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Abstract
Budburst is regulated by temperature conditions, and a warming climate is associated 
with earlier budburst. A range of phenology models has been developed to assess cli-
mate change effects, and they tend to produce different results. This is mainly caused 
by different model representations of tree physiology processes, selection of observa-
tional data for model parameterization, and selection of climate model data to gener-
ate future projections. In this study, we applied (i) Bayesian inference to estimate 
model parameter values to address uncertainties associated with selection of observa-
tional data, (ii) selection of climate model data representative of a larger dataset, and 
(iii) ensembles modeling over multiple initial conditions, model classes, model param-
eterizations, and boundary conditions to generate future projections and uncertainty 
estimates. The ensemble projection indicated that the budburst of Norway spruce in 
northern Europe will on average take place 10.2 ± 3.7 days earlier in 2051–2080 than 
in 1971–2000, given climate conditions corresponding to RCP 8.5. Three provenances 
were assessed separately (one early and two late), and the projections indicated that 
the relationship among provenance will remain also in a warmer climate. Structurally 
complex models were more likely to fail predicting budburst for some combinations of 
site and year than simple models. However, they contributed to the overall picture of 
current understanding of climate impacts on tree phenology by capturing additional 
aspects of temperature response, for example, chilling. Model parameterizations 
based on single sites were more likely to result in model failure than parameterizations 
based on multiple sites, highlighting that the model parameterization is sensitive to ini-
tial conditions and may not perform well under other climate conditions, whether the 
change is due to a shift in space or over time. By addressing a range of uncertainties, 
this study showed that ensemble modeling provides a more robust impact assessment 
than would a single phenology model run.
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1  | INTRODUCTION

Compared with the global average, climate warming is expected to 
be higher during winter months, and more pronounced further north 
and in mountainous regions, such as in the Alps (IPCC, 2013). Plant 
spring phenology is highly tuned to winter and spring temperatures 
and is thus a good indicator of climate change. Many plants have re-
sponded to the recent warming by becoming active earlier in the year, 
but the climate change response varies among species and locations 
and depends on the time period considered (Ahas, Aasa, Menzel, Vg, 
& Scheifinger, 2002; Menzel & Fabian, 1999; Menzel et al., 2008). 
Potential implications that may follow from phenological shifts in trees 
include longer growing seasons, which may increase forest produc-
tivity (Richardson et al., 2010). However, as frost hardiness in spring 
is negatively related to growth activity (Westin, Sundblad, Strand, & 
Hällgren, 2000), an earlier onset of the growing season may increase 
the risks and severity of frost damage during late spring cold spells 
(Jönsson & Bärring, 2011). For commercially important species like 
Norway spruce, for which large differences in phenology traits exist 
among provenances, comprehensive cultivation research is carried 
out to identify traits favorable in a warmer climate (e.g., Skrøppa & 
Steffenrem, 2016; Westin et al., 2000).

Reliable phenology models are needed to improve the simula-
tions of terrestrial biosphere models, for more robust projections of 
climate change impacts on, for example, forest productivity and plant–
atmosphere interactions (Jeong, Medvigy, Shevliakova, & Malyshev, 
2012; Migliavacca et al., 2012; Richardson et al., 2012). When mod-
eling climate change impacts on tree phenology, uncertainties propa-
gate from initial conditions (i.e., the observed system state at the start 
of the simulation), model classes (i.e., process representations), model 
parameters (i.e., parameterization), and boundary conditions (i.e., as-
sumption about model forcing data) (Araújo & New, 2007). Budburst 
models vary in their representation of tree physiology processes, for 
example, how various requirements are attained by interacting pho-
toperiod, chilling, and forcing temperatures. Chilling requirements are 
particularly difficult to quantify, as dormancy release cannot be readily 
observed (Linkosalo, Häkkinen, & Hänninen, 2006), although it may be 
correlated with blocking of plasmodesmata by callose (Singh, Svystun, 
AlDahmash, Jönsson, & Bhalerao, 2017).

Provenances of Norway spruce, adapted to different environ-
mental conditions, differ in the temperature sums required to trigger 
bud development, and tree breeders have for a long time been se-
lecting trees with high growth capacity and low risk of frost damage 
(Hannerz, 1999). The lack of provenance-specific requirements in 
phenology models may impose bias and uncertainty in simulations 
across geographical and climatic gradients (Chuine, Belmonte, & 
Mignot, 2000; Kramer et al., 2017; Olsson, Bolmgren, Lindström, & 
Jönsson, 2013; Olsson & Jönsson, 2015). Adding model parameters 
may however lead to increased uncertainty as more factors have to 
be taken into account (Beven, 2009). Using observations of known 
provenances for model parameterization, the uncertainty related to 
genetic differences is removed, and the spatial variation in phenol-
ogy can be assumed to mainly represent the effect of local climate 

conditions (Chen, 2013). Statistical inference can be applied to ac-
count for parameter uncertainties (Beven, 2009), and by recognizing 
that all models have shortcomings but still provide useful information, 
ensemble simulations over multiple initial conditions, model classes, 
model parameterizations, and boundary conditions can be carried out 
to assess trends and uncertainties. That is, whereas model limitations 
are traditionally overcome by building better models, ensemble sim-
ulations provide an alternative way to generate robust projections 
(Araújo & New, 2007).

The main objective of this study was to perform ensemble mod-
eling of budburst in Norway spruce (Picea abies). The study region 
covered the main distribution area in Europe, north of the Alps, and 
the analysis included four categories of uncertainties, related to the 
following: (i) initial conditions (IC), (ii) model classes (MC), (iii) model 
parameterization, and (iv) boundary conditions (BC). The analysis 
of IC was carried out using phenology observations of three cloned 
provenances, grouped into six sets of observations used for model 
parametrization (Figure 1a). The analysis of MC included seven 
budburst models, varying in their representation of tree physiol-
ogy processes, with each IC-MC combination parameterized using 
Bayesian inference. The analysis of BC was carried out using a 
subensemble of five climate model datasets representing RCP8.5. 
Specifically, we assessed the following: (i) the provenance-specific 
budburst projections for the study region, (ii) differences among 
budburst model projections, in relation to model representation of 
tree physiological processes, and (iii) the relative contribution of IC, 
MC, and BC to uncertainties in the model projections. Through this, 
we also assessed which budburst models were more challenging 
to parameterize in relation to observational constraints and initial 
inference values.

2  | MATERIALS AND METHODS

2.1 | Initial conditions

Observed timing of budburst was used for model parameterization 
and validation, representing the initial conditions in a climate change 
context. Data on budburst of Norway spruce (Picea abies) were pro-
vided by the network of International Phenological Gardens (IPG; 
Chmielewski, Heider, Moryson, & Bruns, 2013). Clones of known 
provenances have been planted in similar garden environments, 
mainly on plain meadows with sparse trees. Budburst is recorded by 
professional observers and has been defined as the first spring sprout 
when the buds open and the bud edges are visible with the needles 
not yet expanded (Chmielewski et al., 2013).

To correctly capture interannual variability and to separate dif-
ferences in climatic response from local adaptation, it is preferable 
to use datasets with long time series. In this study, we therefore se-
lected IPGs with more than 20 years of budburst records per Norway 
spruce provenance; a provenance from Germany with early timing of 
budburst (IPG plant no. 121, hereafter referred to as P121) and two 
provenances with late timing of budburst, one from Germany (P122) 
and one from northern Norway (P123). This generated a dataset of 



9956  |     OLSSON et al.

23 IPGs and 1506 records from 1968 to 2013 (Table 1, Figure A1 
in Appendix S1). Each time series was checked for outliers, using 
the 30-day rule of Schaber and Badeck (2002). The five potential 
outliers identified were not removed from the analysis, considering 
the small deviations (between 30 and 36 days, Table 1) and the reli-
ability of the records. The dataset was for each provenance grouped 
into six IC to constrain the model parameterization; parameteriza-
tion across sites using observations from all IPGs (IPGAll), and for 
comparison, site-specific parameterization using five selected IPGs 
(IPG2, IPG7, IPG14, IPG33, and IPG56). The selected IPG stations in-
cludes the station with the largest elevation difference between 
site and climate grid cell (IPG2), the most northern and eastern site 
(IPG7), most western site (IPG14), highest elevated site and with the 
latest budburst (IPG33), and the most southern and earliest budburst 
(IPG56).

2.2 | Model classes

Budburst models range from being purely empirical to more process-
based in their representation of tree physiological processes. Previous 
studies indicate that models with few parameters in general have 
higher accuracy over larger regions than more complex models (Basler, 
2016; Olsson & Jönsson, 2014) and that all models are less accurate 
when applied outside the range of conditions for which they are pa-
rameterized for (Olsson et al., 2013). To address uncertainties related 
to MC, we selected an ensemble of eight budburst models that have 
previously been applied across large regions; one empirical model and 
seven models based on temperature sums. The empirical model (MT), 
which is based on a linear regression between day of budburst and 
mean temperature in February to April (Table 2, Equation 1), was in 
a previous study among the better performing models for birch and 

Norway spruce in Europe (Olsson & Jönsson, 2014). The temperature 
sum models comprised of three varieties of a forcing model (Table 2, 
Equations 3–5), one forcing-photoperiod model (Table 2, Equation 
6), and three chilling–forcing models (Table 2, Equations 7–9). For 
all of these models, day of budburst was simulated to occur on the 
first day when the accumulated forcing exceeded the requirement 
(Table 2, Equation 2). Given that photoperiod can influence the tim-
ing of budburst, and thus protected from too early or too late bud-
burst (Hänninen, 1990; Partanen, Koski, & Hänninen, 1998), we used 
August 1st as a cutoff threshold for model failure to simulating bud 
burst. During projection using climate model data, model failure was 
calculated as the percent of site and year combinations, for which a 
model was not able to predict budburst before August 1.

Two of the forcing models include a linear response to tempera-
tures above a base temperature (Tb) (Landsberg, 1974); GDD1 from 
January 1 and GDDDOY from a parameterized starting day. The other 
forcing model, SIGDOY, includes a sigmoidal temperature response for 
all temperatures from a parameterized starting day (Migliavacca et al., 
2012). The forcing-photoperiod model (BCDOY, Blümel & Chmielewski, 
2012) is an extension of GDDDOY, in which, longer days are associated 
with an enhanced temperature response, as defined by an exponential 
constant. The Alternating model (ALT, Cannell & Smith, 1983) is an ex-
tension of GDD1, with the forcing requirement exponentially reduced 
for each additional chilling day. The Sequential model (SEQ, Sarvas 
1972 in Hänninen, 1990) is an extension of SIG, with the forcing tem-
perature response conditioned on the break of winter rest, estimated 
to occur when a chilling requirement is reached. The most complex 
model applied in this study, the Unified model (UNI, Chuine, 2000), 
is an extension of SIG1, and share features with both SEQ (chilling re-
quirement) and ALT (forcing requirement conditioned on the number 
of chilling days).

F IGURE  1  (a) The ensemble modeling scheme used in this study: Model simulations were produced for three Norway spruce provenance; 
one with an early timing of budburst originating from Germany (P121) and two with a late timing of budburst, originating from Germany (P122) 
and Norway (P123). Initial conditions (IC) for model parameterization came from observations at International Phenological Gardens (IPG); 
comparing the outcome of using data from all 23 IPGs with data from five single sites. Seven budburst models were successfully parameterized, 
representing a range of model classes (MC). Bayesian inference was applied for model parameterization. Model boundary conditions (BC) were 
provided by a subensemble of regional climate model data from SMHI-RCA4, used in dynamical downscaling of five global climate models 
(CanESM2, IPSL CM5A MR, CERFACS CNRM CM5, NorESM1-M, and GFDL-GFDL ESM2M). The predictive distribution of each IC-MC-
specific parameterization was sampled from the joint posterior distribution and forced with each BC, generating an ensemble consisting of 
74,385 (P121), 71,705 (P122), and 76,235 (P123) model projections for each year and IPG. The simulations were aggregated into cumulative 
distribution functions (CDF), representing three time periods: 1971–2000 (TP1), 2011–2040 (TP2), and 2051–2080 (TP3). (b) Conceptual figure 
illustrating two CDFs with budburst projections, where CDF 1 represents past climate conditions (TP1) and CDF 2 future climate conditions 
(TP3) with earlier timing of budburst
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2.3 | Model parameterization using 
Bayesian inference

The budburst models were parameterized using Bayesian inference 
for each provenance and initial condition separately. By propagat-
ing the parameter uncertainties into future projections, we account 
for the uncertainty in the estimated parameters, that is, different 
parameter values that yield similar predictions under current con-
ditions may not do so under future conditions. To obtain the pa-
rameter values most likely given our observations (the posterior 
probability distribution, p(θ|IC)), Bayesian inference combines our 
prior beliefs regarding possible parameter values (the prior probabil-
ity distribution, p(θ)) with a likelihood (p(IC|θ)). Assuming Gaussian 
prediction errors, the log-likelihood (log p(IC|θ)) is the negative sum 
of all squared prediction residuals (i.e., a larger error gives a smaller 
log-likelihood value). Here, θ is the unknown parameter value and 
IC the initial conditions, that is, the observations used in the model 
parameterization (IPG and E-OBS). Each parameter was assigned a 
uniform prior based on values found in the literature (Appendix S1), 

and the range was explored using an adaptive Metropolis–Hasting 
algorithm (AMH) (Andrieu & Thoms, 2008; Haario, Saksman, & 
Tamminen, 2001). For each model, the AMH was run eight times 
using randomly selected starting points and up to 300,000 iterations 
(Appendix S1). For each iteration, new parameters are randomly 
generated and the likelihood function (Li) scores the models ability 
to predict the observed budburst given the climate data. The Li is 
then compared to that of the previous iteration (Li−1), if larger the 
new parameters are kept, else a new set of parameters based on ei-
ther the latest accepted set or the new parameters is created. When 
the new parameters yield a smaller L, they are accepted if the ratio 
L1/Li−1 is larger than a random number (a ε U[0,1]). By occasionally 
keeping parameter values that give a smaller L, the AMH algorithm 
reduces the risk of getting stuck in local optima, allowing it to better 
explore the possible parameter values. Before reaching the poste-
rior distribution, we removed the burn-in period and thinned each 
chain to reduce autocorrelation. The burn-in period was assumed 
to consist of all samples until the first time at which the likelihood 
exceeds the mean likelihood over the last 10% of the chain. For 

TABLE  1 Summary of data on three Norway spruce provenances, one early (P121) and two late (P122, P123), at the International 
Phenological Gardens (IPG), with number of recorded budburst (n), average budburst (±SD), and location of the IPGs; latitude (Lat, °N), longitude 
(Lon, °E), altitude (Alt, m above sea level), the difference in altitude between the climate grid cell and the IPG site (Alt diff), and mean annual 
temperature (MAT) for the period with observations (1968–2013)

IPG ID, Name (Country code) Lat Lon Alt Alt dif MAT (°C)

P121 P122 P123

n Mean n Mean n Mean

1 Trondhjem-Sjordal (NO) 63.3 10.53 70 109 4.9 31 143 ± 7 29 150 ± 5 35 150 ± 6

2 Bergen-Fana (NO) 60.27 5.35 50 242 6.3 44 136 ± 10 44 142 ± 9 43 143 ± 11

7 Turku (FI) 64.52 26.45 115 19 2.0 47 147 ± 7 46 150 ± 6 46 150 ± 7

12 Aalborg (DK) 57.24 9.92 20 -6 8.1 22 130 ± 5 22 141 ± 6 22 142 ± 7

14 Co-Wexford (IE) 52.34 -6.64 80 -18 10.1 39 125 ± 9 41 127 ± 9 41a 125 ± 12

18 Gent-Melle (IE) 50.98 3.80 15 16 10.1 26 118 ± 10 26a 121 ± 12 26 124 ± 11

23 Hannover-Münden (D) 51.33 9.67 500 -234 8.5 26 131 ± 9 25 140 ± 8 26 143 ± 10

24 Offenbach (D) 50.10 8.78 99 87 9.7 37 120 ± 8 27 123 ± 7 26 125 ± 10

26 Trier (D) 49.75 6.67 265 92 8.9 33 112 ± 8 33 125 ± 7 25 131 ± 7

27 Stuttgart-Hohenheim (D) 48.72 9.22 380 -26 9.5 27 114 ± 8 27 128 ± 7 46 127 ± 8

28 Stuttgart-Weilimdorf (D) 48.82 9.12 330 24 9.5 31 125 ± 7 30 126 ± 6 29 124 ± 9

30 Kaiserstuhl-Liliental (D) 48.07 7.68 265 131 9.1 40 118 ± 8 40 128 ± 8 41 126 ± 10

32 Freiburg-Eschbach (D) 48.02 7.98 500 -32 9.0 35 112 ± 11 35 126 ± 9 35 126 ± 8

33 Freiburg-Schauinsland (D) 47.92 7.90 1210 -443 7. 2 41 147 ± 11 41 153 ± 11 41 154 ± 11

36 München-Grafrath (D) 48.18 11.17 540 56 8.3 44 133 ± 9 43 136 ± 10 31 137 ± 9

38 Freyung-Schönbrunn (D) 48.85 13.52 737 3 6.4 33 133 ± 8 30 141 ± 9 27 140 ± 11

42 Tharandt-Hartha (D) 50.98 13.53 360 73 7.2 46 128 ± 8 46 135 ± 8 46 137 ± 10

44 Mikolajki (PL) 53.78 21.58 127 17 7.1 38 131 ± 6 35 134 ± 7 32 135 ± 10

46 Zürich-Birmensdorf (CH) 47.36 8.44 600 -86 9.1 42a 120 ± 9 42a 129 ± 9 41a 128 ± 11

51 Slepcany-Mlynany (SK) 48.33 18.37 180 47 9.8 40 120 ± 9 41 126 ± 7 41 129 ± 7

52 LVU-Banska (SK) 48.45 18.93 540 92 7.1 39 125 ± 7 39 128 ± 8 38 133 ± 7

55 Ljubljana (SK) 46.07 14.50 310 136 9.5 46 112 ± 7 46 121 ± 7 45 120 ± 6

56 Zagreb (HR) 45.80 15.97 146 87 11.0 45 109 ± 9 45 116 ± 10 45 119 ± 10

aOutliers: P121; IPG46 (2012, 151), P122; IPG18 (1982, 88), IPG46 (2003, 94), P123; IPG14 (2006, 159), IPG46 (2003, 92).
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each parameter, the lag at which autocorrelation in the chain was 
<0.2 was identified. The common lag for all parameters was taken as 
the largest of the parameter lags, giving autocorrelations <0.2. Each 
chain was then thinned by only keeping samples separated by the 
common lag. For each set of eight starting points, only chains with 
markedly higher LogL were kept, removing chains that fail to con-
verge to reasonable parameter values. A nonparametric two-sample 
Kolmogorov–Smirnov test (KS test) was used to assess if posteriors 
of individual chains originate from the same distribution as posteri-
ors of pooled chains at 5% significance level, that is, assessing the 
importance of different initial values in the AMH and its ability to 
converge to similar parameter values regardless of starting point.

The budburst models were selected based on their complementar-
ity and success of the parameterization constrained by IC IPGAll (i.e., 
chain convergence) to generate ensemble projections that included 
representatives of all different model classes (MC). GDDDOY and 
SIGDOY provided different weighting of the forcing temperatures, and 
GDD1 was found to be complementary to them, as it does not assume 
a photoperiod requirement that potentially can limit advancement in 
budburst timing. One photoperiod model, BCDOY, was included along 
with two models accounting for both chilling and forcing tempera-
tures, ALT and SEQ. It was not possible to obtain sufficient conver-
gence for SEQ when trying a full parameterization, so three of the 
parameters were set to commonly accepted values; the starting day 
for chilling accumulation (October 1), and the minimum and maximum 

temperature threshold for chilling accumulation (−3.4°C and 10.4°C; 
e.g., Hänninen, 1990). UNI (sharing features with ALT and SEQ) was 
not included in the final ensemble as it did not converge sufficiently 
within 300,000 iterations (only one chain converging per provenance, 
and only ten iterations remaining after thinning for the early German 
provenance (P121), which indicates a hard optimization problem or an 
overparameterized model).

2.4 | Boundary conditions

For parameterization, the budburst models were forced with interpo-
lated observed daily mean air temperature with a spatial resolution 
of 0.44° (E-OBS vs. 10.0, 1950–2014) (Haylock et al., 2008). Trees of 
each provenance within the same IPG were assumed to be under the 
same climatic influence. The IPGs were located in separate climate 
grid cells, except IPG27 and IPG28. To account for local temperature 
conditions at the IPGs, the E-OBS temperature was adjusted using the 
elevation difference between the IPG and the corresponding grid cell, 
using a global standard temperature lapse rate of 6.4°C/km (Olsson & 
Jönsson, 2015).

The budburst model projections focused on three time periods: (i) 
1971–2000 was selected for comparison with the model runs using 
E-OBS data. These model runs differ as the E-OBS data allows for 
chronological comparisons with budburst observations, as opposed 
to the transient climate model simulations that capture the climate 

TABLE  2 Model equations

Equation Model Formula

1 MT obsDBB= I+kTFeb- Apr

2 All simDBBSft≥Fcrit Day of simulated budburst for all temperature sum 
models

3 GDD1 Sft=
t∑

to=jan1

�
0, Tt<Tb

Tt−Tb Tt≥Tb

4 GDDDOY Sft=
t∑
to

�
0, Tt<Tb

Tt−Tb Tt≥Tb

5 SIGDOY Sft=
t∑
t0

1

1+eb(Tc+c)

6 BCDOY
Sft=

t∑
t0

�
0, Tt<Tb

(Tt−Tb)×
�

DLt

10

�EXPO

, Tt≥Tb

7 ALT
Sct=

t∑
t2

�
0, Tt ≥Tb
1, Tt <Tb

Sft=
t∑

t0=jan1

�
0, Tt<Tb

Tt−Tb Tt≥Tb

Fcrit =βe−γSCt

8 SEQ

Sct=
t∑
t2

⎧⎪⎨⎪⎩

0, Tt≤−3.4orTt>10.4
Tt−(−3.4)

Topt−(−3.4)
, −3.4<Tt≤Topt

Tt−10.4

Topt−10.4
, Topt<Tt≤10.4

⎫⎪⎬⎪⎭

Sft=
t∑

t0=jan1

�
0, Tt<Tb andSct<Ccrit
1

1+eb(Tc+c)
, Tt≥Tb andSct≥Ccrit

9 UNI
Sct=

t∑
t2

1

1+eac(Tc−oC)
2+bc(Tt−oC)

Sft=
t∑

t0=jan1

1

1+edF(Tt−fF )
,Sct≥Ccrit

Fcrit =βe−γSCt
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conditions but not the year-by-year variations. Furthermore, the cli-
mate model data were not adjusted for site-specific elevation differ-
ences, as the purpose was to generate simulations representing the 
grid-cell level, mapping the entire study region of northern Europe. 
(ii) The period 2011–2040 was selected to assess current climate 
and near future, a period little influenced by uncertainties associated 
with future greenhouse gas emissions (IPCC, 2013). (iii) The period 
2051–2080 was selected to quantify uncertainties in plant phenolog-
ical response in relation to a high emission scenario (RCP 8.5). With 
a rotation period of at least 50 years, this period is highly relevant to 
consider during regeneration of Norway spruce forest stands.

To address uncertainties related to climate model data, the phenol-
ogy models were driven by five climate model datasets from EURO-
CORDEX representing RCP8.5 at a spatial resolution of 0.44° (Jacob 
et al., 2014). The subensemble consisted of data from one regional cli-
mate model (RCM) SMHI-RCA4 with boundary conditions defined by 
five general climate models (GCM); CanESM2, CERFACS CNRM CM5, 
IPSL CM5A MR, NorESM1-M, and GFDL-GFDL ESM2M. The suben-
semble had been selected to represent the variation of a larger ensem-
ble of eleven RCM-GCM combinations (Wilcke & Bärring, 2016) based 
on the variation in daily mean temperature and degree days for the 
periods of 1971–2000 and 2069–2098 in eight European subregions 
corresponding to the PRUDENCE regions (Christensen & Christensen, 
2007; Pulatov et al., 2016). All ensemble members had been bias cor-
rected, using empirical quantile mapping with EURO4M as reference 
dataset (Wilcke, Mendlik, & Gobiet, 2013). We hereafter refer to the 
BC datasets as CanESM2, CERFACS, IPSL, NorESM1, and GFDL.

2.5 | Analysis

An ensemble was produced for each Norway spruce provenance 
(P121, P122, and P123) and time periods (TP1: 1971–2000, TP2: 
2011–2040, and TP3: 2051–2080) by making multiple simulations 
over sets of six initial conditions (IC: IPGAll, IPG2, IPG7, IPG14, IPG33, 
and IPG56), seven budburst model (MC: MT, GDD1, GDDDOY, SIGDOY, 
BCDOY, ALT, and SEQ), a set of model parameter values, and five 
boundary conditions (BC: CanESM2, CERFACS, IPSL, NorESM1, and 
GFDL; Figure 1a). The predictive distribution, given observations and 
boundary conditions (p(MC|IC,BC)), can be seen as a collection of pro-
jections using different parameters (k), that is, p(MC|IC,BC) = sumk p(
MC|θk,BC)*p(θk|IC). The difference, or uncertainty, in the parameters 
is described by the joint posteriors represented in the thinned Markov 
chains. The joint posterior was sampled n*(100/M)+1 times for each 
of the M distinct local modes and n parameters in each model; the 
posterior sampling includes one sample of each local mode (the +1) 
and results in n*100 + M samples for each model.

The observed budburst and budburst projections based on climate 
model data were aggregated into different cumulative distribution 
functions (CDF) and compared using a nonparametric Kruskal–Wallis 
test (KW test) to test for equality among the distributions. The KW 
test statistic is the mean difference on sum of ranks, representing the 
area between CDFs (Figure 1b). CDF mean values were calculated 
and compared for quantitative assessments of changes between time 

periods. For multiple comparisons, we used Bonferroni-corrected 
p-values in a post hoc test to evaluate specific sample pairs for sto-
chastic ordering at 5% significance level. To account for differences 
in sample size when comparing and plotting test statistics from mul-
tiple tests, the KW-value was standardized through division with the 
width of their 95% confidence interval (CI). To obtain results on the 
provenance-specific response to climate change, no aggregation was 
performed across different provenances or time periods.

The analysis included three parts. First, we benchmarked differ-
ences in observed budburst among provenances and IPGs during 
1968–2013, using the KW test with Bonferroni-corrected p-values to 
evaluate if the individual time series originate from the same distribu-
tion. Thereafter, we estimated the overall model calibration accuracy 
for the time period 1971–2000, using adjusted coefficient of deter-
mination (adj. R2) and Akaike’s information criterion (corrected for 
sample size, AICc), between observed and E-OBS-simulated budburst. 
In order to keep the comparison across model parameterizations con-
stant, the entire observational dataset was used for evaluation of all 
model varieties, that is, this step included external validation data for 
single-site calibrations. Spatial differences in model accuracy were 
further evaluated using the KW test on the observed and predictive 
distributions resulting from model runs using climate model data.

Second, we used the ensemble mean to estimate the climate 
change impact on the timing of budburst, and the 25th and 75th per-
centile as a conservative measure of uncertainties. Potential changes 
in the spatial variation were evaluated using a general linear model 
(GLM) with annual ensemble mean across IPGs as independent vari-
able and annual standard deviation as dependent variable (e.g., Menzel, 
Sparks, Estrella, & Roy, 2006). Changes in climate and budburst across 
the main area of Norway spruce distribution in Europe (north of the 
Alps) were projected using all BC, and included initial conditions IPGAll, 
model classes MT, GDD1, GDDDOY, SIGDOY, BCDOY, and ALT, and 
boundary conditions CanESM2, CERFACS, IPSL, NorESM1, and GFDL 
(see Section 3.1).

Third, we assessed the sources of uncertainty in the projections 
by comparing projections aggregated into IC, MC, and BC, using the 
KW test with Bonferroni-corrected p-values. Differences among 
model classes were further evaluated with respect to the simulated 
response to a warmer climate, spatial differences, and sensitivity to 
initial conditions. All simulations and analysis were performed using 
the computational program Matlab 2015b. Two supplements provide 
additional information on model parameterization (Appendix S2) and 
provenance-specific analysis (Appendix S2), referred to in the text as 
Table A1–A4, Fig. A1–A2 and Fig. B1–B6, respectively.

3  | RESULTS

3.1 | Observed budburst and model accuracy

The timing of budburst in 1968–2013 was approximately 1 week 
earlier for the early German provenance (P121) than for the late 
German (P122, Δ 6.48 ± 6.37 days) and late Norwegian (P123, Δ 
7.54 ± 7.79 days) provenances (KW test, α = 0.05, df = 2). There was a 
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significant variation among all IPGs (KW test, α = 0.05, df = 22); how-
ever, the five IPGs included to generate initial conditions (IC) were 
clustered in two groups: The timing of budburst did not differ signifi-
cantly among IPG2, IPG7, and IPG33, or between IPG14 and IPG56, for 
any of the provenances. The spatial variation in timing of budburst 
among all IPGs (measured as the annual standard deviation) did not 
differ significantly between years.

All combinations of models and calibration dataset (driven by 
site-adjusted E-OBS data) were able to reproduce observed timing of 
budburst (p < .001), although the IPG-specific initial conditions influ-
enced the ability of the phenology models to capture the timing of 
observed budburst (Table 3). For most models, the parameterization 
based on IPGAll generated among the highest degrees of explanation, 
but for all models, some parameterizations based on individual sites 
were as good. The model parameterizations with highest accuracy and 
best trade-off between goodness of fit and model complexity differed 
somewhat among the three provenances: for P121 this was gener-
ated by GDDDOY and IPG33 (R2 = 0.68, AICc = 4234), for P122 by ALT 
and IPG33 (R2 = 0.72, AICc = 3,992), and for P123 by BCDOY and IPGAll 
(R2 = 0.73, AICc = 3,965). GDD1, GDDDOY, and BCDOY were the three 
models not failing to predict budburst for any site and year, and BCDOY 

had generally a somewhat higher accuracy than GDDDOY. The RMSE of 
the different model versions varied between 6.9 and 13.6, in general 
being slightly lower for model calibrations with IPGAll (average RMSE 
8) than for the single sites (average RMSE 9; Table 3). For all model cal-
ibrated with IPGAll, the bias was 0. Bias for single-site calibrations eval-
uated using the entire dataset, varied between −8.2 for calibrations 
with IPG14 (the westernmost site with an oceanic climate) and +8.8 
for calibrations with IPG7 (the northeastern site with a continental cli-
mate). The bias of IPG2 was −4.9, IPG33 0.2, and IPG56 1.7, generating 
an ensemble bias of 0.

3.2 | Budburst projections

3.2.1 | Model performance and failure

In general, the models failed to simulate budburst more often when 
constrained by initial conditions based on one IPG, compared to IPGAll 
(Table 4). MT and ALT failed more frequently in 1971-2000, predomi-
nantly at the most northern site (IPG7) with IC IPG2 and IPG14. SEQ 
and SIGDOY failed more frequently in the warmer climate of TP2 and 
TP3, but for two different reasons. SEQ failed for all provenances, 

TABLE  3 Model calibration accuracy (adj. R2) and RMSE across International Phenological Gardens, for E-OBS simulations evaluated with 
observed budburst in 1971–2000, for each of the initial conditions (IC: IPGAll, IPG2, IPG7, IPG14, IPG33, and IPG56) and three provenances (on 
early [P121] and two late [P122, P123])

Provenance Model

Model accuracy Model RMSE

IPGAll IPG2 IPG7 IPG14 IPG33 IPG56 IPGAll IPG2 IPG7 IPG14 IPG33 IPG56

P121 MT 0.57 0.57 0.55 0.57 0.57 0.57 9.2 9.2 9.4 9.2 9.2 9.2

GDD1 0.65 0.63 0.51 0.61 0.57 0.59 8.3 8.6 9.9 8.8 9.3 9.0

GDDDOY 0.65 0.66 0.66 0.68 0.68 0.65 8.3 8.2 8.2 8.0 8.0 8.4

BCDOY 0.66 0.57 0.59 0.59 0.57 0.63 8.2 9.2 9.0 9.0 9.2 8.6

SIGDOY 0.66 0.22 0.40 0.39 0.06 0.32 8.2 12.4 10.9 10.9 13.6 11.6

ALT 0.62 0.64 0.61 0.53 0.67 0.47 8.6 8.4 8.8 9.6 8.1 10.3

SEQ 0.63 0.36 0.40 0.35 0.52 0.50 8.6 11.3 10.9 11.3 9.8 10.0

P122 MT 0.55 0.55 0.55 0.55 0.55 0.55 8.6 8.6 8.7 8.6 8.6 8.7

GDD1 0.70 0.69 0.54 0.65 0.62 0.65 7.0 7.1 8.7 7.6 7.9 7.6

GDDDOY 0.68 0.71 0.69 0.71 0.71 0.70 7.2 6.9 7.2 6.9 6.9 7.0

BCDOY 0.71 0.63 0.67 0.66 0.67 0.68 6.9 7.8 7.4 7.5 7.4 7.3

SIGDOY 0.70 0.14 0.30 0.36 0.13 0.30 7.1 11.9 10.7 10.3 12.0 10.8

ALT 0.70 0.67 0.66 0.63 0.72 0.48 7.0 7.4 7.5 7.8 6.8 9.3

SEQ 0.68 0.29 0.41 0.34 0.51 0.29 7.3 10.8 9.9 10.4 9.0 10.9

P123 MT 0.54 0.54 0.52 0.54 0.54 0.54 9.1 9.1 9.3 9.1 9.1 9.1

GDD1 0.70 0.72 0.54 0.65 0.63 0.55 7.3 7.1 9.0 7.9 8.2 8.9

GDDDOY 0.66 0.71 0.65 0.69 0.69 0.68 7.8 7.2 7.9 7.4 7.4 7.6

BCDOY 0.69 0.66 0.67 0.67 0.66 0.63 7.4 7.8 7.6 7.6 7.8 8.1

SIGDOY 0.67 0.68 0.24 0.21 0.15 0.29 7.6 7.5 11.6 11.9 12.3 11.3

ALT 0.73 0.71 0.67 0.52 0.73 0.45 6.9 7.1 7.7 9.2 6.9 9.9

SEQ 0.64 0.29 0.40 0.30 0.50 0.26 8.0 11.2 10.3 11.2 9.5 11.5

All results are significant at the level of p < .001. Gray shading highlights the IC with highest model accuracy, and bold indicates the provenance-specific 
models with lowest AICc (Akaike’s information criterion corrected for sample size).
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boundary conditions, and initial conditions (predominantly with IC 
IPG2, IPG14 and IPG33) due to insufficient chilling accumulation. 
SIGDOY failed for all provenances with IC IPG2, IPG7, IPG14, and IPG33, 
which can be attributed to the overall uncertainty in the parameteriza-
tion of growth rate (b) and inflection point (c) of the logistic function 
that determines the response rate to forcing temperatures. The two 
parameters are highly interdependent (Spearman’s rank correlation 
rs < −0.84, p < .001) with distributions containing both positive and 
negative values (Fig. A2). For simulations with a positive growth rate, 
irrespective of the sign of the inflection point, the response rate is 
lower with higher temperature.

The TP1 simulations, based on climate model data, were for some 
sites significantly earlier or later than observed budburst (KW test, 
α = 0.05, df = 1) (Figure 2). For some sites (i.e., IPG2, IPG12, IPG23, 
IPG33, and IPG36), all models generated budburst projections that were 
early in comparison with observed timing. This is related to differences 
between E-OBS data (adjusted for site-specific altitude, used for model 
parameterization) and gridded climate model data (used for large-scale 
and long-term climate impact assessments). In comparison with ob-
served timing of budburst, the models generated different grid-cell-
specific projections for TP1, with ALT and SIGDOY representing the two 
extremes: The ALT model projected an earlier than observed budburst 

for 19 of 23 grid cells with IPGs, whereas SIGDOY projected an earlier 
than observed budburst for five grid cells, and later than observed for 
12 of the grid cells.

3.2.2 | Ensemble projections

The ensemble projections indicate that the temporal and spatial 
changes in budburst will be similar among the provenances, main-
taining the interprovenance relationship over time, also in a warmer 
climate (Figure 3). The observed timing of budburst and simulations 
based on E-OBS in 1971-2000 agree to a large extent, but the range 
was slightly larger for the E-OBS simulations, which reflects both 
model uncertainties, uncertainties associated with the E-OBS data, and 
added variability by site-year projections without corresponding bud-
burst observations (i.e., gaps in the observed datasets). The discrepan-
cies between model projections based on E-OBS and modeled climate 
data were solely due to differences in the temperature estimates (see 
Section 2.4). For many of the sites, the climate model data indicated 
slightly warmer conditions that the E-OBS data, as the climate model 
data were not adjusted for site-specific altitudes. Sixteen of 23 sites 
were at lower altitudes than the corresponding grid-cell average al-
titude (Table 1). That is, the E-OBS data were adjusted to generate 

F IGURE  2 Site-specific model accuracy for the early German provenance (P121), evaluating the similarity between distributions of budburst 
observations and simulations for 1971–2000 based on climate model data, aggregated for each combination of model class (along y-axis) and 
International Phenological Garden (along x-axis). The grayscale displays absolute values of standardized average differences between sum of 
ranks of observations and simulations (Kruskal–Wallis test, α = 0.05, df = 1). Significant differences indicate that the predictive distribution (on 
average) includes earlier (“−”) or later (“+”) budburst than the observed distribution. (See Appendix S2 for corresponding figures for provenance 
P122 and P123.)

F IGURE  3 Box plots showing the ensemble mean (value), median (line), the 25th and 75th percentile (box) and 99.3% (whiskers) of day of 
year observed budburst (O), simulations forced by the (adjusted) interpolated observed temperature dataset E-OBS (E), and simulations forced 
by modeled climate data (boundary conditions) across all 23 International Phenological Gardens. Observations and simulations were aggregated 
after provenance; one early (P121), and two late (P122 and P123), and time period; 1971–2000 (O, E and TP1), 2011–2040 (TP2), and 
2051–2080 (TP3)
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time series that represented the site-specific conditions, for optimal 
calibration of the phenology models, but the climate model data were 
not adjusted to provide future predictions that represented the grid-
cell level, enabling mapping of the entire study region (c.f. Figure 4).

A subset of projections (initial condition IPGAll, model classes MT, 
GDD1, GDDDOY, SIGDOY, BCDOY, and ALT, and all boundary conditions) 
was combined to assess variations in climate sensitivity within the 
study region (Figure 4, Fig. B2). The budburst advancement was more 
pronounced in northern Europe, that is, in areas with a more pro-
nounced warming during winter and spring, while the estimated inter-
annual variation in budburst (as influenced by MC and BC) increased 
more in western Europe, that is, in areas where the current climate is 
relatively warm (Fig. B3). It is worth noting that even though the forc-
ing requirement in GDD1 and GDDDOY is highly correlated, GDD1 proj-
ects a greater advancement by accounting for temperature increase in 
late winter and early spring (i.e., before the starting day of GDDDOY, 
ranging from late February to late March, Table A2–A4).

3.2.3 | Model-specific projections

A comparison among the climate change projections generated by the 
different phenology models showed that GDD1 gave the strongest cli-
mate change signal, in terms of earlier budburst, followed by ALT, SEQ, 
GDDDOY, MT, BCDOY, and SIGDOY (Figure 5a). For each provenance and 

time period, the projected interannual variability (standard deviation 
of annual means) was highest with GDD1 and lowest with SIGDOY, and 
most models projected higher interannual variability in 2051–2080 
(Figure 5b) than in 1971–2000. SIGDOY and SEQ deviated from this 
pattern, as the temperature increase leads to increased model failure 
(see Section 3.2.1) and thereby an apparent decrease in variability.

SEQ indicated a larger spatial variation in projected budburst ad-
vancement from 1971–2000 to 2051–2080 than the other models 
(Figure 5c). Furthermore, SEQ was the only model to project a rela-
tive delay in budburst, at IPG14 for all provenances and at IPG18 for 
the two late provenances (P122 and P123, Fig. B4). Among all IPG 
sites, these two have the highest average temperature and lowest 
variability in winter (November–January) and spring (February–April). 
All temperature sum models projected the greatest advancement at 
the most northern site (IPG7), and the least advancement (or even a 
delay according to SEQ) at the most western site (IPG14). Minor differ-
ences were found for IPG27 and IPG28, even though they belong to the 
same climate grid cell, due to the latitude-specific day length function 
implemented in BCDOY.

3.3 | Sources of uncertainty

Four categories of model settings (provenance, IC, MC, and BC) were 
assessed for each time period by comparing projections across IPGs 

F IGURE  4 Spatial variation in budburst simulations for the early Germany provenance (P121). (a) Grid-cell ensemble means (day of year) in 
1971-2000, (b) average change (number of days) from 1971–2000 to 2011–2040, and (c) average change (number of days) from 1971–2000 
to 2051–2080. The lower panels show the standard deviations for each time period, (d) 1971–2000, e) 2011–2040, and (f) 2051–2080. The 
grid-cell ensemble means are based on the initial conditions IPGAll, model classes MT, GDD1, GDDDOY, BCDOY, SIGDOY, and ALT, and boundary 
conditions CanESM2, CERFACS, IPSL, NorESM1, and GFDL (see Section 3.1 for subset selection). (See Appendix S2 for corresponding figures 
for provenance P122 and P123.)
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aggregated into different sets of cumulative distribution functions 
(CDFs, Figure 1b). All CDFs indicated an earlier timing of budburst in 
response to a warmer climate (Figure 6). The estimated average ad-
vancement in TP2 was 4.1 ± 1.6 days, and in TP3 10.2 ± 3.7 days. All 
provenances indicated the same magnitude of change, but the CDFs 
of the early provenance differed somewhat from the two late prov-
enances, with a slightly larger variation within IC (11 days) than MC 
(8 days) and BC (6 days; c.f. Figure 6 and Fig. B5).

In this study, the variation was mainly attributed to the budburst 
models (MC), followed by the initial conditions (IC) and selection of 
climate model data (BC) (Figure 6). Within each category, the variabil-
ity among CDFs increased over time, somewhat more for MC than 
for IC (Figure 6, Fig. B5). Among the initial conditions (IC-CDFs), IPGAll 
changed the most and IPG7 the least. Among the phenology models 
(MC-CDFs), BCDOY showed the largest change and SIGDOY the smallest 
change. A comparison of the climate change effect on the central ten-
dency (i.e., change in average values between TP1 and TP3) revealed 

minor differences among IC-CDFs and BC-CDFs (all within the range 
of 8–11 days). Larger variations were found among the MC-CDFs, 
ranging between 2 days (SIGDOY) and 22 days (GDD1; Table 5). The 
weak signal by SIGDOY can be attributed to the increased frequency 
of model failure, and that the model in general is approaching failure 
(Table 4). Furthermore, the interannual variations predicted by BCDOY 
were substantially smaller than for GDD1 (c.f. Figure 5b). Nevertheless, 
BCDOY differed significantly between TP1 and TP3, indicating a gen-
eral shift in timing of budburst by 9 days (i.e., close to the ensemble 
average).

A post hoc analysis, generating a pairwise comparison among IC-
CDFs and MC-CDFs, showed that the ranking among model runs did 
generally not differ across time periods. However, the intricate in-
terplay between parameter values and temperature generated some 
inconsistencies: The P123-projections were generally earlier with IC 
IPG56 than with IC IPG33 in TP1, but later in TP2 and TP3 (Fig. B5), and 
the shift was induced by a stronger temperature response in IC-IPG33 

F IGURE  5 Three panels displaying the results of phenology model projections for the early provenance from Germany (P121) in relation 
to (a) interannual variation across the study region for the three selected time periods, (b) variation among phenology models for the last time 
period, and (c) variations in the strength of the climate change signal among models and International Phenological Gardens. The color in (a) 
and (b) group the models in relation to the physiological processes included the following: empirical (black), forcing (red), forcing modified by 
photoperiod (magenta), and chilling and forcing (blue), with the line representing the mean and the box the 25th and 75th percentile. In (c) the 
color displays absolute values of standardized average differences between sum of ranks of distributions aggregated for each combination of 
model class (along y-axis) and International Phenological Garden (along x-axis) (Kruskal–Wallis test, α = 0.05, df = 1). Significant differences 
(negative “−” or positive “+”) in simulations between 1971–2000 and 2051–2080 (Kruskal–Wallis test, α = 0.05, df = 1). (See Appendix S2 for 
corresponding figures for provenance P122 and P123.)
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than IC-IPG56, as indicated by the MT parameter values (IPG33: 
k = −5.5 and IPG56: k −3.2, Table A4). The projections with ALT were 
for all provenances generally earlier than with GDD1 in TP1, but later 
in TP3. With warmer springs, GDD1 will unconditionally project earlier 
budburst, while the advancement with ALT is partly offset by warmer 
winters, as fewer chilling days increase the forcing requirement of ALT. 
The BC-CDFs showed minor differences in ranking among the time 
periods, as influenced by the partly random interannual variation in 
climate model data, and all BC-CDFs indicated a similar magnitude 
of change between TP1 and TP3. The selection of initial conditions 

had a significant influence on all model projections (KW test, α = 0.05, 
df = 5), with SIGDOY and SEQ being more sensitive than the other mod-
els (Fig. B6a,b).

4  | DISCUSSION

Assessments of climate impacts on tree phenology are required for 
a range of theoretical and practical applications, including ecosys-
tem modeling for mitigation and adaptation purposes and selection 

F IGURE  6 The relative contribution of initial conditions (IC), model classes (MC), and boundary conditions (BC) to uncertainties in the model 
projections for each time period. Differences in budburst simulations for the early provenance from Germany (P121) among cumulative density 
functions across (a) IC, (b) MC, and (c) BC. The distribution averages are presented along the x-axis. The grayscale displays absolute values of 
standardized average differences between sum of ranks of the distributions (Kruskal–Wallis test with Bonferroni-corrected p-values, α = 0.05, 
(a) df = 6, (b) df = 6, and (c) df = 5). Significant differences in the post hoc pairwise comparison indicate the distribution that (on average) includes 
earlier budburst (x-axis “x” or y-axis “y”). The far right panels indicate significant differences (negative “−” or positive “+”) in simulations between 
1971–2000 and 2051–2080 for the distribution on the y-axis (Kruskal–Wallis test, α = 0.05, df = 1). (See Appendix S2 for corresponding figures 
for provenance P122 and P123.)
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of suitable provenance at the timing of regeneration of forest stands 
(Migliavacca et al., 2012; Skrøppa & Steffenrem, 2016). A range of 
phenological models has been developed to capture temperature ef-
fects on the timing of budburst, differing in terms of model structure 
and complexity (Olsson & Jönsson, 2014). As there are remaining un-
certainties on how to model the tree species and provenance-specific 
phenology (Fu et al., 2015; Jochner, Sparks, Laube, & Menzel, 2016; 
Suvanto, Nöjd, Henttonen, Beuker, & Mäkinen, 2016), future pro-
jections should preferably be based on an ensemble of models with 
different structures (Basler, 2016). In this study, focusing on Norway 
spruce in northern Europe, we applied an ensemble approach using 
seven phenology models to provide a general overview of trends 
and uncertainties, addressing effects related to initial condition for 
model parameterization, model class, and boundary conditions. Our 
results are in line with other studies concluding that structurally dif-
ferent phenology models can generate similar results under current 
climate conditions, but differ in terms of future projections (Basler, 
2016; Linkosalo, Lappalainen, & Hari, 2008; Vitasse et al., 2011). The 
ensemble projection indicated that the timing of budburst will be on 
average 10.2 ± 3.7 days earlier in 2051–2080 than in 1971–2000, 
given climate conditions corresponding to RCP 8.5. An earlier timing 
of budburst was associated with increased spatial variation, which is 
in line with observed changes for many species in Germany between 
1951 and 2002 (Menzel et al., 2006). The variations captured by the 
ensemble projections were primarily caused by differences among 
phenology model classes (MC), secondly, by the initial conditions used 
for model parameterization (IC), and lastly, by climate model data (BC).

The ensemble analysis of this study focused on the complemen-
tarity of bud burst models, that is, the main source of variation. The 
included models captured different aspects of environmental regula-
tion, such as forcing, chilling, and photoperiod, thereby contributing 
to the overall picture of current understanding of climate impacts on 
tree phenology (Fu, Campioli, Van Oijen, Deckmyn, & Janssens, 2012; 
Vitasse et al., 2011). Model parameterizations and projections were 
carried out for one early and two late Norway spruce provenances, 
as tree breeding with selection of suitable seed sources, (including 
provenances from e.g., Germany, Poland, and Belarus) is part of the 
climate adaptation strategy of the north European forestry sector. 
Tree phenology is an important selection criterion (Hannerz, 1999), 
as trees that start growth early in the season face a higher risk of 
frost damage, whereas trees that start late may not take advantage of 
the full growing season (Karlsson, 2009). Seed sources with late bud 
flushing are commonly recommended in south Sweden, whereas early 
bud flushing varieties are commonly used in north Sweden, as the 
spring temperature progression of this region is less frequently inter-
rupted by frost episodes, and the growing season is shorter (Jönsson, 
Linderson, Stjernquist, Chlyter, & Bärring, 2004). The results of this 
study indicated that the temporal differences in timing of budburst 
between early and late provenances will remain in a warmer climate; 
however, the magnitude of temperature change will influence the re-
gions and provenances most at risk. This is due to the fine balance 
between warmer climate generally reducing the number of frost days 
and tree dehardening and budburst occurring earlier in the year, at 

a time when temperature backlashes are more frequent (Jönsson & 
Bärring, 2011). While it was beyond the scope of this study to assess 
the risk of frost damage, it pointed toward the need of analyzing both 
the general trend in timing of budburst (most pronounced in northern 
Europe) and the interannual variation (will increase most in western 
Europe), as both aspects influence the risk.

The choice of observational data for model calibration was the 
second most influential factor. Calibrations based on IPGAll generated 
among the highest degrees of explanation for all models, although 
some of the single-site calibrations, for which the calibration accuracy 
also included external validation data, generated as high R2 values. 
This indicates some skill of the models to account for different climate 
conditions than calibrated for, although the single-site calibration of 
SIGDOY, ALT, and SEQ performed generally less well than for GDD1, 
GDDDOY, and BCDOY. By minimizing the sum of residuals during param-
eterization, the budburst models become tuned around the average 
phenological temperature response of the initial conditions the mod-
els, although this does not compensate for lack of mechanistic under-
standing. The models tend to overestimate the temperature response 
when extrapolated to other conditions, with the implication that bud-
burst is simulated too late in colder regions and too early in warmer 
regions (Olsson & Jönsson, 2014). The higher degree of model failure 
with initial conditions based on single IPGs indicated that the overes-
timation effect became more pronounced when the parameterization 
was constrained by local conditions than by average regional condi-
tions (IPGAll), especially when adding the effects of climate change.

In this study, UNI was not properly calibrated and thereby omitted 
from the ensemble projections. Previous studies have indicated that this 
model is prone to fit random noise data (Linkosalo et al., 2008), which 
results in poor performance at external sites (Fu et al., 2012), and this 
may have impaired our calibration process. Similar results have been 
found for SEQ (Fu et al., 2012), which in this study had the highest rate 
of failure to predict budburst, likely due to insufficient monitoring data 
for the calibration of chilling requirement (Fu et al., 2012; Linkosalo 
et al., 2008; Vitasse et al., 2011). The models that did not fail, GDD1, 
GDDDOY, and BCDOY, were easiest to calibrate and among the better 
performing models when comparing model simulations with observed 
timing of budburst. Even so, the calibration procedure of these models 
highlights some model weaknesses and gaps in physiological under-
standing. The parameterization of GDD1 generated a posterior bimo-
dality caused by the interdependence between base temperature and 
forcing requirement, and the parameterization of SIGDOY was strongly 
influenced by the correlation between growth rate and infliction point. 
The calibrated exponential parameter of BCDOY became close to one for 
all three provenances; thus, the forcing temperature accumulation was 
only marginally influenced by photoperiod. That is, while the calibrated 
interaction among starting day, temperature threshold and photoperi-
odic effect sufficiently capture current conditions, it may not address the 
dynamic between temperature and photoperiod in a warmer climate. 
This points to the general problem of estimating under which future cli-
mate conditions the model results are valid, further complicated by the 
fact that the climate development is scenario dependent (influenced by 
human actions) and the temperature increase will display latitudinal and 
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seasonal variations (IPCC 2013). The result of a tree phenology study 
including a subselection of cold years, to enable a validation based on 
currently climate (Olsson & Jönsson, 2014), suggests that the model 
performance may deteriorate gradually with temperature increase as 
years with weather and climate conditions outside the model predictive 
capacity increase in frequency.

In this study, the boundary conditions were ranked as the third 
most important source of variation. However, the study design will 
influence the attribution of uncertainties (Uusitalo, Lehikoinen, Helle, 
& Myrberg, 2015) and it has to be taken into account that the model 
runs were based on bias-corrected climate model data, selected to 
represent RCP 8.5 only (Wilcke & Bärring, 2016). In a study on Harvard 
forest (Massachusetts, USA), largest uncertainty was attributed to the 
selection of climate data, followed by budburst models and model pa-
rameterization (Migliavacca et al., 2012). The two scenarios included, 
A1fi and B1, have a median temperature increase by 2100 similar to 
RCP8.5 and RCP4.5 (Rogelj, Meinshausen, & Knutti, 2012), thereby 
capturing parts of the scenario uncertainty that was not specifically 
addressed in this study. Limited time and computer resources com-
monly restrict the possibility to take the entire range of climate model 
data into account when carrying out impact assessments (Wilcke 
& Bärring, 2016), and this study focused on a pronounced climate 
change scenario as this also captures aspects of what could happen 
in a less severe scenario. That is, the climate conditions outlined by 
RCP 8.5 for the midcentury correspond roughly with the conditions 
outlined by RCP 4.5 for the end of the century (IPCC, 2013).

5  | CONCLUSION

In this study, we applied (i) Bayesian inference to estimate model pa-
rameter values to address uncertainties associated with selection of ob-
servational data, (ii) climate data selection to identify a subensemble of 
climate model data representative of a larger dataset, and (iii) ensembles 
modeling over multiple initial conditions, model classes, model parame-
terizations, and boundary conditions to generate future projections and 
uncertainty estimates. Structurally complex models were more likely to 
fail predicting budburst for some combinations of site and year than 
simple models, however, contributing to the overall picture of current 
understanding of climate impacts on tree phenology by capturing addi-
tional aspects of temperature response, for example, chilling. Model pa-
rameterizations based on single sites were more likely to result in model 
failure than parameterizations based on multiple sites, highlighting that 
the model parameterization is sensitive to initial conditions and may not 
perform well under other climate conditions, whether the change is due 
to a shift in space or over time. By addressing a range of uncertainties, 
this study showed that ensemble modeling provides more a robust im-
pact assessment than would a single phenology model run.
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