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 2 

Abstract 13 

 14 

Perceptual expertise and attention are two important factors that enable superior object 15 

recognition and task performance. While expertise enhances knowledge and provides a holistic 16 

understanding of the environment, attention allows us to selectively focus on task-related  17 

information and suppress distraction. It has been suggested that attention operates differently 18 

in experts and in novices, but much remains unknown. This study investigates the relationship 19 

between perceptual expertise and attention using convolutional neural networks (CNNs), which 20 

are shown to be good models of primate visual pathways. Two CNN models were trained to 21 

become experts in either face or scene recognition, and the effect of attention on performance 22 

was evaluated in tasks involving complex stimuli, such as superimposed images containing 23 

superimposed faces and scenes. The goal was to explore how feature-based attention (FBA) 24 

influences recognition within and outside the domain of expertise of the models. We found that 25 

each model performed better in its area of expertise—and that FBA further enhanced task 26 

performance, but only within the domain of expertise, increasing performance by up to 35% in 27 

scene recognition, and 15% in face recognition. However, attention had reduced or negative 28 

effects when applied outside the models’ expertise domain. Neural unit-level analysis revealed 29 

that expertise led to stronger tuning towards category-specific features and sharper tuning 30 

curves, as reflected in greater representational dissimilarity between targets and distractors, 31 

which, in line with the biased competition model of attention, leads to enhanced performance 32 

by reducing competition. These findings highlight the critical role of neural tuning at single as 33 

well as network level neural in distinguishing the effects of attention in experts and in novices 34 
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and demonstrate that CNNs can be used fruitfully as computational models for addressing 35 

neuroscience questions not practical with the empirical methods. 36 

 37 
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Introduction 59 

 60 

Convolutional neural networks (CNNs) are a class of deep neural networks that draw strong 61 

structural parallels with the primate visual pathway (1-5). CNNs’ functional relevance for 62 

neuroscience has also be demonstrated in recent studies that compared single neuron activity in 63 

monkeys and fMRI activities in humans with activity in CNNs, showing that there is close 64 

correspondence between layers of CNNs and the areas within the visual hierarchy (6, 7) (8, 9). 65 

Increasingly, CNNs are being used as models of primate visual processing, making possible 66 

explorations that are not practical in biological systems (e.g., lesion), generating results that 67 

inspire new questions and new empirical experimentation (10, 11) (12, 13) (14-17). The 68 

introduction of feature-based attention (FBA) in CNNs has further deepened the integration 69 

between AI-inspired neural models such as CNNs and cognitive neuroscience (1). It has been 70 

shown that object recognition in challenging settings (e.g., images where scenes and faces are 71 

superimposed) is enhanced with feature-based attention (FBA). Attention can operate both at 72 

the level of elementary features and at the object level, which are essentially higher-order 73 

collections of features. Attention may select objects based on the presence of relevant features, 74 

implying a dual role for attention mechanisms. For example, when attention is directed toward 75 

specific features, it enhances recognition of objects that are composed of these features.  The 76 

goal of this study is to leverage these developments to examine the relation between attention 77 

and perceptual expertise computationally.  78 

 79 
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Perceptual expertise refers to the enhanced ability to recognize and categorize objects in a 80 

specific category and can be acquired through extensive experience and practice. It changes how 81 

objects in the category are perceived (18, 19) and represented in the visual cortex (20-22). For 82 

example, expertise in face recognition is associated with enhanced activity in the face selective 83 

area known as the fusiform face area (FFA) (23-25). Similarly, expertise in other object categories, 84 

such as birds or cars, has been shown to increase neural activity in different category-specific 85 

regions of the visual cortex, demonstrating the broad impact of experience and practice on neural 86 

processing (26, 27). More relevant for this study, expertise also enables experts to more easily 87 

attend to the salient features of objects falling within their area of expertise (28), suggesting a 88 

possible relation between expertise and selective attention. For example, during car viewing  it 89 

has been observed that manipulating attention to the identity versus the location of cars had a 90 

more pronounced impact on car novices compared to experts (27). Such effects transcend 91 

category domains and have been found in such diverse domains as planes, animals, chessboards, 92 

and radiography (26, 29-32). In all instances, experts demonstrate automatic holistic processing 93 

during object recognition, outperforming novices who are often influenced by task constraints, 94 

context, and various other factors (18, 30, 33, 34). We hypothesize that enhanced effectiveness 95 

of selective attention in the domain of expertise is a key factor underlying the superior 96 

performance of experts in their domains of expertise. 97 

 98 

Depending on the datasets and the training objectives, CNNs can become experts in recognizing 99 

different categories of images. A recent study showed that a CNN trained on the ImageNet 100 

dataset to recognize objects became proficient at object recognition but less so on face 101 
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recognition, whereas a CNN trained on the VGGFace dataset to recognize faces become 102 

proficient at face recognition, but less so on object recognition (35). In another study (9), a CNN 103 

trained to recognize both scenes and objects evolved category-selective topographical units, 104 

providing a computational account for the altered neural activity in category-selective brain 105 

regions observed in experts relative to novices. What has not been addressed in these previous 106 

studies is the relation between perceptual expertise and selective attention. We address this 107 

question by considering two classes of CNNs: one that is trained to recognize scenes (Scene-108 

expert) and another that is trained to recognize faces (Face-expert). In our study, attention was 109 

applied at both the feature and object level by biasing neural units that preferred certain 110 

categories (faces or scenes). This approach allowed us to explore how attention modulates 111 

recognition within and outside the domain of perceptual expertise. The aim was to assess the 112 

effectiveness of attention-to-objects and attention-to-faces in each of the two CNN models. We 113 

hypothesized that (1) the scene-trained CNN would be inferior at face recognition relative to 114 

scene recognition, whereas the face-trained CNN would be inferior at scene recognition relative 115 

to face recognition, and (2) that in challenging perceptual situations (e.g., superimposed stimuli), 116 

the scene-trained CNN would benefit more from feature-based attention (FBA) for scene 117 

recognition, whereas face-trained CNNs would benefit more from FBA for face recognition. The 118 

geometry, representation, and activity of population-level neural activity were examined to 119 

explore the underlying neural mechanisms.  120 

 121 
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Results 122 

 123 

Overview 124 

 125 

We used VGG16, a 16-layer deep convolutional neural network (DNN) (36), as a model of the 126 

ventral visual stream; see Figure 1A. In this model, neurons in each layer are connected to 127 

neurons in the next layer in a convolutional manner, mimicking the receptive-field based 128 

feedforward retinotopic processing of visual information in the primate ventral visual system. 129 

Two VGG16 models were independently trained to acquire expertise in either object recognition 130 

or face recognition. Specifically, the scene network was trained on the ImageNet database (37) 131 

consisting of 3.2M images where the training objective was to classify the images into 1000 object 132 

categories as accurately as possible. On the other hand, the face network was trained on the 133 

VGGFace dataset (38) consisting of 2.6M images of human faces where the training objective was 134 

to classify the images into 2622 distinct faces as accurately as possible (Figure 1A). We will refer 135 

to the network trained on ImageNet as ‘Scene-expert’ and the network pretrained on VGGFace 136 

as ‘Face-expert’. The main purpose of this study was to examine the effectiveness of feature-137 

based attention (FBA) to faces and to scenes in the two networks when they are engaged in 138 

performing challenging scene recognition and face recognition tasks.  139 

 140 
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 141 

Figure 1. Model and study design. (A) The VGG16 convolutional neural network model (feature units and dimensions are labelled 142 

across the respective layers). One model is pretrained on ImageNet database (Scene-expert) and the other on VGGFace database 143 

(Face-expert). (B) The final layer of each network  was replaced with a series of binary classifiers (logistic regression, one for each 144 

category) which were trained based on the datasets used in this study. (C) Regular and superimposed images from each category, 145 

sized at 224x224 pixels (input dimensions of VGG16). Superimposed images (bottom) were composed by transparently 146 

superimposing two images from either the same or the different categories. The regular images are used for training the binary 147 

classifiers which were then tested on both regular and superimposed images to identify the presence or absence of a certain 148 

category. (D) 5-fold cross-validation performance of the two models, image-category wise, for the Face-expert (right) and Scene-149 

expert (left) models. Images were used from publicly available datasets (39-41). 150 

Experimental Paradigms and Model Performance 151 

 152 

The recognition task consisted of identifying whether a particular object feature was present in 153 

an input image. For example, during the face recognition task, the models were asked to 154 

determine the presence/absence of a face in the input. For the model to perform these binary 155 
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classification tasks, the final classification layer of the VGG16 network was replaced with a series 156 

of binary classifiers, each specific for recognizing the presence or absence of a particular object 157 

category (Figure 1B). There were two types of input: regular images and superimposed images. 158 

Regular images consisted of images belonging to one of the two categories without any 159 

distractors: faces (male and female) and scenes (manmade and natural) (Figure 1C). After 160 

training, task performance was obtained for the testing data (for more details on the training and 161 

testing dataset, see Methods). See Figure 1D. As expected, the Scene-expert model had a higher 162 

scene recognition accuracy (97.6%) for scene images compared to the Face-expert model (79.6%; 163 

p < 1e-5, paired t-test across classification folds), while the Face-expert model performed better 164 

(94%) in recognizing faces in regular images than the Scene-expert model (80%; p < 1e-4, one-165 

sided paired t-test across classification folds). These performance metrics were summarized in 166 

Table 1. Based on these results, the two models can be said to have developed category-specific 167 

expertise, with the Scene-Expert model excelling at recognizing scenes and the Face-expert 168 

model excelling at recognizing faces.  169 

 170 

 Scene-Expert Model Face-Expert Model 

Image type Regular Superimposed Regular Superimposed 

 Faces 80% 36.2% 94% 64.4% 

Scenes 97.6% 48.4% 79.6% 48% 

 171 

Table 1 Performance of the two models for different types of images, regular and superimposed, across categories. 172 
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For the more challenging tasks, superimposed images were utilized as stimuli; see Figure 1C. 173 

There were three types of superimposed images: (1) face over face, (2) scene over scene, and (3) 174 

face over scene (which is equivalent to scene over face). For detecting the presence or absence 175 

of a face, (1) and (3) were true positives whereas (2) were true negatives. For detecting the 176 

presence or absence of a scene, (2) and (3) were true positives whereas (1) were true negatives. 177 

The test images were balanced with 50% true positives and 50% true negatives; a total of 40 178 

positive images and 40 negative images were used for testing. As expected, on superimposed 179 

images, the performance was significantly decreased for both models. The Scene-expert model 180 

exhibited a comparable scene recognition accuracy (48.4%) to the Face-expert model (48%; p > 181 

0.05, one-sided paired t-test across classification folds). However, the Face-expert model 182 

performed significantly better (64.4%) in recognizing faces in superimposed images than the 183 

Scene-expert model (36.2%; p < 1e-3, one-sided paired t-test across classification folds). A 184 

summary of the performance metrics can be found in Table 1. It can be noted that both models 185 

experienced a large decrement in performance when recognizing objects in superimposed 186 

images. Thus, the presence of distractors made the task very challenging and reduced 187 

performance of each expert model, thereby presenting a fruitful opportunity to test where 188 

attentional mechanisms can be brought to bear to overcome these challenges. 189 

 190 

Attention Modulation of Model Performance 191 

 192 

Feature-based attention (FBA) was implemented according to the Feature Similarity Gain Model 193 

(FSGM) (42).This model posits that neural activity is modulated in proportion to how strongly a 194 
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neuron prefers an attended feature (43, 44). When a stimulus falls within the receptive field of a 195 

neuron, directing attention to that stimulus results in an increase in neural response, and this 196 

increase occurs in a proportional manner, encompassing both preferred and nonpreferred 197 

stimuli. From the foregoing, to apply FBA according to FSGM, each neuron’s selectivity for 198 

different experimental stimuli needs to be determined. This was done by calculating the 199 

responses of each feature map to the two types of stimuli: faces and scenes (see Methods). Some 200 

examples of the resulting tuning curves are shown in Figure 2. To implement FBA, the activity of 201 

a certain neuron was modulated by scaling the slope of its activation function (ReLu) in the 202 

network based on its tuning curve (i.e., how strongly a certain neural unit prefers a certain image 203 

category). Units that are selective to the attended feature (target category) had their output 204 

tuned up, while neurons that are not selective had their output tuned down (distractor category); 205 

see Figure 3. We tested the effect of FBA on one layer of each model at a time, while the 206 

performance across categories and layers that received attention modulation was recorded 207 

individually. Figure 4 and Table 2 shows the change in performances across categories for both 208 

model variants when tested with superimposed images. Overall, FBA yielded a favorable 209 

influence on model performance. Importantly, an interplay of attention's effect across categories 210 

and models was evident upon comparative analysis. Specifically, for the Scene-expert model, 211 

attention yielded a more pronounced enhancement in performance for scenes (improvement 212 

ranging from 15 - 35% depending on the layer of the model, Figure 4A) as opposed to faces 213 

(improvement ranging from 3- 15% depending on the layer of the model). In contrast, the Face-214 

expert model exhibited significant recognition improvement on face categories (15 - 20% 215 

depending on the layer, Figure 4B) but inconsistent even negative improvement on scene 216 
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categories (-12 to 10% depending on the layer). We performed a two-way analysis of variance 217 

(ANOVA) including the factors model (Scene-expert and Face-expert), layer (1 to 13) and image 218 

category (faces and scenes). The results revealed a significant main effect of model, F(1, 232) = 219 

187.69, p < .001, a significant main effect of layer, F(12, 232) = 2.54, p = .003, and a marginally 220 

significant main effect of image, F(1, 232) = 3.29, p = .071. Furthermore, the interaction between 221 

layer and model, F(12, 232) = 6.26, p < .001, and the interaction between image and model, F(1, 222 

232) = 636.57, p < .001, were also significant. These findings suggest that the model with 223 

perceptual expertise in each image category benefited more from FBA applied to recognize 224 

objects from that category. 225 

 226 

Image Category Model Type M SD 

Faces Scene-expert 9.16 6.03 

 Face-expert 17.71 5.93 

Scenes Scene-expert 29.23 5.78 

 Face-expert 0.34 9.15 

 227 

Table 2. Summary statistics of performance improvements (i.e., Δ%) in the Face-expert and Scene-expert model across different 228 

image categories (faces and scenes) averaged across convolutional layers (1-13).  229 

 230 
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 231 

Figure 2. Example tuning curves of units (2 randomly chosen units are shown here) in each layer. From these tuning curves the 232 

preference of a neuron towards face or scene is determined.  233 

 234 

 235 

 236 

Figure 3 Schematic of the FBA implementation in the model. The slope of the Rectified Linear Unit (ReLu) activation function is 237 

modulated based on the tuning values of the neuron. If a certain unit in a layer prefers the attended object category, the slope of 238 

the ReLu function is tuned-up (green arrow) whereas if a unit does not prefer the attended category, its slope is tuned-down (red 239 

arrow). See the Methods section for more information about how FBA was applied. 240 
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To ascertain the specificity of attentional modulation observed, we conducted a control 241 

experiment involving non-specific modulations of unit activity. Specifically, we applied non-242 

specific modulations to the neurons in both models by randomly shuffling the tuning properties. 243 

For each neural unit within a given layer, we derived the tuning properties from randomly 244 

permuted sets of tuning values. We did not observe any significant increases in task performance 245 

using non-specific scaling. These results rule out the possibility of non-specific interactions 246 

influencing the attention-performance relationship. Instead, they affirm the facilitating influence 247 

of FBA on task performance, particularly highlighting its capacity to interact in an expertise-248 

specific manner. Furthermore, by employing randomly permuted tuning values instead of equal 249 

scaling values (as used in (1)), our findings extend previous research. It is noteworthy that merely 250 

permuting the labels of tuning curves does not yield the same effect of attention, underscoring 251 

the effectives on FBA implemented via the FSGM.  252 

 253 

 254 

Figure 4. Outcomes of applying FBA to VGG16 pretrained on ImageNet (A) and VGGFace (B), across categories. Differential 255 

specificity of categories can be observed in terms of performance increases. (A) For Scene-expert model, FBA increased the 256 

performance of detecting the presence versus absence of scenes more than detecting the presence versus absence of faces. (B) 257 
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For the Face-expert model, FBA was effective for enhancing the performance of detecting the presence versus absence of faces; 258 

for detecting the presence versus absence of scenes, the FBA’s effect was not very helpful, and could even be negative (i.e., 259 

decreasing the performance of the model). 260 

Potential Mechanisms of Enhanced Effectiveness of FBA in Expert Networks 261 

 262 

Studies have shown that attention modulates a neuron’s response according to the neuron’s 263 

tuning properties in early and late layers of the visual system (45, 46). In these studies, the 264 

response of a neuron is substantially enhanced when an optimal stimulus is attended, whereas 265 

its response to an attended non-optimal stimulus is enhanced to a lesser extent, or even 266 

decreased (47, 48). So, we probed if there was a similar effect of attention on neurons’ tuning 267 

properties in our models, and if it was related to expertise. For this, we analyzed the tuning curve 268 

of each neuron and computed its tuning quality, which was its maximum value. Tuning quality 269 

provided a quantifiable measure of the strength with which a particular neuron exhibited 270 

preference for a specific object category. This was done separately for scene- and face-selective 271 

neurons, and then compared to each other. The distribution of tuning quality across layers was 272 

analyzed during the baseline condition (without attention), and when attention was applied to 273 

neural units that preferred the target category for each layer individually. This enabled us to 274 

investigate whether there was any expertise and/or image category preference-related 275 

differences that resulted in differential effects of attention in the previous behavioral analysis.  276 

Figures 5A and 5B show the results without attention (see Methods for a description of the 277 

statistical tests). During the baseline condition, neurons in the Scene-expert model demonstrated 278 

a significantly stronger preference for scenes, as evidenced by the higher tuning quality for 279 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.617743doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.617743
http://creativecommons.org/licenses/by-nc/4.0/


 17 

scenes compared to faces (p < 0.001 for layers 3 to 12, one-sided Welch's t-tests across layers, 280 

FDR corrected for multiple comparisons). Conversely, the Face-expert model exhibited 281 

significantly greater tuning quality for faces compared to scenes, suggesting a stronger 282 

preference for faces (p < 0.001 for all layers except layer 7, one-sided Welch's t-tests across 283 

layers, FDR corrected for multiple comparisons).  284 

Given that feature based attention is multiplicative, for the same strength of attention 285 

modulation (i.e., the same 𝛽 value), the face-selective neurons in the Face-expert will have a 286 

stronger increase in activity than the scene-selective neurons, resulting in the higher 287 

performance improvement in detecting the presence versus absence of faces in the input. The 288 

same principle could explain the reason why in the Scene-expert case, for the same strength of 289 

attention modulation, there is a higher performance improvement for detecting the presence 290 

versus absence of scenes in the input. We examine these ideas next.   291 

 292 
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 293 

Figure 5. Tuning quality across layers in the Scene-expert (A) and Face-expert (B) network divided into face (red) and scene (yellow) 294 

selective neurons during baseline when attention was not applied. Bars indicate the tuning quality distribution of neurons across 295 

layers 1 through 13. Tuning quality of neurons that prefer scenes is higher than that that prefer faces in the Scene-expert Model 296 

(A) and vice-versa in the Face-expert Model (B). (C-F) Tuning quality distribution divided based on FBA applied to scene and face 297 

selective neural units when attention is applied at different layers (row-wise layers 3,5,9 & 11 shown) in the Scene-expert Model 298 

(C-D), and the Face-expert Model (E-F).  299 

 300 

In Figures 5C - F, we show the results when attention was applied to investigate whether 301 

attention modulated the tuning quality across different image types. We analyzed the effect 302 
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separately for scenes and faces in the two models while attention was applied at different layers, 303 

showing representative results from layers 3, 5, 9, and 11 in the figure. Applying attention to 304 

different layers resulted in stronger tuning quality of neural units compared to baseline, in 305 

manner that is in accordance with the principles of the FSGM model. However, the degree of 306 

modulation varied across models and image categories. In the Scene-expert model, as illustrated 307 

in Figure 5C, applying attention separately to scene-selective units enhanced their tuning quality 308 

(yellow bars), surpassing that of face-selective units (red bars). This effect began at the layer 309 

where attention was applied and persisted through higher layers, maintaining the higher tuning 310 

quality of scene-selective units throughout the model. In contrast, when attention was directed 311 

to face-selective units (Figure 5D), their tuning quality (red bars) did not exceed that of scene-312 

selective units (yellow bars). Although face-selective units experienced improvement in tuning 313 

quality at the layer where attention was applied (in line with the FSGM principle), this 314 

enhancement did not sustain or carry over to higher layers, unlike the consistent propagation 315 

observed for scene-selective units. Similarly, in the Face-expert model (Figure 5E), attention 316 

selectively improved the tuning quality of face-selective units, but this effect did not significantly 317 

influence other types of units (Figure 5F). Thus, in each expert model, the tuning quality of 318 

neurons was enhanced by attention only when their preference aligned with the category of 319 

expertise specific to the model. Conversely, attention did not improve the tuning quality of 320 

neurons whose category preference differed from the model's expertise category.  321 

 322 

 323 
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Representational Similarity Reveals Feature Separation in Models 324 

 325 

In the previous section, we examined the interplay between effects of attention and expertise-326 

specific task performance improvement by analyzing the quality of neuron-level tuning in our 327 

models. However, apart from competition and bias that has been observed at single-unit level, 328 

the expertise-attention interaction may also arise due to differences in network-wide neural 329 

representations. Prior research has demonstrated that top-down bias and task performance is 330 

context dependent, with greater competition occurring between stimuli that are more similar or 331 

closer to each other in terms of neural representation (47, 49).  Therefore, we investigated the 332 

impact of dissimilarity in neural representations of different categories on the underlying effects 333 

of attentional bias.  334 

 335 

First, we applied representational similarity analysis (RSA) to assess the degree of dissimilarity 336 

and competition between different image types (faces and scenes) across layers of each model, 337 

taking into account the model's domain of expertise. Next, we conducted the same analysis on 338 

images when FBA was applied to neurons in different layers, selectively targeting either face- or 339 

scene-preferring neurons. This approach enabled us to examine how attention modulates the 340 

multivariate neural representation of each image type within its corresponding expert model. 341 

Finally, we compared the effect of attention on RSA dissimilarity and competition between face 342 

and scene representations within each model, highlighting how attentional mechanisms interact 343 

with expertise to shape multivariate neural representations. 344 
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The representational dissimilarity matrices (RDMs) for face-expert and scene-expert models 345 

across different layers are shown in Figure 6A (top-left panel). The patterns of dissimilarity 346 

change across layers, indicating that the models process and differentiate each image category 347 

from the other image category at each processing stage (layer) of the network. A theoretical 348 

RDM, as illustrated in Figure 6B, represents an idealized categorical structure, where two 349 

categories of images (faces and scenes) are perfectly separated. It serves as a reference for 350 

understanding the relation between face and scene representations in the two models. We 351 

assessed the relation between RDMs obtained from each layer in the two models (baseline 352 

without attention) and the theoretical RDM using rank-ordered Spearman correlations. This 353 

yielded 26 (13 layers x 2 models) RSA correlation measures, each depicting the degree of 354 

dissimilarity or separation between face and scene features encoded in the model layers (Figure 355 

6C shows mean RSA correlation values with 1 SEM, bootstrapped across 100 iterations, baseline 356 

without attention). Throughout the layers, we observed modest dissimilarity measures (0.1  357 

0.03) except for early layers in the Face-expert model, which exhibit higher dissimilarity between 358 

the features. These values are reasonable and within the bounds of what has been reported in 359 

similar studies (50, 51).  360 

 361 

Next, we computed the relation between theoretical RDM and the data based RDMs from each 362 

layer (in a model) when attention was separately applied to neural units that either prefer faces 363 

(Figure 6E) or scenes(Figure 6F). The mean RSA correlation values, along with ±1 SEM, were 364 

bootstrapped across 100 iterations and shown for layers 2, 4, 7, and 9 as representative 365 

examples. In both models, we observed consistently positive mean RSA correlations across all 366 
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layers, with representational similarity patterns varying based on model expertise and the type 367 

of neurons to which attention was applied. When attention was applied to face-selective 368 

neurons, the similarity values were higher in the Face-expert model compared to the Scene-369 

expert model. This indicates the effectiveness of attentional mechanisms in inducing greater 370 

separability between face representations and scene representations in the Face-expert model 371 

(p < 0.05, one-tailed paired t-tests, FDR corrected for multiple comparisons across layers). 372 

Similarly, when attention was applied to scene-selective neurons, RSA correlation values were 373 

greater in the Scene-expert model compared to the Face-expert model (p < 0.05, one-tailed 374 

paired t-tests, FDR corrected for multiple comparisons across layers). Therefore, the Scene-375 

expert model was more efficient in distinguishing scenes from faces when attention was applied 376 

to scene-selective neurons only. Similarly, the Face-expert model was able to identify faces from 377 

scenes efficiently when attention was applied to face-selective neurons only. 378 

 379 

The expertise in each model allows for finer discrimination in the multivariate neural 380 

representations between object features belonging to their category of expertise. Since the 381 

effectiveness of attention depends on the neural representation of stimulus features, which is in 382 

turn dependent on the expertise of the model, it is more effective when domain-specific objects 383 

are distinctly encoded in various layers. This finding supports the feature similarity gain model of 384 

attention, demonstrating that attention selectively enhances the processing of features relevant 385 

to the model's expertise. 386 

 387 

 388 
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 389 

Figure 6. Representational Similarity Analysis (RSA) across different categories of images and models. (A) Representational 390 

dissimilarity matrices (RDMs). For each layer within a model, separate RDMs were constructed for all scene and face images by 391 

one minus the Pearson r correlation between each pair of image-evoked multivariate neural activations. Here, RDMs are shown 392 

for layer 2, 5, 9 and 12 for each model. (B) Theoretical RDM representing the ideal degree of separation between Scene (Manmade 393 

and Natural) and Face (Male and Female) images. (C) RSA analysis, performed by calculating the rank-ordered Spearman 394 

correlation between the off-diagonal triangular values of the theoretical RDM and layer RDMs. (D) RSA analysis for each model, 395 
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layer-wise during the baseline condition when attention was not applied to any neural units in Scene-expert (light blue) and Face-396 

expert (deep blue) models. (E, F) Representational Similarity (in Spearman rho correlation) when attention was applied to Face-397 

selective units (E) and Scene-selective units (F) at layers 2,4,7 & 9 (left to right, highlighted with red layer labels on the x-axis). 398 

Error bars indicate ± 1 SEM obtained from bootstrapping technique using 100 samples. * = p < 0.05, one-tailed paired t tests and 399 

FDR corrected for multiple comparison across layers. 400 

Discussion 401 

 402 

In this work, we investigated whether and how perceptual expertise interacts with the effect of 403 

attention in a convolutional neural network (CNN) model of the primate ventral visual system. 404 

Specifically, we used neuron-level tuning and multi-neuron network-wide neural representation 405 

to examine the mechanisms underlying the observed interaction between model expertise and 406 

top-down attention. Our results complement the previous neuroimaging and 407 

electrophysiological studies suggesting that top-down attention control interacts with neural 408 

pathways and brain regions associated with perceptual expertise and enhance performance in 409 

an expertise-dependent fashion (27, 29, 52-54).  410 

 411 

The interplay of expertise and attentional bias 412 

 413 

We trained a VGG16 neural network model to specialize in recognizing either scenes or faces. 414 

The Scene-expert model was trained with scene images, while the Face-expert model was trained 415 

with face images. During the experiment, the images were presented in two forms: regular 416 

images, which were single images from a category (faces or scenes), and superimposed images, 417 
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which were superimposed images from the same or different categories. The results established 418 

the presence of category-based expertise in the models. Specifically, the Face-expert model 419 

demonstrated superior performance in recognizing the presence or absence of faces in the single 420 

image input, while the Scene-expert model excelled at detecting the presence or absence of 421 

scenes in the single image input. When presented with superimposed images, the recognition 422 

performance declined significantly, indicating that the models were not effective at dealing with 423 

distractors in the superimposed images. Next, we applied feature-based attention to neurons 424 

based on their tuning profiles. The Scene-expert model showed significantly larger improvements 425 

in recognition performance with attention when detecting the presence vs absence of scenes as 426 

compared to detecting the presence versus absence of faces. Similarly, the Face-expert model 427 

showed significant improvement with attention when detecting the presence versus absence of  428 

faces than detecting the presence vs absence of scenes. Expertise in a specific category allowed 429 

the models to develop specialized neural representations that are optimized to interact with 430 

attention and improve task performance.  431 

 432 

Expert Versus Novice: Unit Level Analysis of Object Based Attentional Enhancement 433 

 434 

To understand why attention is more effective when combined with expertise, we analyzed the 435 

tuning quality of artificial neurons, which reflects how strongly they prefer an object category. 436 

Our findings indicate that the Scene-expert model exhibits stronger tuning quality for scenes than 437 

for faces, while the Face-expert model shows stronger tuning quality for faces than for scenes. 438 

According to the Feature-Specific Gain Modulation (FSGM) model, attention modulates the 439 
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neuron’s firing by a multiplicative factor applied to the tuning function (43, 44, 55). Given that 440 

the tuning function here is computed over the two categories of images, this operation will lead 441 

to the enhancement of the attended category (target) and the suppression of the ignored 442 

category (distractor). Given the baseline tuning quality findings mentioned above, the 443 

multiplicative nature of the attention amplification further ensures that the attention 444 

enhancement is stronger when it is directed to the image category in which the network is an 445 

expert. Thus, attention is more effective in experts because it operates on neurons that are 446 

already highly tuned towards the object of expertise. This selective tuning, in addition to already 447 

sharpened tuning due to expertise, likely underlie the enhanced effect of attention when the 448 

attended object matches the expertise of a model. Neurophysiological studies of experts and 449 

novices consistently report this phenomenon, highlighting how experts often exhibit increased 450 

activation levels within brain regions relevant to their task and sometimes recruit additional areas 451 

involved in domain-specific processing (23, 26, 56, 57). For instance, Gauthier et al. (1999) found 452 

that car experts showed greater activation in the fusiform face area (FFA) when recognizing cars 453 

compared to novices, indicating specialized processing. Similarly, Maguire et al. (2002) observed 454 

that London taxi drivers, who are experts in navigation, had larger hippocampal volumes and 455 

showed increased activation in this region during navigational tasks. Grabner et al. (2006) 456 

reported that individuals with high mathematical expertise exhibited greater activation in brain 457 

areas associated with arithmetic processing, and McGugin et al. (2014) found that bird and car 458 

experts showed enhanced activation in category-specific regions when recognizing birds and 459 

cars, respectively. These studies collectively suggest that expertise enhances the neural efficiency 460 

and sharpens the tuning curve in favor of features that match its domain of expertise. 461 
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 462 

Population Level Analysis: Representational Similarity of Targets and Distractors 463 

 464 

It has become increasingly clear that visual perception relies on multivariate representations of 465 

visual inputs. Stronger separation between the neural representations of targets and distractors 466 

is crucial for the effectiveness of attentional selection of task-related stimulus information. 467 

Previous studies have demonstrated that efficiency of these mechanisms is heavily influenced by 468 

individual differences in the representation of task-related information (58-61). Specifically, 469 

unique category representations, formed through top-down attentional templates, are pivotal in 470 

guiding the search for targets and suppressing distractors. These templates are shaped by an 471 

individual's experience and expertise, meaning that a person's ability to effectively utilize 472 

attentional mechanisms depends on how well their mental representations align with the task at 473 

hand. 474 

 475 

According to the biased competition model of attention, visual stimuli compete for neural 476 

representation in the brain, and the more similar the targets and the distractors, the stronger the 477 

competition (47, 62, 63). Conversely, the more dissimilar the targets and the distractors, the 478 

weaker the competition, the better the behavioral performance. Our results are consistent with 479 

this. In our study, Representational Similarity Analysis (RSA) revealed that at the multivariate 480 

neural representational level, attentional mechanisms are effective primarily for object 481 

categories that align with the expertise of a model. When attention is directed towards neurons 482 

within a specific layer of a model, this focus sharpens population neural tuning by increasing the 483 
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representational distance between targets and distractors. As the neural features of targets and 484 

distractors become more dissimilar, the competition between them diminishes, thereby 485 

enhancing the potency of attentional mechanisms.  486 

 487 

Recent work by Doostani et al. (47) has shown that sharpened neuronal tuning amplifies the 488 

influence of top-down mechanisms, especially in difficult scenarios where targets and distractors 489 

share common features. Our findings offer direct evidence on the strength of the attentional bias 490 

towards the target such that it increases as neuronal tuning sharpens. Our findings indicate that 491 

this effect is more significant in models with expertise in specific object categories, as expertise 492 

increases the dissimilarity between targets and distractors, thereby sharpening the tuning curve. 493 

This implies that specialized knowledge enhances the ability of attentional mechanisms to 494 

distinguish between similar features. 495 

 496 

Relation with Prior Literature 497 

 498 

The association between perceptual expertise and attention mechanisms has been studied in the 499 

past. It has been reported that expertise has a facilitatory effect on categorization and involves 500 

deployment of top-down mechanisms to engage object processing as: (1) Engagement of 501 

attention transcends lower-level features of the object and prioritizes them based on their 502 

content (64, 65). Bukach et al. (2006) demonstrated that experts in face recognition could 503 

categorize faces more efficiently than novices, suggesting that expertise enhances the ability to 504 

process complex visual stimuli. Similarly, van der Linden et al. (2014) found that expert 505 
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radiologists could detect abnormalities in medical images more accurately, indicating that 506 

expertise involves sophisticated attentional mechanisms. (2) Expertise entails top-down activity 507 

crucial for evaluating and recognizing pertinent stimulus features (29, 66). Harel et al. (2010) 508 

showed that experts in visual search tasks could quickly identify target objects among distractors, 509 

highlighting the role of top-down processes in expertise. Reddy et al. (2007) found that expert 510 

athletes could anticipate the actions of opponents more effectively, demonstrating the 511 

importance of top-down attention in dynamic environments. (3) Studies have also shown that 512 

experts exhibit differences in attentional selection and interacting with objects that are relevant 513 

to them. Stokes (2021) reported that expert musicians could focus on relevant musical elements 514 

more efficiently than novices, indicating differences in attentional selection. Kundel et al. (2007) 515 

found that expert radiologists took less time to fixate on abnormalities in medical images, 516 

suggesting that expertise leads to faster identification of relevant features. Vogt & Magnussen 517 

(2016) observed that expert chess players had shorter saccades and fewer fixations when 518 

analyzing chess positions, indicating more efficient visual processing. This suggests that experts 519 

possess a rapid sensitivity to holistic features of the stimulus array, indicating that their 520 

attentional processes are more efficient and diagnostically relevant to the task. Our findings 521 

extend upon prior work, by delving into the intricate interplay between biologically inspired 522 

attention mechanisms and the intricate architecture of neural networks, and their predisposition 523 

to knowledge. Also, our work helps by aligning network behaviors with established neural 524 

processes, making it easier to decipher the rationale behind network decisions, fostering 525 

robustness, transparency, and development of more interpretable DNNs. 526 
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Summary 527 

 528 

This study was aimed at understanding the association between attention mechanisms and 529 

perceptual expertise. We used deep neural networks as models of the ventral visual pathway of 530 

the brain for this purpose. Our findings indicate that when a deep neural network is subjected to 531 

complex tasks, its performance can be enhanced by introducing attentional mechanisms, and the 532 

effectiveness of this attention enhancement is closely tied to the perceptual expertise developed 533 

in the model, i.e., attention is more effective in a model when the task is within the model’s 534 

domain of expertise.  Mechanisms at the individual neuronal response level and at the neural 535 

population level were investigated. Methodologically, investigating neural mechanisms of 536 

perception in deep learning models represents a convergence of AI and neuroscience, offering 537 

(1) a computational platform in which manipulations not practical in empirical experiments can 538 

be carried out and (2) the potential to build more efficient, adaptive, and human-like artificial 539 

intelligence systems. As our understanding of both artificial and biological neural networks 540 

advances, we can expect more refined and effective models to emerge that can better bridge the 541 

gap between artificial and natural intelligence. 542 

 543 

 544 

 545 
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Methods 546 

 547 

The Model 548 

 549 

VGG16 is used as a model of the ventral visual stream (36). VGG16, as shown in Figure 1A, is a 550 

feed forward convolutional neural network with 13 convolutional layers followed by 3 fully 551 

connected layers. In this work, two pretrained VGG 16 models were considered: one pretrained 552 

on the ImageNet dataset and thus an expert in object recognition and the other pretrained on 553 

the VGGFace dataset and was thus an expert in face recognition (37, 38). For the model trained 554 

on the ImageNet dataset, the last layer of the network outputted the labels of 1000 object 555 

categories (92.7% accuracy), whereas for the model trained on the VGGFace dataset, the last 556 

layer outputted the labels of 2622 individual faces (98.95% accuracy). In this work, the network 557 

weights connecting the first 15 layers of the VGG 16 models were taken from (36) and from (38), 558 

respectively, and kept unchanged (frozen). The last layer was replaced by a layer with output 559 

suitable for our paradigms (see below). The weights connecting the paradigm-specific last layer 560 

and the layer preceding it were trained using the datasets described below according to the goals 561 

of the paradigm.  562 

 563 

 564 

 565 
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Image Category Detection Task 566 

 567 

The models were presented with images containing objects from two categories: faces (male 568 

faces & female faces) and scenes (natural scenes & manmade scenes). The model’s task was to 569 

identify in the image the presence or absence of objects from one out of the two categories (e.g., 570 

is there a face in the image?). To accomplish this binary classification, we replaced the final 571 

SoftMax layer of the original pretrained VGG16 models with a layer containing a series of binary 572 

classifiers, with each classifier consisting of two units capable of signaling the “presence” or 573 

“absence” of the to-be-detected category (Figure 1B). Specifically, the Face-expert has two 574 

associated binary classifiers with one detecting the presence and absence of a face in the input 575 

and one detecting the presence and absence of a scene in the input, and the Scene-expert also 576 

has two associated binary classifiers that perform the same tasks. 577 

 578 

To train the binary classifiers, we used a separate set of training and testing data, sourced from 579 

different image repositories (39-41), which did not overlap with ImageNet or VGGFace datasets. 580 

The dataset consisted of 200 faces and 200 scenes (224x224 pixel RGB images); see Figure 1C for 581 

examples. We used 160 faces and 160 scenes for training and the remaining 40 faces and 40 582 

scenes for testing. During the training of the binary classifiers, depending on the category to be 583 

detected, there were always 160 true positives from the category along with 160 true negatives 584 

from the other category. The classification performances reported here were achieved by 585 

implementing logistic regression in the binary classifiers.  586 

 587 
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Once the binary classifiers were trained, they were tested separately on regular as well as 588 

superimposed images. When the input to the network model was a regular image, the network’s 589 

task was the same as the task it was trained on, namely, to detect the presence or absence of a 590 

particular category in the input image. To challenge the model, besides using regular images, we 591 

introduced superimposed images to make the task more difficult. The superimposed images 592 

were created by transparently superimposing two images either from the same category or from 593 

different categories (by taking the mathematical average of the corresponding pixels of the two 594 

images). There were three types of superimposed images: (1) face over face, (2) scene over scene, 595 

and (3) face over scene (which is equivalent to scene over face). For detecting the presence or 596 

absence of a face, (1) and (3) were true positives whereas (2) were true negatives. For detecting 597 

the presence or absence of a scene, (2) and (3) were true positives whereas (1) were true 598 

negatives. The test images were balanced with 50% true positives and 50% true negatives; a total 599 

of 40 positive images and 40 negative images were used for testing. 600 

 601 

It is expected that the detection accuracy for superimposed images would decline significantly 602 

relative to regular images. This scenario then provided us the opportunity to apply feature-based 603 

attention to enhance the detection performance and test whether such enhancement depends 604 

on the expertise of the network. We expected that for the Face-expert, applying attention to face 605 

would enhance face detection performance more than applying attention to scene would scene 606 

detection performance, and that for the Scene-expert, the opposite is true.  607 

 608 
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Attention Modulation of Neuronal Responses 609 

 610 

The main goal of this study was to examine how attention interacts with perceptual expertise in 611 

a deep neural network model of the ventral visual stream. Specifically, we implemented the 612 

feature similarity gain modulation (FSGM) model of feature-based attention, following the 613 

procedures of (1). To apply this attention mechanism, we calculated the extent to which each 614 

neuron in a model (Scene-expert or Face-expert) preferred a certain object category, i.e., their 615 

tuning values. Here the term neuron was used to refer to a filter or a feature map in the model. 616 

Since feature-based attention is a spatially global phenomenon (1, 67), the responses from all the 617 

neural units within a filter were averaged to become the response of the filter or neuron. We 618 

implemented attention by modulating the slope of the ReLu function of the units within a filter 619 

according to the filter’s tuning function. 620 

 621 

Calculation of Tuning Values 622 

 623 

To determine the tuning function of each neuron, we presented the model with the regular 624 

images from the two categories (the same set of images of 160 faces and 160 scenes) used for 625 

training the binary classifiers) and measured the relative activity levels of the units within the 626 

filter. As indicated above, considering that feature-based attention is nonspatial (1, 67), we 627 

treated the activity levels of all units within a filter identically and calculate its tuning by z-scoring 628 

their activity across categories using the following equations: 629 

    630 
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𝑟̅lk =
1

𝑁
 ∑ 𝑟𝑙𝑘

𝑁

𝑛 = 1

(𝑛) 631 

 632 

 633 

𝑓𝑐
𝑙𝑘 =

1
𝑁𝐶

∑ 𝑟𝑙𝑘(𝑛) − 𝑟̅𝑙𝑘
𝑐∈[1,2] 

√1
𝑁

∑ (𝑟𝑙𝑘(𝑛) − 𝑟̅𝑙𝑘)2𝑁
𝑛=1

 634 

 635 

 636 

Specifically, for the kth neuron in the lth layer, rlk(n) is defined as the mean activity of all units in 637 

the filter in response to nth image. Finally, by taking the mean across all these values for the 638 

training set images (Nc = 160 images per category, c = cth category with c = 1 or 2 because there 639 

are 2 categories in total; N = 2 x 160 = 320), we get the mean activity of the neuron 𝑟̅𝑙𝑘. The 640 

tuning value for each neuron for a given category is the z-scored mean activity with respect to 641 

the mean activity of the unit for all images. Put it simply, tuning value for a certain category for a 642 

neural unit is the average activity of the unit in response to the images from the category 643 

subtracting the mean activity across all images and divided by the standard deviation of the 644 

activity across all images. Calculated across the two categories, we get a 2-dimensional vector of 645 

values 𝑓𝑐
𝑙𝑘, which is the tuning function of each neuron used to implement attention. To find the 646 

preferred category of a neural unit, we designate the category with the larger tuning value as its 647 

preferred category. Tuning quality for a certain neuron is defined as the maximum tuning value 648 

of that neural unit i.e., max (|𝑓𝑐
𝑙𝑘|). Tuning quality is a measure of the extent of how strong a 649 

certain neuron prefers its most preferred category. 650 
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 651 

Implementation of Feature Based Attention 652 

 653 

We implemented FSGM attention model in its multiplicative and bidirectional form across the 654 

layers in the two networks. To apply attention at a unit from neuron k in layer l and for category 655 

c, we modulated the slope of the corresponding rectified linear unit (ReLu) by the tuning value 656 

of that category c, weighted by a strength parameter ß (varied from 0 to 20 in increments of 0.1.  657 

 658 

𝑥𝑖𝑗
𝑙𝑘 = (1 + 𝛽𝑓𝑐

𝑙𝑘)[(𝑥 − 1)𝑚𝑛
𝑙𝑘 ]+ 659 

 660 

where  𝑥𝑖𝑗
𝑙𝑘  is the unit response at (i, j)th spatial location in the kth neuron of the lth layer, []+ is the 661 

ReLu function. (𝑥 − 1)𝑚𝑛
𝑙𝑘  represents the activity of the (m,n)th unit from the preceding layer. 662 

 663 

Tuning Quality Analysis 664 

 665 

As mentioned previously, tuning quality was defined as the magnitude of the maximum tuning 666 

value of a neuron: max (|𝑓𝑐
𝑙𝑘|). Consequently, it was a measure of the relative strength of the 667 

neuron’s preference towards its favored object category. It is reasonable to expect that for the 668 

Face-expert, the tuning quality for face stimuli will be higher than that for scene stimuli, whereas 669 

for the Scene-expert, the tuning quality for scene stimuli will be higher than that for face stimuli.  670 

For quantitative analysis, since there were unequal numbers of neurons selective to each 671 

category in a layer, we performed a comprehensive statistical assessment. This involved 672 
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subjecting the layer-wise tuning quality distributions of the two models focusing on the 673 

categories – faces and scenes, to Shapiro-Wilk normality and Levane’s variance tests. The results 674 

of the Shapiro-Wilk test revealed a substantial deviation from the assumption of normality, 675 

consistently observed across layers (except layers 1-3 and layer 13) and model variations (p < 676 

0.001). Furthermore, acknowledging this deviation, Levane’s test indicated the presence of 677 

uneven variances in both distributions (p < 0.001, spanning all layers in both models). Therefore, 678 

the two distributions were compared using Welch’s t-tests, FDR corrected for multiple 679 

comparisons. 680 

 681 

Representational Similarity Analysis (RSA) 682 

 683 

For each model and its individual layers, we calculated the output activity of the neurons present 684 

in each layer for every image. These neural representations were then analyzed using a 685 

Representational Similarity Analysis (RSA) that consisted of two primary steps. Firstly, we 686 

generated separate Representational Dissimilarity Matrices (RDMs) for each model type (Figure 687 

6A), obtaining one RDM per layer. These matrices were based on the distinct patterns of 688 

activation that each image elicited, categorized separately for each object category. Secondly, 689 

employing a theoretical RDM illustrated in Figure 6B, we captured the idealized maximum 690 

possible divergence between the two categories. Lastly, we computed the representational 691 

similarity by calculating the rank-ordered Spearman correlation between the theoretical RDM 692 

and the RDM for each layer of the VGG16 model.  693 

 694 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.617743doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.617743
http://creativecommons.org/licenses/by-nc/4.0/


 38 

For each model, we subjected it to all possible regular images and extracted the activation 695 

patterns across all neurons for each layer. This was done separately for each face (total=160) and 696 

scene image (total=160). The activation pattern for each image was then transformed into a one-697 

dimensional vector. To assess dissimilarity between these vectors, we calculated one minus the 698 

Pearson's correlation coefficient for every pair of vectors. This process resulted in the generation 699 

of 320 x 320 sized Representational Dissimilarity Matrices (RDMs) for each layer, model variant, 700 

and image category (face and scene), amounting to a total of 13 x 2 matrices. Within each RDM, 701 

the cells contained dissimilarity values (1 - r) representing the dissimilarity in neural 702 

representations between pairs of images. Subsequently, a theoretical RDM was constructed to 703 

match the dimensions of the VGG16 model layer’s RDMs (320 x 320). In this theoretical RDM, the 704 

cells in the top-left 160 x 160 and bottom-right 160 x 160 sections along the diagonal were 705 

assigned a value of 0, while all other cells were assigned a value of 1 (Figure 6B). This 706 

configuration indicated minimum dissimilarity (0) for images within the same category (e.g., face 707 

vs face or scene vs scene), and maximum dissimilarity (1) for images belonging to different 708 

categories (e.g., face vs. scene or scene vs. face). This method allowed for a systematic 709 

comparison of dissimilarity between different categories and facilitated the evaluation of the 710 

model's ability to distinguish between faces and scenes at various layers.  711 

 712 

Finally, representational similarities were computed as the rank-ordered Spearman correlation 713 

between each RDM from layers of the two models and the theoretical RDM. This process resulted 714 

in a set of similarity values (13x2), corresponding to each layer and model of expertise. To cross 715 

validate across our test set, we used a bootstrapping technique to assess the statistical 716 
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significance of these values. We generated 100 test image sets with replacement, recalculating 717 

representational similarity for each sample. This process yielded an empirical distribution of 718 

these values, along with bootstrapped mean estimations and 95% confidence intervals. To 719 

identify significant differences in the mean similarity values across object categories, we 720 

employed a p-value threshold of 0.05. We rejected the null hypothesis if the confidence interval 721 

did not include 0. Furthermore, we subjected the results across layers to FDR correction to 722 

account for multiple comparisons across layers.  723 

 724 

RSA with attention  725 

 726 

We repeated the same RSA analysis procedure described above when attention was applied at 727 

each layer individually to neurons that prefer faces or scenes (Figure 6E & F). Specifically, 728 

attention was modeled by amplifying the activation of specific units that exhibited a stronger 729 

response to either faces or scenes within each layer of a model (separately for the scene-expert 730 

and face-expert model). The attention-modulated activations were then processed similarly to 731 

the unmodulated activations: we calculated the output activity of each regular image, generated 732 

RDMs, and performed RSA by correlating these attention-modulated RDMs with the theoretical 733 

RDM.  734 

 735 

 736 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.617743doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.617743
http://creativecommons.org/licenses/by-nc/4.0/


 40 

Acknowledgements 737 

 738 

This work was supported by NIH grant MH117991, NSF grant BCS2318886, and NSF grant 739 

BCS2318984. We are grateful to Joy Geng, John Henderson, Ruogu Fang, Randall O’Reilly, Lee 740 

Miller, and the members of our labs for their helpful comments and advice.  741 

  742 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.617743doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.617743
http://creativecommons.org/licenses/by-nc/4.0/


 41 

References 743 

1. Lindsay GW, Miller KD. How biological attention mechanisms improve task performance in a large-scale visual system 744 
model. eLife2018. p. 1-29. 745 
2. Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, et al. Show, Attend and Tell: Neural Image Caption Generation 746 
with Visual Attention. In: Francis B, David B, editors. Proceedings of the 32nd International Conference on Machine Learning; 747 
Proceedings of Machine Learning Research: PMLR; 2015. p. 2048--57. 748 
3. Cao C, Liu X, Yang Y, Yu Y, Wang J, Wang Z, et al. Look and Think Twice: Capturing Top-Down Visual Attention 749 
with Feedback Convolutional Neural Networks.  2015 IEEE International Conference on Computer Vision (ICCV)2015. p. 2956-750 
64. 751 
4. Yang X, Yan J, Wang W, Li S, Hu B, Lin J. Brain-inspired models for visual object recognition: an overview. Artificial 752 
Intelligence Review. 2022;55(7):5263-311. 753 
5. Kanwisher N, Gupta P, Dobs K. CNNs reveal the computational implausibility of the expertise hypothesis. iScience. 754 
2023;26(2). 755 
6. Cadena SA, Denfield GH, Walker EY, Gatys LA, Tolias AS, Bethge M, et al. Deep convolutional models improve 756 
predictions of macaque V1 responses to natural images. PLOS Computational Biology. 2019;15(4):e1006897. 757 
7. Bonner MF, Epstein RA. Computational mechanisms underlying cortical responses to the affordance properties of visual 758 
scenes. PLOS Computational Biology. 2018;14(4):e1006111. 759 
8. Yamins DLK, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ. Performance-optimized hierarchical models 760 
predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences of the United States of 761 
America2014. p. 8619-24. 762 
9. Mohsenzadeh Y, Mullin C, Lahner B, Oliva A. Emergence of Visual Center-Periphery Spatial Organization in Deep 763 
Convolutional Neural Networks. Scientific Reports. 2020;10(1). 764 
10. Wallis TSA, Funke CM, Ecker AS, Gatys LA, Wichmann FA, Bethge M. A parametric texture model based on deep 765 
convolutional features closely matches texture appearance for humans. Journal of Vision. 2017;17(12):5. 766 
11. Kuperwajs I, Schütt HH, Ma WJ. Using deep neural networks as a guide for modeling human planning. Scientific 767 
Reports. 2023;13(1). 768 
12. Peterson JC, Abbott JT, Griffiths TL. Evaluating (and Improving) the Correspondence Between Deep Neural Networks 769 
and Human Representations. Cognitive Science. 2018;42(8):2648-69. 770 
13. Jang H, McCormack D, Tong F. Noise-trained deep neural networks effectively predict human vision and its neural 771 
responses to challenging images. PLoS Biol. 2021;19(12):e3001418. 772 
14. Kell AJE, Yamins DLK, Shook EN, Norman-Haignere SV, McDermott JH. A Task-Optimized Neural Network 773 
Replicates Human Auditory Behavior, Predicts Brain Responses, and Reveals a Cortical Processing Hierarchy. Neuron: Elsevier 774 
Inc.; 2018. p. 630-44.e16. 775 
15. Ivet Rafegasa MV, Lu ́ıs A. Alexandreb, Guillem Ariasa. Understanding Trained CNNs by Indexing Neuron Selectivity. 776 
2019. 777 
16. Ratan Murty NA, Bashivan P, Abate A, DiCarlo JJ, Kanwisher N. Computational models of category-selective brain 778 
regions enable high-throughput tests of selectivity. Nat Commun. 2021;12(1):5540. 779 
17. VanRullen R. Reconstructing faces from fMRI patterns using deep generative neural networks. 2019. 780 
18. Mcgugin RW, Van Gulick AE, Tamber-Rosenau BJ, Ross DA, Gauthier I. Expertise Effects in Face-Selective Areas are 781 
Robust to Clutter and Diverted Attention, but not to Competition. Cerebral Cortex. 2015;25(9):2610-22. 782 
19. Bukach CM, Phillips WS, Gauthier I. Limits of generalization between categories and implications for theories of 783 
category specificity. Attention, Perception & Psychophysics. 2010;72(7):1865-74. 784 
20. Brefczynski-Lewis JA, Lutz A, Schaefer HS, Levinson DB, Davidson RJ. Neural correlates of attentional expertise in 785 
long-term meditation practitioners. Proceedings of the National Academy of Sciences. 2007;104(27):11483-8. 786 
21. Wong YK, Folstein JR, Gauthier I. The nature of experience determines object representations in the visual system. 787 
Journal of Experimental Psychology: General. 2012;141(4):682-98. 788 
22. Zhang T, Dong M, Wang H, Jia R, Li F, Ni X, et al. Visual expertise modulates baseline brain activity: a preliminary 789 
resting-state fMRI study using expertise model of radiologists. BMC Neuroscience. 2022;23(1). 790 
23. Gauthier I, Tarr MJ, Anderson AW, Skudlarski P, Gore JC. Activation of the middle fusiform 'face area' increases with 791 
expertise in recognizing novel objects. Nature Neuroscience. 1999;2(6):568-73. 792 
24. Wong AC-N, Palmeri TJ, Gauthier I. Conditions for Facelike Expertise With Objects. Psychological Science. 793 
2009;20(9):1108-17. 794 
25. Xu Y. Revisiting the Role of the Fusiform Face Area in Visual Expertise. Cerebral Cortex. 2005;15(8):1234-42. 795 
26. Mcgugin RW, Newton AT, Gore JC, Gauthier I. Robust expertise effects in right FFA. Neuropsychologia. 2014;63:135-796 
44. 797 
27. Gauthier I, Skudlarski P, Gore JC, Anderson AW. Expertise for cars and birds recruits brain areas involved in face 798 
recognition. Nature Neuroscience. 2000;3(2):191-7. 799 
28. Stokes D. On perceptual expertise. Mind & Language. 2021;36(2):241-63. 800 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.617743doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.617743
http://creativecommons.org/licenses/by-nc/4.0/


 42 

29. Harel A, Gilaie-Dotan S, Malach R, Bentin S. Top-Down Engagement Modulates the Neural Expressions of Visual 801 
Expertise. Cerebral Cortex. 2010;20(10):2304-18. 802 
30. Kok EM, Sorger B, Van Geel K, Gegenfurtner A, Van Merriënboer JJG, Robben SGF, et al. Holistic processing only? 803 
The role of the right fusiform face area in radiological expertise. PLOS ONE. 2021;16(9):e0256849. 804 
31. Martens F, Bulthé J, van Vliet C, Op de Beeck H. Domain-general and domain-specific neural changes underlying visual 805 
expertise. NeuroImage. 2018;169:80-93. 806 
32. Bilalic M, Langner R, Ulrich R, Grodd W. Many Faces of Expertise: Fusiform Face Area in Chess Experts and Novices. 807 
Journal of Neuroscience. 2011;31(28):10206-14. 808 
33. Stokes D. On perceptual expertise. Mind & Language. 2020;36(2):241-63. 809 
34. Richler JJ, Wong YK, Gauthier I. Perceptual Expertise as a Shift From Strategic Interference to Automatic                Holistic 810 
Processing. Current Directions in Psychological Science. 2011;20(2):129-34. 811 
35. Kanwisher N, Gupta P, Dobs K. CNNs Reveal the Computational Implausibility of the Expertise Hypothesis. iScience. 812 
2023. 813 
36. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint 814 
arXiv:14091556. 2014. 815 
37. Deng J, Dong W, Socher R, Li L-J, Kai L, Li F-F. ImageNet: A large-scale hierarchical image database.  2009 IEEE 816 
Conference on Computer Vision and Pattern Recognition2009. p. 248-55. 817 
38. Parkhi OM, Vedaldi A, Zisserman A. Deep Face Recognition.  Procedings of the British Machine Vision Conference 818 
20152015. p. 41.1-.12. 819 
39. Burge J, Geisler WS. Optimal defocus estimation in individual natural images. Proceedings of the National Academy of 820 
Sciences. 2011;108(40):16849-54. 821 
40. Wennekers T, Dhamecha TI, Singh R, Vatsa M, Kumar A. Recognizing Disguised Faces: Human and Machine 822 
Evaluation. PLoS ONE. 2014;9(7). 823 
41. Paterson K, Brodeur MB, Guérard K, Bouras M. Bank of Standardized Stimuli (BOSS) Phase II: 930 New Normative 824 
Photos. PLoS ONE. 2014;9(9). 825 
42. Treue S, Trujillo JCM. Feature-based attention influences motion processing gain in macaque visual cortex. Nature. 826 
1999;399(6736):575-9. 827 
43. McAdams CJ, Maunsell JHR. Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque 828 
Cortical Area V4. The Journal of Neuroscience. 1999;19(1):431-41. 829 
44. Lee J, Maunsell JHR. The Effect of Attention on Neuronal Responses to High and Low Contrast Stimuli. Journal of 830 
Neurophysiology. 2010;104(2):960-71. 831 
45. Compte A, Wang X-J. Tuning Curve Shift by Attention Modulation in Cortical Neurons: a Computational Study of its 832 
Mechanisms. Cerebral Cortex. 2006;16(6):761-78. 833 
46. Haenny PE, Schiller PH. State dependent activity in monkey visual cortex. Experimental Brain Research. 834 
1988;69(2):225-44. 835 
47. Doostani N, Hossein-Zadeh G-A, Cichy RM, Vaziri-Pashkam M. Attention Modulates Human Visual Responses to 836 
Objects by Tuning Sharpening. 2023. 837 
48. Ling S, Liu T, Carrasco M. How spatial and feature-based attention affect the gain and tuning of population responses. 838 
Vision Research. 2009;49(10):1194-204. 839 
49. Cohen MA, Konkle T, Rhee JY, Nakayama K, Alvarez GA. Processing multiple visual objects is limited by overlap in 840 
neural channels. Proceedings of the National Academy of Sciences. 2014;111(24):8955-60. 841 
50. Kiat JE, Luck SJ, Beckner AG, Hayes TR, Pomaranski KI, Henderson JM, et al. Linking patterns of infant eye movements 842 
to a neural network model of the ventral stream using representational similarity analysis. Developmental Science. 2022;25(1). 843 
51. Diedrichsen J, Khaligh-Razavi S-M, Kriegeskorte N. Deep Supervised, but Not Unsupervised, Models May Explain IT 844 
Cortical Representation. PLoS Computational Biology. 2014;10(11). 845 
52. Peelen MV, Kastner S. A neural basis for real-world visual search in human occipitotemporal cortex. Proceedings of the 846 
National Academy of Sciences. 2011;108(29):12125-30. 847 
53. Noah S, Powell T, Khodayari N, Olivan D, Ding M, Mangun GR. Neural Mechanisms of Attentional Control for Objects: 848 
Decoding EEG Alpha When Anticipating Faces, Scenes, and Tools. Journal of Neuroscience2020. p. 4913-24. 849 
54. Folstein JR, Monfared SS, Maravel T. The effect of category learning on visual attention and visual representation. 850 
Psychophysiology. 2017;54(12):1855-71. 851 
55. Reynolds JH, Chelazzi L. Attentional Modulation of Visual Processing. Annual Review of Neuroscience. 852 
2004;27(1):611-47. 853 
56. Grabner RH, Neubauer AC, Stern E. Superior performance and neural efficiency: The impact of intelligence and 854 
expertise. Brain Research Bulletin. 2006;69(4):422-39. 855 
57. Maguire EA, Valentine ER, Wilding JM, Kapur N. Routes to remembering: the brains behind superior memory. Nature 856 
Neuroscience. 2002;6(1):90-5. 857 
58. Wolfe JM. Guided Search 2.0 A revised model of visual search. Psychonomic Bulletin & Review. 1994;1(2):202-38. 858 
59. Williams M, Becker SI. Determinants of Dwell Time in Visual Search: Similarity or Perceptual Difficulty? PLoS ONE. 859 
2011;6(3). 860 
60. Hout MC, Goldinger SD. Target templates: the precision of mental representations affects attentional guidance and 861 
decision-making in visual search. Attention, Perception, & Psychophysics. 2014;77(1):128-49. 862 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.617743doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.617743
http://creativecommons.org/licenses/by-nc/4.0/


 43 

61. Lee J, Geng JJ. Idiosyncratic Patterns of Representational Similarity in Prefrontal Cortex Predict Attentional 863 
Performance. The Journal of Neuroscience. 2017;37(5):1257-68. 864 
62. Sabine Kastner MAP, Peter De Weerd, Robert Desimone, and Leslie G. Ungerleider. Increased Activity in Human Visual 865 
Cortex during Directed Attention in the Absence of Visual Stimulation. 1999. 866 
63. Reynolds JH, Chelazzi L, Desimone R. Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4. The 867 
Journal of Neuroscience. 1999;19(5):1736-53. 868 
64. Bukach CM, Gauthier I, Tarr MJ. Beyond faces and modularity: the power of an expertise framework. Trends in 869 
Cognitive Sciences. 2006;10(4):159-66. 870 
65. van der Linden M, Wegman J, Fernández G. Task- and Experience-dependent Cortical Selectivity to Features Informative 871 
for Categorization. Journal of Cognitive Neuroscience. 2014;26(2):319-33. 872 
66. Reddy L, Kanwisher N. Category Selectivity in the Ventral Visual Pathway Confers Robustness to Clutter and Diverted 873 
Attention. Current Biology. 2007;17(23):2067-72. 874 
67. Zhang W, Luck SJ. Feature-based attention modulates feedforward visual processing. Nature Neuroscience. 875 
2008;12(1):24-5. 876 
 ADDIN  ADDIN  877 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.617743doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.617743
http://creativecommons.org/licenses/by-nc/4.0/

	Perceptual Expertise and Attention: An Exploration using Deep Neural Networks
	Soukhin Das1,2, G.R. Mangun1,2,4, Mingzhou Ding3
	Abstract
	Introduction
	Results
	Overview
	Experimental Paradigms and Model Performance
	Attention Modulation of Model Performance
	Potential Mechanisms of Enhanced Effectiveness of FBA in Expert Networks
	Representational Similarity Reveals Feature Separation in Models

	Discussion
	The interplay of expertise and attentional bias
	Expert Versus Novice: Unit Level Analysis of Object Based Attentional Enhancement
	Population Level Analysis: Representational Similarity of Targets and Distractors
	Relation with Prior Literature

	Summary
	Methods
	The Model
	Image Category Detection Task
	Attention Modulation of Neuronal Responses
	Calculation of Tuning Values
	Implementation of Feature Based Attention
	Tuning Quality Analysis
	Representational Similarity Analysis (RSA)
	RSA with attention

	Acknowledgements
	References

