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Tuberculosis (TB) is caused by infection with the bacterium Mycobacterium tuberculosis
(Mtb), which primarily infects the lungs but can also cause extrapulmonary disease. Both
the disease outcome and the pathology of TB are driven by the immune response
mounted by the host. Infection with Mtb elicits inflammatory host responses that are
necessary to control infection, but can also cause extensive tissue damage when in
excess, and thus must be precisely balanced. In particular, excessive recruitment of
neutrophils to the site of infection has been associated with poor control of Mtb infection,
prompting investigations into the roles of neutrophils in TB disease outcomes. Recent
studies have revealed that neutrophils can be divided into subpopulations that are
differentially abundant in TB disease states, highlighting the potential complexities in
determining the roles of neutrophils in Mtb infection. Specifically, neutrophils can be
separated into normal (NDN) and low-density neutrophils (LDNs) based on their
separation during density gradient centrifugation and surface marker expression. LDNs
are present in higher numbers during active TB disease and increase in frequency with
disease progression, although their direct contribution to TB is still unknown. In addition,
the abundance of LDNs has also been associated with the severity of other lung infections,
including COVID-19. In this review, we discuss recent findings regarding the roles of LDNs
during lung inflammation, emphasizing their association with TB disease outcomes. This
review highlights the importance of future investigations into the relationship between
neutrophil diversity and TB disease severity.

Keywords: neutrophil, tuberculosis, inflammation, infection, MDSC (myeloid-derived suppressor cell), low-
density neutrophil
NEUTROPHILS AND THEIR ASSOCIATION WITH TUBERCULOSIS

As themost abundant white blood cell in circulation, neutrophils are amongst the first cells to respond to
infection and can directly control pathogen replication through phagocytosis and release of antimicrobial
molecules. Neutrophils also play critical roles in initiating andmaintaining inflammatory responses. Due
to their inflammatory nature, when left unchecked, neutrophils can cause severe tissue damage resulting
in death of the host (Ravimohan et al., 2018). Neutrophils have been identified as the most prevalent and
predominantly infected cell type in the sputum, bronchoalveolar lavage (BAL) fluid, and caseum
contents from resected lung tissue of active tuberculosis (TB) patients (Condos et al., 1998; Eum et al.,
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2010). Increased abundance of neutrophils in whole blood has also
been used as a predictor for hospitalization of TB patients and is
associated with poor disease outcomes (Ashitani et al., 2002; Berry
et al., 2010; Ravimohan et al., 2018; Scott et al., 2020; Jones et al.,
2021). Together, these studies suggest that neutrophils are
associated with TB disease progression.

Several mouse strains that exhibit increased susceptibility to
Mycobacterium tuberculosis (Mtb) infection also recruit higher
numbers of neutrophils to the lungs during infection (Sugawara
et al., 2003; Eruslanov et al., 2005; Keller et al., 2006; Dorhoi et al.,
2010; Lázár-Molnár et al., 2010; Nandi and Behar, 2011; Niazi
et al., 2015; Huynh et al., 2018; Nair et al., 2018), supporting an
association between neutrophilic inflammation and poor control
of Mtb infection. In some cases, depletion of neutrophils in the
susceptible mice extends their survival and decreases bacterial
burdens in the lungs following Mtb infection (Nandi and Behar,
2011; Dorhoi et al., 2014; Kimmey et al., 2015; Mishra et al., 2017;
Nair et al., 2018; Scott et al., 2020). In addition, infection of
rabbits with the hypervirulent lineage 2 Mtb strain HN878
resulted in an early increase in neutrophil recruitment and
activation compared to the less virulent strain CDC1551. The
early increase in neutrophil accumulation during infection with
HN878 was followed by increased Mtb replication and increased
pathology (Subbian et al., 2013). Furthermore, data in macaques
also supports a positive correlation between increased
neutrophilic infiltrate and increased disease severity (Gopal
et al., 2013; Mattila et al., 2015; Gideon et al., 2019). Together,
these data associate neutrophil-driven inflammation with host
susceptibility to infection.

In contrast, there are some studies supporting a protective role
for neutrophils during Mtb infection, specifically in blood.
Neutrophils were required to restrict the growth of Mtb in
human whole blood ex vivo, where neutrophil-depleted blood
was unable to control Mtb growth compared to undepleted
controls or cultures depleted of CD4+, CD8+, or CD14+ cells
(Martineau et al., 2007; Lowe et al., 2018). Addition of viable
neutrophils 96 hours post-infection to whole blood challenged
with Mtb ex vivo significantly reduced mycobacterial growth
compared to addition of necrotic neutrophils (Lowe et al., 2018).
In addition, in one study, depletion of neutrophils immediately
following intravenous Mtb infection in mice promoted Mtb
replication in multiple organs (Pedrosa et al., 2000). These data
suggest that there could be a protective role for neutrophils during
Mtb infection, particularly in the context of blood infection, and
may highlight differences in the roles for neutrophils during Mtb
infection in the blood versus the lung. In general, the mechanisms
underlying how neutrophils impact Mtb replication and disease
progression remain open questions in the field.
DISCOVERY OF LOW-DENSITY
NEUTROPHILS AND THEIR ASSOCIATION
WITH HUMAN DISEASE

Historically, mature human neutrophils have been considered a
homogenous cell population that are defined by multilobed-
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nuclei, intracellular granules, and cell surface expression of
CD15, CD16, CD45, CD11b, CD66b, and CD10 (Fortunati
et al., 2009; Marini et al., 2017; Negorev et al., 2018). Studies in
recent years, however, have revealed that there are several subsets
of mature neutrophils that exist in humans, and this neutrophil
heterogeneity is associated with inflammation and the outcomes
of pulmonary and extrapulmonary diseases. Early human
neutrophil studies relied on Ficoll-Hypaque density
centrifugation as a method of separating red blood cells from
immune cells in the blood (Böyum, 1968; Ferrante and Thong,
1980). Peripheral blood mononuclear cells (PBMCs) and
polymorphonuclear cells (PMNs), including neutrophils and
other granulocytes, sediment in distinct layers based on the
respective cell type’s density, where PMNs have greater density
than PBMCs (Ferrante and Thong, 1980) (Figure 1). In 1986,
Hacbarth and Kajdacsy-Balla were the first to describe
neutrophils with “lower buoyant density” contaminating the
PBMC cell density layer in Ficoll-Hypaque preparations of
blood from patients with systemic lupus erythematosus (SLE),
rheumatoid arthritis (RA), and acute rheumatic fever (ARF)
(Hacbarth and Kajdacsy-Balla, 1986). This subset of neutrophils
became known as low-density neutrophils (LDNs), often used
interchangeably with low-density granulocytes (LDGs), to
distinguish them from the classical normal-density neutrophils
(NDNs) (Hacbarth and Kajdacsy-Balla, 1986; Sun, 2022).

Similar to NDNs, mature LDNs have multilobed-nuclei,
intracellular granules, and surface expression of CD45, CD11b,
CD15, CD16, CD66b and CD10 (Kishimoto et al., 1989;
Nakayama et al., 2001; van Lochem et al., 2004; Schmidt et al.,
2012). Mature LDNs express higher levels of CD15 and CD16b
on their surface compared to NDNs, as well as CD66b, which is
also a marker for activated NDNs (Deng et al., 2016; La Manna
et al., 2019; Blanco-Camarillo et al., 2021; Hardisty et al., 2021;
Reyes et al., 2021). When healthy individuals were administered
granulocyte colony-stimulating factor-treated (G-CSF) for five
days before isolating LDNs from the peripheral blood, both
mature (CD10+) and immature (CD10-) populations of LDNs
were identified (Marini et al., 2017). In addition, recent studies
identified immature LDNs in the blood of patients with acute
respiratory distress syndrome (ARDS) with and without
comorbid COVID-19 (Reyes et al., 2021). Other surface
markers used to distinguish LDNs from NDNs vary based on
the study and disease state (Hardisty et al., 2021); however, there
are currently no distinct surface markers that unequivocally
distinguish LDNs from NDNs.

LDNs account for approximately 5% of cells isolated from the
PBMC cell density layer in healthy individuals (Hacbarth and
Kajdacsy-Balla, 1986; Blanco-Camarillo et al., 2021; Hardisty
et al., 2021). The number of LDNs in the blood increases when
homeostasis is disrupted, such as during lung infection with Mtb
or SARS-CoV-2, lung cancer, diabetes, and in patients with
autoimmune diseases (Hacbarth and Kajdacsy-Balla, 1986;
Cohen et al., 2019; Reyes et al., 2021; Valadez-Cosmes et al.,
2021). Determining the exact source of LDNs has been difficult
due to their lack of distinct surface markers and fluctuating levels
in circulation between healthy individuals and patients.
June 2022 | Volume 12 | Article 901590
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Incubating NDNs with serum from patients with SLE or severe
fever with thrombocytopenia syndrome (SFTS), a disease caused
as a result of infection with the SFTS bunyavirus, decreases the
buoyant density of NDNs, indicating that NDNs could be a
source of LDNs and an extracellular factor is sufficient to induce
a physiological change in neutrophils that results in a lower
density (Hacbarth and Kajdacsy-Balla, 1986; Li et al., 2019).
However, whether the transition from NDN to LDN occurs in
vivo, if LDNs can be converted to NDNs, or if LDNs and NDNs
can originate from the same neutrophil progenitors has yet to be
determined. It is still unclear how inflammatory responses result
in increased accumulation of LDNs in the blood and whether
changes occur in the bone marrow microenvironment to
produce LDNs. Compounding the complexity of determining
the source of LDNs, NDNs in human blood samples have been
shown to spontaneously shift densities in response to delayed
sample processing, which must be taken into consideration when
conducting studies on LDNs (McKenna et al., 2009).
LDN CHARACTERISTICS
AND RESPONSES

Since their discovery, many groups have worked to determine the
function of LDNs in the body. In a recent study, Blanco-
Camarillo et al. compared LDNs and NDNs from the blood of
healthy individuals and found that LDNs exhibited higher levels
of phagocytosis and reactive oxygen species (ROS) production,
but similar production of neutrophil extracellular traps (NETs)
compared to NDNs. The findings of this study, however,
conflicted with a study published by Hassani et al., in which
they compared the 20% highest and lowest density neutrophils
from healthy individuals and found that there was no difference
in phagocytosis (Hassani et al., 2020). Mature LDNs from
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
healthy individuals have also been shown to suppress
lymphocyte proliferation (Marini et al., 2017; Hassani et al.,
2020; Seman et al., 2021), indicating that in some contexts LDNs
may act in an anti-inflammatory fashion. PMN myeloid-derived
suppressor cells (PMN-MDSCs) that inhibit T cell proliferation
have also been isolated from the low-density Ficoll-Hypaque
layer and express CD11b, CD15, and CD66b on the surface
(Schmielau and Finn, 2001; Bronte et al., 2016; Seman and
Robinson, 2021). Whether LDNs and PMN-MDSCs are
distinct cell populations that migrate with PBMCs in the
Ficoll-Hypaque gradient is still unknown, but if this is the case,
different studies may isolate different proportions of these cell
types, which would affect functional analyses.

LDN responses have also been studied in the context of
autoimmune diseases and infection. LDNs isolated from
patients with SLE, RA, or SFTS exhibited increased production
of proinflammatory cytokines, type 1 interferons, phagocytic
activity, and release of NETs compared to NDNs (Denny et al.,
2010; Lood et al., 2016; Midgley and Beresford, 2016; Li et al.,
2019). The NETs released from LDNs during Escherichia coli
infection were found to suppress the antibacterial activity of
monocytes in a co-culture system; however, it is not known
whether this differs from NETs released by NDNs (Seman et al.,
2021). LDNs isolated from patients with solid tumor cancers,
HIV, or graft-versus-host disease (GvHD) suppressed T cell
proliferation and function (Schmielau and Finn, 2001; Cloke
et al., 2012; Brandau et al., 2013; Cloke et al., 2013; Rieber et al.,
2014; Farzeen, 2016; Scapini et al., 2016; Silvestre-Roig et al.,
2019). Mature LDNs from the blood of patients with ARDS with
and without comorbid COVID-19 expressed higher levels of the
platelet activation marker CD41 than immature LDNs, formed
aggregates with platelets, and activated prothrombotic pathways
in COVID-19 patients (Reyes et al., 2021). Together these data
demonstrate that LDNs can impact multiple arms of the immune
system, possibly in a context-dependent manner.
FIGURE 1 | Location of LDNs and NDNs following density centrifugation. Visual representation of the fractions in which LDNs and NDNs are found on a Ficoll-
Hypaque gradient. LDNs are found in the lower density PBMC layer of a Ficoll-Hypaque gradient and express increased CD10, CD15, CD16, and CD66b on their
surface.
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LDNs IN TB

LDN numbers are significantly elevated in the peripheral blood
of active TB patients who have not received anti-tuberculous
therapy compared to healthy controls (Deng et al., 2016; La
Manna et al., 2019). In addition, the number of LDNs per one
thousand neutrophils is significantly elevated in active TB
patients compared to healthy controls, demonstrating that even
in the context of increased total neutrophils in the blood of active
TB patients, the proportion of LDNs was also elevated (Deng
et al., 2016). Comparison of moderate and advanced cases of
active TB revealed that patients with advanced disease had
significantly more LDNs than those with moderate disease
(Deng et al., 2016). Furthermore, comparing LDNs in patients
at different stages of anti-TB treatment revealed that the levels of
LDNs decreased over the course of treatment, supporting the
notion that increased levels of LDNs are associated with
worsening TB disease severity (Deng et al., 2016). Based on
flow cytometric analyses of markers associated with activation
(CD66b and CD62L shedding), immaturity (CD33), and
maturity (CD15 and CD16), LDNs from active TB patients
expressed higher levels of CD15, CD33, CD66b, CD16, and
lower levels of CD62L compared to autologous NDNs (Deng
et al., 2016; La Manna et al., 2019). These results suggest that
LDNs from active TB patients are more activated than NDNs
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
and likely contain a mixed population of both mature and
immature cells, consistent with what has been reported for
LDNs in other diseases (Hassani et al., 2020; Blanco-Camarillo
et al., 2021; Cabrera et al., 2021).
INDUCTION OF LDNs DURING MTB
INFECTION IN VITRO

In vitroMtb infection of healthy donor peripheral blood samples
resulted in a significant increase in the LDN population in both a
time- and dose-dependent manner (Deng et al., 2016),
suggesting that Mtb infection induces the formation of LDNs
(Figure 2). Treatment with the ROS scavenger N-acetyl-L-
cysteine or inhibition of NADPH oxidase inhibits LDN
formation in Mtb-infected peripheral blood samples (Su et al.,
2019). ROS activates NETosis and inhibition of NETosis,
without affecting ROS levels, via the protein arginine
deiminase (PAD) inhibitor Cl-amidine prevented LDN
formation in Mtb infected peripheral blood in vitro (Su et al.,
2019). This work suggests a possible mechanism for LDN
induction whereby Mtb infection of blood cells induces ROS
production, leading to NETosis and subsequent induction of
LDN development. The role of NETs in the formation of LDNs is
FIGURE 2 | Summary of characteristics of LDNs described in active TB. LDNs may be derived from NDNs or an unknown neutrophil progenitor. In active TB, LDNs
express increased CD10, CD11b, CD15, CD16, CD33, and CD66b. When exposed to Mtb in vitro, LDNs exhibit inhibition of T cell responses. LDNs have also been
shown to exhibit higher levels of NETosis and ROS production in response to Mtb infection when compared to NDNs, but the data for these responses is
inconsistent between studies and requires further investigation. LDNs also have increased expression of CCL5, STAT4, CD4, LYZ, IL-10, IFNAR1, STAT1, CCL5
(RANTES), STAT4, TNF, and CXCL8. Conflicting data is designated by *.
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particularly intriguing given the recent association of NETs with
lesions in active TB patients not responding to antibiotic therapy
(Moreira-Teixeira et al., 2020).
ACTIVITY OF LDNs ISOLATED FROM
TB PATIENTS

To determine if LDNs could have functional consequences on
TB disease outcomes, their responses during Mtb infection have
been monitored in multiple studies, but with contradicting
results (Figure 2). In the first in vitro studies assessing Mtb
uptake, LDNs from TB patients were associated with more
bacteria than autologous NDNs, as measured by flow
cytometry, although this did not affect bacterial clearance
(Deng et al., 2016). In contrast, a different study found there
was reduced phagocytosis of Mtb by LDNs compared to NDNs
using confocal microscopy (La Manna et al., 2019). Intracellular
ROS, as measured by flow cytometry, was significantly increased
in LDNs isolated from the peripheral blood of active TB patients
compared to autologous NDNs and NDNs from healthy donors
(Deng et al., 2016). However, another group reported no
intracellular ROS production in LDNs from TB patients, with
and without phorbol-myristate acetate (PMA) stimulation, using
a redox-sensitive dye and flow cytometry (La Manna et al., 2019).
Spontaneous NETosis, assessed by quantifying myeloperoxidase
(MPO) and DAPI double positive structures, was significantly
increased in LDNs isolated from active TB patients compared to
NDNs, whereas upon stimulation with PMA, NETosis by LDNs
was significantly decreased compared to NDNs (Su et al., 2019).
However, using flow cytometry another group found that
spontaneous and stimulated NETosis of LDNs from TB
patients was reduced compared to autologous NDNs (La
Manna et al., 2019). All of the published studies on LDNs
from active TB patients identified LDNs based on CD15
positivity and lower density buoyancy, but used varying
multiplicities of infection, lengths of infection time, methods to
stimulate the neutrophils before measuring NETosis, and ROS-
sensitive fluorescent dyes (Deng et al., 2016; La Manna et al.,
2019; Su et al., 2019), which may contribute to the differences
in results.

Of 84 total cytokine and chemokine transcripts analyzed by
qRT-PCR in active TB patients, there were twelve differentially
expressed genes between LDNs and NDNs (La Manna et al.,
2019). CCL5 (RANTES), CCR5, CD4, STAT4, IL10, and LYZ were
significantly upregulated in LDNs, whereas CXCL8 (IL8), STAT1,
IFNAR1, NFKB1, TICAM1, and TNF were significantly
downregulated (Figure 2) (La Manna et al., 2019). CCL5,
STAT4, CD4, LYZ upregulation in neutrophils have been
associated with inflammation and neutrophil antimicrobial
activity (Flanagan and Lionetti, 1955; Pan et al., 2000; Hartl
et al., 2008; Keeter et al., 2020; Mehrpouya-Bahrami et al., 2021).
IL-10 and IFNAR1 signaling have been associated with
susceptibility to TB and poor outcomes of disease (Verbon
et al., 1999; Bonecini-Almeida et al., 2004; Jamil et al., 2007;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Dorhoi et al., 2014; Huynh et al., 2018; Zhang et al., 2018;
Moreira-Teixeira et al., 2020). STAT1 signaling is necessary for
the control of Mtb in mice (Sugawara et al., 2004) and
polymorphisms in STAT1 have been associated with poor
control of mycobacterial diseases (Dupuis et al., 2001;
Chapgier et al., 2006). CCL5 (RANTES), STAT4, and TNF are
generally associated with better control of TB (Flynn et al., 1995;
Gómez-Reino et al., 2003; Sugawara et al., 2004; Askling et al.,
2005; Stegelmann et al., 2005; Lee et al., 2008; Vesosky et al.,
2010). In some reports, CXCL8 (IL8) has been shown to be
important for TB control (O’Kane et al., 2007; Krupa et al., 2015;
Larsen et al., 1995), but is also found to be upregulated in
granulomas containing excessive neutrophils (Bergeron et al.,
1997; Hashemian et al., 2014). It is unknown whether the
differential expression of CCL5 (RANTES), CCR5, CD4,
STAT4, IL10, LYZ, CXCL8 (IL8), STAT1, IFNAR1, NFKB1,
TICAM1, and TNF between LDNs and NDNs is functionally
relevant during Mtb infection, but these data open potential
areas of inquiry into how LDNs could be impacting immune
responses to Mtb.

When PBMCs isolated from patients with active TB were
infected with Mycobacterium bovis Bacillus Calmette–Guérin
(BCG) in the presence of LDNs or NDNs in vitro, T cell
proliferation was lower in the presence of LDNs compared to
NDNs (Figure 2) (La Manna et al., 2019). Although in vitro work
showed that LDNs upregulated IL-10 expression, addition of an
anti-IL-10 antibody did not change the differences in the T cell
proliferation observed in the presence of LDNs versus NDNs (La
Manna et al., 2019), indicating that the effect of LDNs on T cell
proliferation in this assay is IL-10-independent. The association
between LDNs and T cell responses during Mtb infection has
also been analyzed in active TB patients using the T-SPOT.TB
test to assess IFN-g secretion by T cells in response to the Mtb
antigens ESAT-6 and CFP-10 (Rao et al., 2021). Active TB
patients with high LDN frequencies had lower numbers of
IFN-ү-secreting cells than patients with low LDN frequencies
(Figure 2) (Rao et al., 2021). Removal of LDNs from the
peripheral blood samples increased the number of IFN-ү
secreting cells in the samples (Rao et al., 2021), indicating that
LDNs were negatively correlated with T cell responses required
to control Mtb infection. The LDNs from active TB patients
expressed higher levels of PD-L1, which inhibits T cell
proliferation, on their surface compared to NDNs from healthy
controls, suggesting a model in which LDNs could prevent IFN-g
secretion by inhibiting T cell expansion via PD-L1 (Rao et al.,
2021). Antibody-mediated inhibition of PD-L1 signaling
recapitulated the removal of LDNs from the PBMC samples
from active TB patients with high LDN frequencies (Rao et al.,
2021). Similarly, addition of LDNs to PBMC samples from TB
patients with low LDN frequencies decreased IFN-ү secreting
cell numbers in response to Mtb antigen and addition of anti-
PD-L1 antibody rescued IFN-ү secreting cell numbers to that of
the control (Rao et al., 2021). If LDNs contribute to T cell
suppression in vivo, this could explain one reason the percentage
of LDNs in the blood correlates with the increased severity of TB
disease. Notably, PMN-MDSCs also express PD-L1 on their
June 2022 | Volume 12 | Article 901590
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surface and have been identified in active TB patients (McNab
et al., 2011; du Plessis et al., 2013; El Daker et al., 2015). Further
studies would be required to determine whether PMN-MDSCs
co-isolated with LDNs contribute to the observed effects on
T cells.
DISCUSSION

LDNs have been identified and characterized in several diseases;
however, there are still many remaining questions regarding
their development, maintenance, and roles in immunity. Thus
far, LDNs have only been analyzed in the blood due to
limitations inherent to the way LDNs are distinguished from
NDNs, based on lower density and migration in the PBMC layer
on a Ficoll-Hypaque gradient. Therefore, it is still unknown
whether LDNs are present in tissues. During active TB,
granulocytes in the blood are recruited to the lungs, but
whether this occurs for LDNs and how their properties would
change once in the tissue remains an open question. Further
work is needed to determine ways to identify and isolate LDNs
from tissue, possibly by positively selecting for granulocytes
followed by performing density centrifugation.

In general, very little is known about LDNs in TB, and the
data that has been published varies between groups. One
limitation to mechanistic studies is the absence of
identification of an analogous population in small animal
models of TB. LDNs have been described in mouse models of
S. aureus-induced sepsis, which may serve as a foundation for
studying LDNs in mouse models of TB (Cohen et al., 2019;
Takizawa et al., 2021). Although LDNs have not specifically been
identified in mouse models of Mtb infection, neutrophil diversity
has been observed in mice during infection. Multiple studies
have described the accumulation of a Ly6GMid population of
neutrophils in susceptible mouse models of TB, where increased
abundance of Ly6GMid neutrophils was positively correlated with
higher Mtb burden in the lungs (Obregón-Henao et al., 2013;
Tsiganov et al., 2014; Lovewell et al., 2021). Tsiganov et al. found
that these Ly6GMid cells were heterogenous in nuclear structure,
had significantly lower side scatter than Ly6Ghigh neutrophils,
indicating lower cell granularity, and expressed both neutrophil
and monocyte markers (Tsiganov et al., 2014). Further work will
be needed to determine whether Ly6GMid neutrophils in mice are
analogous to LDNs in humans or whether they represent yet
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
another example of neutrophil diversity. In addition to LDNs
and PMN-MDSCs, other subsets of neutrophils have been
identified in humans during cancer, anti-neutrophil
cytoplasmic antibody-associated systemic vasculitis, and
bacterial infections with Staphylococcus aureus and E. coli,
including N1/N2 neutrophils, C177 expressing neutrophils,
and Olfactomedin-4 expressing neutrophils (Rarok et al., 2002;
Fridlender et al., 2009; Hu et al., 2009; Liu et al., 2012; Liu et al.,
2013; Grieshaber-Bouyer and Nigrovic, 2019; Filep and Ariel,
2020). However, whether these neutrophil subpopulations are
present during Mtb infection has yet to be determined. Given
that neutrophils are the predominant immune cell type present
and infected in the lungs of active TB patients, understanding
neutrophil diversity and the roles for various neutrophil
subpopulations during Mtb infection will be important to
dissect the immune responses that either control or promote
Mtb pathogenesis.
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