging [199-201].  

In AD, immune dysfunction has been identified in T- 

and B-cells, macrophages and microglia [202].  AD is 

associated with increased T cell infiltration, changes in 

immune populations associated with disease progression, 

reduction in T- and B-cell numbers and reductions in 

CD4+CD25+ Tregs [203]. CD8+CD28- suppressor cells 

are also decreased in PBMCs from AD patients. These 

data suggest that the immunosuppressive capabilities in 

AD patients are diminished and could represent a deficit 

in the ability to control Teff responses. As such, increased 

activities of Th17, levels of IL-21, IL-6, and IL-23, and 

the Th17-associated transcription factor RORγ, were 

increased among lymphocytes in AD patients [204]. This 

suggests AD specific overactivity of Th17 T-cell function 

and underactivity of Teff function. Given that Th17 T-

cells primarily mobilize glycolysis and suppress OxPhos 

whereas Tregs and memory T cells oxidize fatty acids via 

mitochondrial oxidation, supports the concept that 

mitochondrial dysfunction fuels AD immune dysfunction 

[205]. 

Conclusion                                                                                                                              

Mitochondrial function is deregulated in AD and there is 

growing interest in understanding how altered 

mitochondrial function may be targeted to inhibit 

neurodegeneration.  Proper modulation of mitochondrial 

turnover overall to eliminate dysfunctional mitochondria 

while maintaining efficient functional mitochondrial mass 

in response to stresses, including hypoxia and nutrient 

starvation may be relevant in delaying or managing the 
degenerative process in aging and AD. By preventing the 

generation of excessive ROS and conserving valuable 

nutrients neuronal survival may be promoted under 

conditions of energetic stress (Figure 1). 
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