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Aims Cardiovascular diseases (CVDs) are among the leading causes of death worldwide. Predictive scores providing per-
sonalized risk of developing CVD are increasingly used in clinical practice. Most scores, however, utilize a homo-
genous set of features and require the presence of a physician. The aim was to develop a new risk model
(DiCAVA) using statistical and machine learning techniques that could be applied in a remote setting. A secondary
goal was to identify new patient-centric variables that could be incorporated into CVD risk assessments.

...................................................................................................................................................................................................
Methods
and results

Across 466 052 participants, Cox proportional hazards (CPH) and DeepSurv models were trained using 608 varia-
bles derived from the UK Biobank to investigate the 10-year risk of developing a CVD. Data-driven feature selec-
tion reduced the number of features to 47, after which reduced models were trained. Both models were compared
to the Framingham score. The reduced CPH model achieved a c-index of 0.7443, whereas DeepSurv achieved a c-
index of 0.7446. Both CPH and DeepSurv were superior in determining the CVD risk compared to Framingham
score. Minimal difference was observed when cholesterol and blood pressure were excluded from the models
(CPH: 0.741, DeepSurv: 0.739). The models show very good calibration and discrimination on the test data.

...................................................................................................................................................................................................
Conclusion We developed a cardiovascular risk model that has very good predictive capacity and encompasses new variables.

The score could be incorporated into clinical practice and utilized in a remote setting, without the need of includ-
ing cholesterol. Future studies will focus on external validation across heterogeneous samples.
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Introduction

Cardiovascular diseases (CVDs) are the most common cause of mor-
tality globally, with 18.6 million attributed deaths in 2017.1 The in-
crease of CVD-related mortality in low- and middle-income
countries,2 together with increased life expectancy and a growing
CVD morbidity worldwide,3 poses a significant challenge in managing
this group of diseases. Many risk factors for acquiring CVDs are well-
established: hypertension, obesity, diabetes, poor physical activity,
hypercholesterolaemia, smoking, alcohol intake, among others.4

Given that up to 70% of cases and deaths from CVDs are attributed
to modifiable factors,4 primary prevention of CVD, rather than treat-
ment, has become a mainstay of public health strategies and is exten-
sively described in leading guidelines.5 These strategies can be highly
effective in reducing the number of occurrences and, thereby, the
corresponding mortality.

The use of risk scores for CVDs in clinical practice is common-
place.6–10 Their primary use is to identify individuals who are at high
risk of development of either a fatal and/or non-fatal CVD event in
the next 10 years. Their goal is to highlight that risk, so it can be miti-
gated through either lifestyle adjustment or pharmacological treat-
ment of associated conditions, such as hypertension and
hypercholesterolaemia. These interventions have indeed been shown

to be cost-effective,11 but the pursuit of better screening pro-
grammes and economic assessments is necessary.12

There are several limitations of the cardiovascular risk scores used
in practice. In addition to overestimating the proportion of people in
the high-risk category,13 recent systematic reviews show low-quality
evidence that use of existing CVD risk scores may have minimal effect
on incidence of CVD events.14 Moreover, the majority of existing
risk scores utilize a small and homogenous set of non-malleable fac-
tors in their calculation (Supplementary material online, Table S1).

Risk factors for CVDs can be easily captured through web-based
platforms, with standard practice often integrating a risk model as a
function within electronic healthcare records (EHRs).15 However,
more granular insight into cardiovascular health can be achieved
through smartphone-based apps and integrated questionnaires, or
wearable devices that allow passive and continuous assessments.16

Furthermore, the analysis of such data using modern methods, such
as machine learning (ML), allows for deeper insight into the risk fac-
tors that contribute to CVDs, capturing non-linear variable interac-
tions uncapturable by classical statistical methods.17

The primary aim of our study, therefore, is to develop a CVD risk
model using both traditional statistical and ML approaches, guided by
clinical intuition, which is viable in a remote setting. The secondary
goal is the identification of new variables which should be considered

Graphical Abstract

Development of DiCAVA: a UK Biobank study 529

https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab057#supplementary-data


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

by the wider community for incorporation into future CVD risk
models to improve their utility. To evidence the value of non-
traditional variables, we compare our model to the Framingham risk
score that is currently used in clinical practice.

Methods

Study design and exclusion criteria
The UK Biobank (UKB) dataset is a prospective cohort study of 502 488
UK participants18 recruited between 2006 and 2010. It comprises base-
line information from an initial assessment on participants who were sub-
sequently followed up via additional assessment sessions, medical
records, and other health-related records. Use of data for this study was
approved by UKB (application number 55668).

The sole exclusion criterion was a pre-existing diagnosis of a CVD
(defined identically to the outcome definition below, with non-limited
look-back). Censoring was done at the date of first CVD diagnosis, when
lost to follow-up due to death or other reasons, or at the date of last
available update on the data (30 September 2020), whichever came first.

Outcome definition
Definition of CVD in this study includes myocardial infarction, heart fail-
ure, angina pectoris, stroke, and transient ischaemic attack. A diagnosis of
CVD was confirmed using several fields of UKB-defined First
Occurrences (includes primary care, hospital admissions, death register
data, and self-report), Algorithmically defined outcomes (hospital admis-
sions, death register data, and self-report), and remaining ICD-10 codes
from inpatient records. The full list of UKB fields used for outcome defin-
ition can be found in Supplementary material online, Table S2. While
there was >75% overlap between the Algorithmically defined outcomes
and the corresponding fields for first occurrences, taking into account
both fields ensured a more comprehensive selection of CVD cases.
Earliest date for any cardiovascular disease on record was used for each
participant.

Variable selection
For the baseline set of variables, we used UKB variables available for the
majority of participants. This dataset was further enriched by including
first occurrences fields for all available ICD-10 (10th revision of the
International Statistical Classification of Diseases and Related Health
Problems) codes and hospital inpatient records for remaining ICD-10
codes (Supplementary material online, Table S3). Diagnoses with <0.2%
occurrence in the dataset were excluded from the feature list.
Considering our use-case, a key determinant was the possibility of its in-
put or assessment using only a smartphone and the possibility to apply
these findings to other countries. This led to exclusion of blood tests and
other biological measurements which cannot be acquired via smart-
phone, as well as UK-specific variables, such as Townsend index, income,
and certain qualification levels. The exceptions were total cholesterol,
HDL cholesterol, and blood pressure measurements owing to their sig-
nificant predictive value in CVD risk. Analysis of data completeness is pro-
vided in Supplementary material online, Table S3.

The majority of predictor variables were used as provided by the UKB,
with the addition of several variables which were derived from the data
(waist-to-hip circumference ratio, total cholesterol/HDL cholesterol
ratio, and total alcohol intake). Imputation of missing values was per-
formed by substitution with the mean. Binary variables for pre-existing
diseases were derived from a combination of corresponding fields in first
occurrences, self-reported medical conditions, medications, and in-

patient hospital diagnosis, with the exclusion of cases where diagnosis
occurred after the assessment date. Categorical and ordinal variables
were one-hot encoded and continuous variables were scaled.

Feature selection and prediction models
Prior to training the model, the dataset was split into two parts: train
dataset (75%) and test dataset (25%), stratified on the outcome. The train
dataset was further split into train (75%) and validation (25%) for the pur-
poses of DeepSurv hyperparameter search. There were no statistical dif-
ferences between the different datasets (data not shown).

Our modelling approach involved the use of Cox Proportional Hazard
(CPH) models, implemented in the Python ‘lifelines’ library, and Cox pro-
portional hazards deep neural network (DeepSurv), implemented in the
‘pycox’ package using PyTorch (Supplementary material online, Table S4).
DeepSurv models,22 as opposed to CPH model, are able to capture non-
linear interaction between variables but require large-scale hyperpara-
meter optimization to achieve a good performance. Using the full set, and
later the reduced set of features, optimal hyperparameters were
searched among those described in Table 1 via Tree-Structured Parzen
Estimator (TPE) algorithm20 from the Optuna Library (Supplementary
material online, Table S4). TPE is a Bayesian hyperparameter optimization
method which uses the results from past evaluations to build a probabilis-
tic model used to identify the best candidate hyperparameter values for
future searches.

Feature selection was performed using the CPH model to decrease
the risk of overfitting and ensure suitability for use in a digital solution. In
the first step, univariate CPH models were trained for each of the fea-
tures in the baseline model and those with P-value >0.01 were excluded.
The remaining features were processed through stepwise backward elim-
ination. In brief, in each elimination round, a batch of features was
removed and performance evaluated. If the concordance index (c-index)
decreased by <0.001, features were eliminated, otherwise a smaller sub-
set was removed until the final set of features whose removal would
cause performance degradation was found. These highly contributing fea-
tures were then used in the reduced models.

.................................................................................................

Table 1 DeepSurv hyper-parameter search space

Hyper-parameter Search space

Activation LeakyReLU21, ReLU22, and SELU23

Hidden layers topology 8, 32, 256, 32 � 32, 64 � 64, 128 � 128, 64

� 16, 256 � 32, 32 � 32 � 32, 64 � 64

� 64

Drop-outa24 [0, 0.9]

Weight-decaya25 [0, 20]

Batch normalization26 Yes/No

Optimizer Stochastic Gradient Descent, Adam27

Momentuma28 [0, 1]

Learning rate Log distribution on [1e-5, 1]

The search space consisted of 10 different neural network topologies, up to
three layers deep, and a choice of three activation functions for these layers.
Regularization techniques included drop-out (ignores randomly selected neurons
in the network) and weight decay (L2 regularization, shrinks weights). The option
to utilize batch normalization was offered to accelerate training via standardizing
the inputs’ changing distribution. The choice of an optimizer for gradient descent
included standard stochastic gradient descent (SGD) with or without
Momentum, or Adam (adaptive moment optimization).
aUniform distributions.
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.
Both CPH and DeepSurv models were then trained using the final set

of features, along with a model variant excluding all cholesterol variables
and systolic blood pressure (substituted by heart rate for its digital feasi-
bility), to enable calculation of risk for individuals who are not able to ob-
tain these measurements.

Feature selection using DeepSurv was not performed as a conse-
quence of its high computational requirements and because performance
of the baseline DeepSurv model was not notably superior to the CPH
model.

Comparison to other models
Details of variable derivation for replication of Framingham risk score on
the UKB dataset is summarized in Supplementary material online, Table
S5. Framingham score for each participant was calculated using the for-
mulas for males and females published in the original article,8 and c-index
was calculated using the predicted and actual time-to-CVD-event.
Additionally, a CPH model was re-trained using the seven Framingham
variables on the UKB dataset and compared to our findings. Sex-specific
variants of our final models were trained to allow for closer comparison
to these two scores.

Statistical analysis
In the summaries of cohort characteristics, participant numbers and per-
centages of total are shown for categorical and ordinal variables, whereas
median and first and third quartiles are shown for continuous variables.
Statistical comparisons were performed using the v2 test for categorical
and ordinal variables and Kruskal–Wallis test for continuous variables.

Where detailed analysis of the results of CPH models is provided, haz-
ard ratios (HR) with 95% confidence intervals (CIs), as well as the coeffi-
cients, are provided. P-values test the null hypothesis that the coefficient
of each variable is equal to zero. Significance level was set to 0.05.

C-index was used as the metric for both models, with 95% CIs calcu-
lated using the percentile bootstrap resampling method (50 resampling
rounds). Where detailed analysis of the results of CPH models is pro-
vided, log(HR) with 95% CIs are shown. P-values test the null hypothesis
that the coefficient of each variable is equal to zero and significance level
was set to 0.05. Calibration was evaluated at the 10-year time point using
calibration plots and the integrated calibration index (ICI), which is a
mean weighted difference between observed and predicted probabilities,
implemented in the Python lifelines library. Time-specific evaluation of
model discrimination was done using the cumulative/dynamic area under
the ROC curve (AUCC/D), implemented in the scikit-survival package.
This article was written following the TRIPOD (Transparent Reporting of
a Multivariable Prediction Model for Individual Prognosis or Diagnosis)
guidelines, which are further elaborated in Supplementary material online,
Table S6.

Results

Population characteristics
After exclusion of participants with pre-existing CVD, the study was
conducted with 466 052 UKB participants. There were 42 377 partic-
ipants (9.09%) who developed CVD during the observation period.
The most common CVDs were chronic ischaemic heart disease
(42.1%), myocardial infarction (20.3%), and stroke (15.4%). The re-
cruitment and data funnel is illustrated in Figure 1. The full breakdown
can be found in Supplementary material online, Table S2. Median
follow-up time was 11.5 years (IQR 10.7–12.3 years) and maximum
follow-up time was 14.6 years.

The studied dataset includes 44.1% men and 55.9% women (sex-
specific demographic data shown in Supplementary material online,
Table S7), aged 37–73 at the time of recruitment (mean 56.2 ± 8.09).
The participants were predominantly white, with a small proportion
of other ethnic groups (2.2% Asian, 1.6% Black, and 1.5% Others).
Detailed demographic analysis for the variables selected in the final
model can be found in Table 2.

Baseline model performance and feature
selection
CPH and DeepSurv models were trained using the pre-processed
dataset, containing 608 features. This baseline CPH model achieved a
c-index of 0.7431 (95% CI 0.7422–0.7441) on the test dataset.
DeepSurv, with optimized hyperparameters (Supplementary material
online, Table S8), achieved a c-index of 0.7461 (95% CI 0.7452–
0.7469) on the test dataset. The CPH model was used for the subse-
quent feature selection from this baseline dataset.

Initially, 93 features were eliminated based on a P-value >0.01 in a
univariate CPH model. The subsequent stepwise backward elimin-
ation excluded a further 465 features. The remaining 50 features
were subjected to review by a clinician, further excluding three fea-
tures (First Occurrence of ICD-10 codes F17 and H25, lamb/mutton
intake 2–4 times a week).

Performance of the reduced prediction
models
The remaining 47 features in the final reduced models include demo-
graphic measures (age, sex, holding a university degree), anthropo-
metrics (waist-to-hip ratio), systolic blood pressure, total
cholesterol, cholesterol ratio, range of pre-existing conditions, medi-
cations, symptoms, family history of heart disease, lifestyle measures
(e.g. smoking, alcohol consumption), and self-rated health. A CPH
model trained using these features achieved a c-index 0.7443 (95%
CI 0.7441–0.7445) on the test dataset. A DeepSurv model showed
concordance of 0.7446 (95% CI 0.7441–0.7452) on the test dataset.
The AUCCD calculated at years 1 through 10 showed above-average
discrimination at years 1–5 and stable AUC of�0.76 from year 6 on-
wards (Figure 3A and B). Sensitivity analysis (Supplementary material
online, Figure S1) revealed that features representing symptoms (e.g.
abdominal pain, wheeze in chest) contribute more to shorter term
predictions (1–3 years).

The details of CPH feature coefficients and statistical analysis can
be found in Figure 2 and Supplementary material online, Table S9.
Based on the P-value calculated in the CPH model, the top five risk
factors include age, systolic blood pressure, diagnosis of atrial fibrilla-
tion and flutter (ICD-10 code I48), cholesterol ratio, and father with
heart disease. The top five protective features include being a female,
non-smoker, not experiencing any chest pain, brisk usual walking
pace, and excellent self-rated health.

The CPH model showed good calibration, with slight overesti-
mation of the higher probabilities which were more sparsely repre-
sented in the dataset at 10 years (Figure 3C). The DeepSurv model
slightly overestimated lower probabilities at 10 years and underesti-
mated higher probabilities at 5 years (Figure 3D). The integrated cali-
bration index (ICI) was 0.00295 for the CPH model and 0.00567 for

Development of DiCAVA: a UK Biobank study 531

https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab057#supplementary-data
https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab057#supplementary-data
https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab057#supplementary-data
https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab057#supplementary-data
https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab057#supplementary-data
https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab057#supplementary-data
https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab057#supplementary-data
https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab057#supplementary-data
https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab057#supplementary-data
https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab057#supplementary-data
https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab057#supplementary-data
https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab057#supplementary-data


......................................................................................................

....................................................................................................................................................................................................................

Table 2 Summary of demographic characteristics of the studied cohort grouped by the outcomes

n (%)

All participants No incident CVD Incident CVD P-value

(adjusted)

Total 466 052 423 675 42 377

Sex: female 260 673 (55.93) 243 390 (57.45) 17 283 (40.78) <0.001

Age, median [Q1–Q3] 57 [50–63] 57 [49–62] 62 [56–66] <0.001

Has college or university degree, n (%) 153 353 (32.90) 142 831 (33.71) 10 522 (24.83) <0.001

Waist-to-hip ratio, median [Q1–Q3] 0.87 [0.80–0.93] 0.86 [0.80–0.93] 0.91 [0.85–0.97] <0.001

Lost weight compared with 1 year ago, n (%) 69 005 (14.81) 62 106 (14.66) 6899 (16.28) <0.001

Systolic blood pressure, median [Q1–Q3] 137.50 [125.00–148.50] 137.00 [124.50–147.50] 142.00 [132.00–155.50] <0.001

Heart ratea, median [Q1–Q3] 69.50 [62.50–75.50] 69.50 [62.50–75.50] 69.54 [62.50–77.00] <0.001

Total cholesterol, median [Q1–Q3] 5.77 [5.06–6.41] 5.77 [5.07–6.40] 5.77 [4.97–6.45] <0.001

Cholesterol ratio, median [Q1–Q3] 4.14 [3.43–4.66] 4.14 [3.41–4.62] 4.14 [3.66–4.98] <0.001

Currently does not smoke, n (%) 416 519 (89.37) 380 368 (89.78) 36 151 (85.31) <0.001

Smoked occasionally in the past, n (%) 61 282 (13.15) 56 096 (13.24) 5186 (12.24) <0.001

Pack years of smoking, median [Q1–Q3] 11.88 [0.00–22.29] 11.00 [0.00–22.29] 20.00 [0.00–22.29] <0.001

Never drinks alcohol, n (%) 35 946 (7.71) 31 707 (7.48) 4239 (10.00) <0.001

Always adds salt to served food, n (%) 22 252 (4.77) 19 582 (4.62) 2670 (6.30) <0.001

Hours spent outdoors in winter, median [Q1–Q3] 1.93 [1.00–2.00] 1.00 [1.00–2.00] 1.93 [1.00–3.00] <0.001

Steady average usual walking pace, n (%) 243 706 (52.29) 219 976 (51.92) 23 730 (56.00) <0.001

Brisk usual walking pace, n (%) 186 297 (39.97) 174 169 (41.11) 12 128 (28.62) <0.001

Excellent self-rated health, n (%) 80 390 (17.25) 75 946 (17.93) 4444 (10.49) <0.001

Good self-rated health, n (%) 274 677 (58.94) 252 295 (59.55) 22 382 (52.82) <0.001

Poor self-rated health, n (%) 16 742 (3.59) 13 477 (3.18) 3265 (7.70) <0.001

Father diagnosed with heart disease, n (%) 128 063 (27.48) 114 859 (27.11) 13 204 (31.16) <0.001

Mother diagnosed with heart disease, n (%) 81 038 (17.39) 71 723 (16.93) 9315 (21.98) <0.001

Sibling diagnosed with heart disease, n (%) 34 085 (7.31) 28 943 (6.83) 5142 (12.13) <0.001

Diagnosis of depressive episode (F32), n (%) 36 410 (7.81) 32 466 (7.66) 3944 (9.31) <0.001

Diagnosis of epilepsy (G40), n (%) 4453 (0.96) 3859 (0.91) 594 (1.40) <0.001

Diagnosis of atrial fibrillation and flutter (I48), n (%) 4925 (1.06) 3371 (0.80) 1554 (3.67) <0.001

Diagnosis of other cardiac arrhythmias (I49), n (%) 3892 (0.84) 3179 (0.75) 713 (1.68) <0.001

Diagnosis of urinary tract infection or

incontinence (I39), n (%)

23 218 (4.98) 20 629 (4.87) 2589 (6.11) <0.001

Diagnosis of diabetes (E10, E11, E14), n (%) 20 054 (4.30) 15 919 (3.76) 4135 (9.76) <0.001

Diagnosis of haematological cancer, n (%) 1921 (0.41) 1528 (0.36) 393 (0.93) <0.001

Diagnosis of cellulitis (L03), n (%) 3635 (0.78) 3007 (0.71) 628 (1.48) <0.001

Has diabetes-related eye disease, n (%) 2602 (0.56) 1860 (0.44) 742 (1.75) <0.001

Fractured bones in the last 5 years, n (%) 43 598 (9.35) 39 197 (9.25) 4401 (10.39) <0.001

Does not have any long-standing illness, disability

or infirmity, n (%)

318 502 (68.34) 295 823 (69.82) 22 679 (53.52) <0.001

Number of operations, median [Q1–Q3] 1 [1–2] 1 [1–2] 2 [1–3] <0.001

Regularly takes blood pressure medications, n (%) 81 084 (17.40) 67 673 (15.97) 13 411 (31.65) <0.001

Regularly takes insulin, n (%) 4124 (0.88) 3095 (0.73) 1029 (2.43) <0.001

Regularly takes aspirin, n (%) 44 935 (9.64) 37 535 (8.86) 7400 (17.46) <0.001

Regularly takes corticosteroids, n (%) 3993 (0.86) 3257 (0.77) 736 (1.74) <0.001

Does not regularly take mineral supplements, fish oil or

glucosamine, n (%)

261 167 (56.04) 238 037 (56.18) 23 130 (54.58) <0.001

Does not take insulin or medications for cholesterol/blood

pressure, n (%)

328 612 (70.51) 305 358 (72.07) 23 254 (54.87) <0.001

Number of medications taken regularly, median [Q1–Q3] 2 [0–3] 1 [0–3] 3 [1–5] <0.001

Experiences dyspnoea (R060), n (%) 1729 (0.37) 1334 (0.31) 395 (0.93) <0.001

Experiences abdominal or pelvic pain (R10), n (%) 21 070 (4.52) 18 496 (4.37) 2574 (6.07) <0.001

Continued
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..DeepSurv model (details in Supplementary material online, Table
S10).

To enable calculation of risk scores for individuals without access
to cholesterol and blood pressure measurements, the models were
re-trained after excluding total cholesterol and cholesterol ratio.
Heart rate replaced systolic blood pressure as it is measurable via
mobile device. The c-index of the CPH model decreased to 0.741
and c-index of the DeepSurv model decreased to 0.739 (Table 3).

Comparison to existing risk scores
Established risk scores, such as Framingham, provide separate models
for males and females. To provide closer comparison to these scores,
we trained sex-specific models using our final set of variables (exclud-
ing sex). The c-index of the male-specific model (both CPH and
DeepSurv) was 0.72 (detailed results in Supplementary material on-
line, Table S11) and the female-specific model was 0.75 (detailed
results in Supplementary material online, Table S12).

Risk scores calculated using the Framingham formula achieved a c-
index of 0.68 and 0.70 for male and females, respectively. The c-indi-
ces rose slightly after re-training the CPH model using the seven

Framingham variables on the UKB dataset. Comparison of all c-indi-
ces can be found in Table 4.

Discussion

Through our investigation of the UKB’s sizable dataset, we were able
to develop a model with a c-index of 0.745, showing very good pre-
dictive ability for CVD events over a 10-year period. The main fea-
tures in the model are well-established across other risk scores: age,
sex, hypertensive medication, systolic blood pressure, smoking sta-
tus, and cholesterol. However, minimal differences were observed
when cholesterol-related variables were excluded (0.744 vs. 0.741
using the Cox model), strengthening the case for use of our model in
a remote setting and without mandatory cholesterol screening. The
clinical demand for this exclusion is illustrated by the incorporation
of a non-laboratory-based score along with the original Framingham
CVD risk score.8 The observed modest decrease in c-index after ex-
clusion of cholesterol may be explained by multicollinearity with
other factors with high importance in our model: waist-to-height
ratio, smoking status, family history, and hypertensive medication.

......................................................................................................

....................................................................................................................................................................................................................

Table 2 Continued

n (%)

All participants No incident CVD Incident CVD P-value

(adjusted)

Experiences dizziness or giddiness (R42), n (%) 1626 (0.35) 1319 (0.31) 307 (0.72) <0.001

Experiences syncope or collapse (R55), n (%) 3354 (0.72) 2732 (0.64) 622 (1.47) <0.001

Has had wheeze or whistling in the chest in the last year, n (%) 91 158 (19.56) 79 415 (18.74) 11 743 (27.71) <0.001

Never feels any pain or discomfort in their chest, n (%) 393 719 (84.48) 360 851 (85.17) 32 868 (77.56) <0.001

Last column shows P-value after comparing the incident CVD group with the non-CVD group. Comparisons were performed using the v2 test for categories and Kruskal–
Wallis test for continuous variables.
aThis variable is used only as a substitute for systolic blood pressure in the model excluding cholesterol and systolic blood pressure.

Figure 1 Numbers of participants included in the study with the breakdown of CVD incidence in the train and test datasets.
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Anthropometric measures, while traditionally viewed as valued
parameters only of obesity and diabetes,30 are gaining traction in risk
modelling across a wider range of non-communicable and commu-
nicable diseases alike.31 The expanding impact of the digital revolu-
tion on healthcare makes these features especially relevant owing to
novel, accessible technologies which can capture a broad range of an-
thropometric information using only a smartphone camera.32

Alcohol consumption and smoking habits, while traditional factors,
present in an interesting manner. For the former, as categorical UKB
fields were one-hot encoded, only alcohol abstinence passed feature
selection, with other degrees of consumption not significant. The det-
rimental predictive significance of alcohol abstinence can be attrib-
uted to the average poorer health status and higher prevalence of
chronic conditions and neurological problems of never- and former-
drinkers when compared to ever-drinkers.33 For tobacco, as
expected, currently not smoking is protective and increasing pack
years confers increased risk of CVD. However, having smoked occa-
sionally was unexpectedly calculated as protective, likely as this group
is enriched for people who have since ceased smoking, having never
smoked regularly.

In addition to traditional risk factors and anthropometric variables,
several other variables not present in any conventional risk model

have shown to be significant contributors to our model. Notably, the
inclusion of reported symptoms in our analysis sets the resultant
model apart from others. The symptoms of dyspnoea, syncope, dizzi-
ness, wheezing, and chest pain are recognized as clinical indicators of
possible cardiac disease. Our model supports their potential to high-
light subclinical, underlying cardiovascular pathology. Similarly, ab-
dominal and pelvic pain may represent undiagnosed comorbidity
associated with our CVD outcomes, including inflammatory bowel
disease, endometriosis, or aortic aneurysm.34,35 We performed a
sensitivity analysis to investigate the influence of these features for
short- and long-term predictions which revealed that removing these
features mostly impairs shorter term predictions.

The extent of one’s education has also emerged as an important
contributing social factor in our model, reinforcing the findings of re-
cent studies which show education as a significant predictor of CVD
acquisition and mortality.36

Furthermore, several diagnoses not traditionally associated with
the incidence of CVD were found to be significant contributors to
the CPH model. A diagnosis of urinary tract infections (UTI) or in-
continence, as well as epilepsy, are significant contributors independ-
ent of all other features. UTI and incontinence may be explained by
the raised cardiovascular risk of the proinflammatory state, but

Figure 2 Plot of cox proportional hazards model coefficients for the general population. Values are shown as log(HR) ± 95% CI. CI, confidence
interval; HR, hazard ratio.
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warrants further investigation. Epidemiological studies have shown a
raised CVD risk profile in those with epilepsy, but this is mostly
attributed to concomitant risk factors.37

Self-rated health and prior diagnosis of a depressive episode, both
associated with increased CVD risk,38,39 are also significant features,
stressing the assessment of psychological aspects of health when cal-
culating risk for CVDs. To a smaller, but still important extent, two
physical activity-related behaviours—walking pace and hours spent
outdoors (in winter)—have contributed to the performance of the
model, both known to influence the risk of CVD-related events.40,41

Lastly, a family history of heart disease showed strong predictive
power, with sibling heart disease ranking significantly higher than par-
ental. This is likely as a sibling diagnosis has been caused both by simi-
lar genetic and environmental factors, whereas parental diagnoses
reflect pertinent environmental contributors to a lesser extent.
Despite its well-known contribution to CVD occurrence, the
QRISK3 is the only risk model that currently incorporates family his-
tory in the calculation, but our results show that more granular
coverage of family history could lead to better risk assessment.7

By using CPH and Deepsurv to develop risk scores, we compared
an established statistical method with a more novel machine learning
approach to survival analysis. We hypothesized that use of Deepsurv
might result in superior predictions by identifying complex interac-
tions between variables. However, performances of both models
were similar, implying a minor contribution of non-linear interactions
within the large feature space, or insufficient number of training
examples to give advantage to a more data-intensive deep learning
model. In the case of equal performance of both models, CPH mod-
els provide several advantages: they are less computationally inten-
sive and easier to implement and update with new data or recalibrate
for other demographics owing to a low number of pre-set hyper-
parameters. Importantly, CPH models also provide easily interpret-
able feature coefficients, making them more trustworthy for clinicians
who may not be familiar with academic data science.

The minimal performance drop when excluding the less accessible
features of cholesterol and blood pressure, together with the fact
that many features are modifiable, supports the feasibility of feature
collection through a digital application, in a remote setting, and on a

Figure 3 Time-specific performance and calibration plots for CPH and DeepSurv models. AUCC/D was calculated for years 1 through 10 using the
CPH (A) or the DeepSurv (B) model. Calibration plots for probabilities of developing CVD at year 1, 5, or 10 using the CPH (C) or the DeepSurv (D)
model. Smoothed calibration curves and histograms of the predicted probabilities of developing CVD are shown in the respective colours for each
evaluated time point. ICI, integrated calibration index.
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.
regular basis. This enables more engaging risk management and elimi-
nates the need for interaction with a healthcare provider. Our
digitally-collected score slightly overperformed Framingham risk
score (c-index 0.745 vs. 0.704).

Due to increasing ownership, mobile phones and smart wearables
have become a priority medium for digital health interventions. The
use of digitally collected features to calculate CVD risk will allow
patient-facing solutions, transferring responsibility of health status
and lifestyle choices to patients rather than clinical teams.
Furthermore, gamification and goal setting has been shown to in-
crease the success of lifestyle change interventions.42 Several risk var-
iables, particularly those related to diet (salt added to food,
nutritional supplement intake), smoking, alcohol consumption, as
well as activity (hours spent outdoors in winter) are adjustable in the
short term, giving direct feedback to users. A patient-facing digital risk
score that responds to and reports positive change in a short time
span, as a consequence of such lifestyle improvements, could increase
motivation in patients with high CVD risk. Furthermore, the risk
score can be easily accompanied by educational content from cred-
ible sources that is tailored to support the patient along that journey,
providing further support on their path to improving their cardiovas-
cular health. The assessment of cardiovascular risk is a mainstay of
clinical guidelines,5 and the ability to calculate this remotely with very
limited face-to-face clinical resources could have significant beneficial
cost and patient accessibility implications.

A key challenge in any digital health intervention is being able to
maintain patient adherence across time, which is tackled by consider-
ing key usability and design aspects early in the development process.
The number of variables incorporated into this model can be

challenging for patients to recall, especially those related to non-
modifiable factors, and can lead to patient drop-off over time. By cre-
ating a simple, user-friendly interface that asks clear questions that
are easy to understand, we strongly believe that all of the necessary
information can be comfortably obtained, especially in the setting of
repeated assessments.

A notable limitation of our study stems from the UKB cohort being
unrepresentative of the general population across various domains.43

First, ethnic diversity is very low with 94% of all participants identify-
ing as White and, second, age at recruitment was restricted to 37–73.
Our analysis, therefore, was not able to account for differences in
CVD risk across ethnicities, which is a significant known factor for
CVD incidence, nor in younger age groups, thus use of our model in
these populations should be interpreted with some reserve.
Importantly, the restricted age distribution also represents a higher
risk population, implying validation of the model in a more represen-
tative sample would result in a higher performance, as seen when
QRISK3 is calculated for UKB participants (representative popula-
tion: 0.88; UKB: 0.76).7,44 Last, the UKB cohort is reported to be
healthier and wealthier than the general population.43 This is a signifi-
cant factor when genetic aspects account for only�32% of coronary
artery disease occurrence,45 thereby may result in an underapprecia-
tion of the influence of detrimental lifestyle choices. Future work will
concern external validation of the model which will allow conclusions
to be drawn about its use across geographies and populations.

While our aim was to limit model bias by applying a data-driven ap-
proach to feature selection and excluding features with a large pro-
portion of missing data, choosing CPH model-based feature selection
may have biased the final features in the reduced model. It is likely

....................................................................................................................................................................................................................

Table 3 C-index of trained models for test dataset predictions

Before feature selection After feature selection Excluding cholesterol

measurements 1 substituting

BP

Number of features 608 47 45

CPH model C-index 0.7431 [0.7422–0.7441] 0.7443 [0.7441–0.7445] 0.7409 [0.7407–0.7411]

DeepSurv model C-index 0.7461 [0.7452–0.7469] 0.7446 [0.7441–0.7452] 0.7388 [0.7382–0.7393]

A 95% confidence interval is shown in square brackets. Cholesterol measurements include total cholesterol and cholesterol ratio, systolic blood pressure was substituted with
heart rate.
BP, blood pressure.

......................................................................................................

....................................................................................................................................................................................................................

Table 4 Results of comparison of our model for Framingham score

Score Method C-index

Men Women All participants

Framingham score Risk scores calculated using published formula 0.678 0.695 0.704

CPH model trained on UKB 0.684 [0.684–0.685] 0.714 [0.713–0.714] 0.715 [0.715–0.715]

Our score CPH model 0.716 [0.716–0.717] 0.748 [0.747–0.748] 0.744 [0.744–0.744]

DeepSurv model 0.716 [0.715–0.717] 0.747 [0.746–0.748] 0.745 [0.744–0.745]

Test dataset c-indices was shown. 95% confidence intervals are shown in the square brackets.
UKB, UK Biobank.
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.
that this has also limited the performance of the DeepSurv model, by
selecting features that specifically enhanced the performance of the
CPH model.

In conclusion, DiCAVA, our 10-year CVD risk model, has very
good predictive capacity and contains significant predictors not previ-
ously described by existing risk scores in the literature. We demon-
strated its feasible utility in a remote setting where cholesterol and
blood pressure measurements may not always be convenient, high-
lighting that even the most established predictors are not always
essential.
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