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A B S T R A C T   

The use of hybrid fibre-reinforced Self-compacting concrete (HFR-SCC) has escalated recently due 
to its significant advantages in contrast to normal concrete such as increased ductility, crack 
resistance, and eliminating the need for compaction etc. The process of determining residual 
strength properties of HFR-SCC after a fire event requires rigorous experimental work and 
extensive resources. Thus, this study presents a novel approach to develop equations for reliable 
prediction of compressive strength (cs) and flexural strength (fs) of HFR-SCC using gene 
expression programming (GEP) algorithm. The models were developed using data obtained from 
internationally published literature having eight inputs including water-cement ratio, tempera-
ture, fibre content etc. and two output parameters i.e., cs and fs. Also, different statistical error 
metrices like mean absolute error (MAE), coefficient of determination 

(
R2) and objective function 

(OF) etc. were employed to assess the accuracy of developed equations. The error evaluation and 
external validation both approved the suitability of developed models to predict residual 
strengths. Also, sensitivity analysis was performed on the equations which revealed that tem-
perature, water-cement ratio, and superplasticizer are some of the main contributors to predict 
residual compressive and flexural strength.   

1. Introduction 

Portland cement concrete (PCC) is a globally used construction material and its annual production is more than 25 billion tons. The 
amount of concrete produced yearly is increasing at the rate of 2.5 % and is expected to reach up to 50 billion tons by 2050 [1]. Cement 
is the most important ingredient of concrete since it is responsible for binding of all concrete constituents. The production of cement is 
an energy intensive process which uses naturally occurring materials like limestone etc. and results in huge CO2 emissions in the 
atmosphere. In fact, cement industry alone accounts for 7 % of the total CO2 released in the atmosphere [2]. The yearly production of 

* Corresponding author. 
** Corresponding author. 

E-mail addresses: WaleedBinInqiad@gmail.com (W. Bin Inqiad), elena.dumitrascu97@stud.etti.upb.ro (E.V. Dumitrascu), robert.dobre@upb.ro 
(R.A. Dobre).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e32856 
Received 21 December 2023; Received in revised form 2 June 2024; Accepted 11 June 2024   

mailto:WaleedBinInqiad@gmail.com
mailto:elena.dumitrascu97@stud.etti.upb.ro
mailto:robert.dobre@upb.ro
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e32856
https://doi.org/10.1016/j.heliyon.2024.e32856
https://doi.org/10.1016/j.heliyon.2024.e32856
http://creativecommons.org/licenses/by-nc/4.0/


Heliyon 10 (2024) e32856

2

cement is also expected to go as high as 6000 million tons by 2050. It is reported that production of one ton of cement releases about 
900 kg CO2 in the atmosphere and results in global warming and climate change [3]. Thus, it is imperative to find sustainable al-
ternatives of PCC to reduce the CO2 emissions in the atmosphere. 

Self-compacting Concrete (SCC) has emerged as a viable alternative to ordinary concrete due to its superior properties. It was 
initially developed in 1980 in Japan but spread throughout the world due to its sustainable advantages. Unlike normal PCC, it flows 
effortlessly through congested reinforcement cages and members of unconventional geometry. It also compacts itself without the need 
of mechanical vibrators which are essential for compaction of normal concrete mixtures. It also resists bleeding and segregation during 
flowing and mixing. The moderate viscosity and low yield stress of SCC mixture ensure optimal compaction without external me-
chanical intervention. SCC offers many other advantages such as high durability and improved surface finish etc [4]. Due to the 
transitioning of world towards sustainable solutions, the importance of finding alternative materials for cement in concrete production 
has also been increased. Industrial by-products like fly ash, ground granulated blast furnace slag, silica fume etc are considered as 
potential cement and aggregate alternatives because these products have cementitious and pozzolanic characteristics [5–7]. The use of 
these products in concrete aid in reducing CO2 emissions and foster a transition towards a sustainable construction industry. 

The desirable properties of SCC can only be accomplished with a good mix design because the mixture composition of SCC and 
quantities of various constituents play a deciding role in achieving segregation resisting and Self-compacting characteristics. The 
mixture composition of SCC requires the use of greater quantities of finer materials like sand or cement to take up the spaces between 
coarse aggregate particles making the mixture denser and more durable. Along with the higher level of fines, several chemical ad-
mixtures are also important to be added in SCC to make the consistency fluid and make it flow through the formwork [8,9]. Since the 
utilization of greater quantities of cement in SCC can increase the cost, researchers have advised to use different industrial wastes in 
place of cement. The addition of these wastes in SCC reduces the cost of SCC, increases durability and workability characteristics, and 
aligns with the agenda of fostering the use of sustainable building materials and promoting a green and environmentally friendly 
concrete industry [5,10–13]. 

1.1. Fibre-reinforced SCC 

SCC exhibits a semi-brittle nature like normal concrete and has a tendency to collapse after the appearance of initial few cracks 
[14]. This property tends to limit its use in the industry [15]. However, SCC can be made ductile by the addition of fibre-reinforcement. 
The addition of fibres increases strain carrying capacity, fresh and hardened properties and resists the progression of cracks [16]. Steel 

Fig. 1. Scientometric analysis based on the co-occurrence of keywords.  
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fibres are most commonly used due to their stiffness and cost effectiveness. Synthetic fibres made from polymers are also added in high 
volumetric ratio due to their immunity against corrosion and low cost compared to steel fibres [17,18]. The randomized arrangement 
of fibres in the SCC matrix helps in transferring stresses across cracks which leads to an improved post-cracking behaviour of the 
concrete [19,20]. Many studies also encouraged the use of a mix of different types of fibres in concrete due to their various benefits 
[21]. The use of fibre-reinforced concrete in precast concrete products, pavements etc and research to study its different properties has 
been increased recently as shown by the scientometric analysis map shown in Fig. 1. This figure shows the integration of studies related 
to concrete composites and different types of fibre reinforcement. The map was developed by using the data of last ten years from 
Scopus database containing keywords “Concrete” and “Fibres”. Then, the collected data was analysed using VOSviewer software based 
on the co-occurrence of keywords. The proportion of articles containing the selected keywords is indicated by the size of the circle and 
the link between different articles is shown by means of lines between the circles. It can be seen from Fig. 1 that is a plenty of research 
attributed to using variety of fibres in concrete ranging from steel, polyvinyl, carbon to natural fibres like coconut fibres and measuring 
mechanical properties like compressive, flexural, and tensile strength of concrete. 

1.2. Concrete exposed to elevated temperatures 

It is possible that concrete may be exposed to elevated temperatures during its service life. The concrete members in places like 
factories, chimneys, airport aprons, chemical producing plants are particularly under the risk to be exposed to elevated temperatures. 
This exposure to high temperature brings about chemical and physical changes in concrete and may result in loss of cs and other 
mechanical properties of concrete. The behaviour of concrete after exposure to high temperature depends on several factors which 
include but are not limited to constituents of the concrete itself, maximum temperature it has been exposed to, heating rate, time of 
exposure, and mechanism adopted to cool the concrete etc [22]. 

The water present in the pores of concrete evaporates at 105oC, thus the hydrated cement paste dehydrates. Also, gypsum, an 
ingredient of cement starts to decompose at temperatures of about 110oC–170oC. Another compound Ca(OH)2 present in cement also 
dehydrates at 400oC and converts to CaO. This conversion liberates the water trapped inside the pores of concrete and results in up to 
30 % volume shrinkage accompanied by significant loss of compressive and flexural strengths [23]. Similarly, at temperatures ranging 
from 180oC to 300oC, the C–S–H compounds commonly called as CSH gel in the hydrated cement paste starts to alter its molecular 
structure and finally decomposes when temperature reaches 700oC. If the fire is extinguished with water intervention, the CaO formed 
by the loss of water reacts again with water to form Ca(OH)2 [24]. Also, high temperatures result in heating of aggregates, thermal 
disconformities in the cement, increase in pore size and porosity etc. This heating and other chemical changes in concrete led to the 
development of cracks and an undesirable loss of mechanical strength as shown in Fig. 2. HFR-SCC can also be exposed to high 
temperatures like any other concrete, and it is important to have an estimate of HFR-SCC properties after its exposure to elevated 
temperatures to make sure that the residual strength of concrete is enough to withstand the loads and the safety of people inhabiting 
the structure made from HFR-SCC is not compromised. 

It is necessary to have a reliable method to compute different mechanical properties of HFR-SCC with a mix of fibres because an 
accurate estimation of mechanical properties of HFR-SCC is essential to foster its use widely. The strength estimation is of particular 
importance if the concrete has been subjected to elevated temperatures and there is a risk of reduction in strength of HFR-SCC. The 
effect of increased temperature on residual mechanical properties of SCC containing steel and synthetic fibres was studied by Sadr-
momtazi et al. [25]. The study investigated the effect of temperature ranging from 23oC to 600oC on SCC mixture blended with stone 
dust. The authors reported that incorporation of steel fibres up to a length of 25 mm resulted in improvement in residual cs and 
prevented the progression of cracks. Similarly, Eidan et al. [26] studied the influence of length and dosage of fibres on strength of SCC 
which was exposed to a temperature of 400oC–600oC and concluded that addition of 12 mm long polypropylene fibres resulted in 
better recovery characteristics. 

1.3. Overview of machine learning (ML) 

Since there is a transition from analogue to artificial intelligence-based systems in almost every industry, it is no wonder that civil 
and materials industry is also making its transition towards intelligence-based designs and methodologies driven by data. Artificial 
intelligence in the realm of civil and structural engineering essentially refers to the amalgamation of advanced ML techniques to 
optimize construction practices, foster sustainable and intelligent design of infrastructure, and improve the overall efficiency and 
accuracy of construction industry. ML is a subset of artificial intelligence which enables computers to recognize and learn patterns from 
the data without explicit guidance from a human and use them to make accurate predictions for future use in return [27]. Deep 

Fig. 2. Effect of increased temperature on concrete.  
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learning (DL) is in turn a type of ML which involves the use of neural networks to learn patterns from the data. The subtypes of artificial 
intelligence are shown in Fig. 3. Various ML techniques like artificial neural networks (ANN) etc. are already common in the field of 
civil engineering. These techniques and several other algorithms are frequently being utilized to estimate different properties of 
concrete composites, soil compaction parameters, slope failure susceptibility etc [28–40]. This research is attributed to utilization of a 
special ML algorithm called GEP to predict residual cs and fs of SCC containing a mix of steel, polypropylene and PVA fibres. 

2. Relevant literature 

In the past few years, the prediction of various properties of concrete composites particularly prediction of strength properties of 
SCC has been increased. It is due to the shift towards sustainable construction practices and significant benefits of SCC over con-
ventional concrete. For example, in 2021 Farooq et al. [41] conducted a study in which the authors made use of a dataset of 300 points 
containing industrial waste as a cement replacement in SCC and used Artificial Neural Network (ANN) and Support Vector Machine 
(SVM) along with GEP to predict cs of SCC. The authors assessed the accuracy by means of error metrices like average error and R2 and 
revealed that GEP was the most accurate algorithm to model cs of SCC. Also, the GEP algorithm resulted in a mathematical expression 
that can be used to predict cs while other two algorithms didn’t yield an expression. Similarly, in 2023, Ghunimat et al. [42] leveraged 
multilayer perceptron (MLP), KNN and radon forest (RF) on an extensive dataset to forecast cs of SCC containing slag and fly ash. The 
results demonstrated a close resemblance between RF and MLP to accurately predict cs and surpassing KNN. The R2 value of both MLP 
and RF was around 0.90 and was 0.81 for KNN. Also, the authors revealed that RF algorithm proved to be resistant to different data 
splitting combinations and maintained its accuracy unlike the other two algorithms. 

In the same way, GEP was utilized by Sonebi et al. to model cs, slump flow and J ring values of pulverized fly ash blended SCC [43]. 
The GEP model was developed using a small dataset of 26 points to provide empirical expressions for calculation of above-listed 
properties of SCC. The error evaluation revealed that GEP accurately predicted every SCC property and had R2 greater than 0.85 
for most of the models. The authors also performed a sensitivity analysis on the GEP based equations and concluded that 
water-to-binder ratio, superplasticizer dosage and quantity of fly ash are some of the main contributors of SCC properties. Moreover, 
de-Prado-Gil et al. [44] utilized several ML algorithms to predict strength of SCC containing recycled aggregates on an extensive 
dataset of 515 points. The analysis demonstrated that RF algorithm performed well than all the other regression algorithms and 
predicted strength values with maximum accuracy and minimal error of 0.712. Also, in a recently conducted study by Mahmood et al. 
[27], the authors developed SCC by incorporating rice husk ash and marble powder as a replacement of cement. The addition of these 
waste materials resulted in cost reduction and improvement in different SCC properties. The authors also utilized the laboratory 
samples to build ML based prediction models for cs of SCC containing fine marble powder and rice husk ash. The authors modelled 
strength after 90 days of SCC using algorithms such as SVM, KNN, XGB etc. and concluded that all algorithms proved to be accurate to 
predict cs of SCC with R2 values greater than 0.9 for most of the cases. The summary of previous related research about the subject of 
SCC properties prediction is given in Table 1. 

Although many studies have been conducted on the subject of predicting strength properties of normal SCC, the area of properties 
prediction of fibre-reinforced SCC is comparatively unexplored. There are very few studies that report findings about fibre-reinforced 
SCC strength prediction. The relevant studies include the study conducted by Mai et al. [55], in which the authors assessed different 
boosting algorithms to predict strength of SCC reinforced with a mix of steel, polypropylene and glass fibres along with different 
admixtures like marble powder, basalt powder, and limestone etc. The study demonstrated that out of all the boosting algorithms 
employed, extreme gradient boosting algorithm proved to be the most accurate depicting the least absolute error of 1.43 MPa between 
real and predicted values. Similarly, Kina et al. [56] utilized deep learning and SVM to estimate cs, fs, and split-tensile strength of SCC 

Fig. 3. Artificial Intelligence (AI) and its subtypes.  
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containing a mix of macro steel and micro synthetic fibres. The authors prepared 24 laboratory samples and measured their strength at 
7, 28 and 90 days, then utilized that data to build ML models and concluded that deep learning predicted the SCC strength reinforced 
with different fibres more accurately than SVM. Moreover in 2021, Kina et al. [57] employed deep learning model to forecast fresh and 
hardened properties of SCC containing a mix of only synthetic fibres. The authors designed 48 SCC mixtures with different proportions 
of fibres and after measuring their strength and other fresh properties, used that data to create a data-driven model. The developed 
model predicted every fresh and hardened property of SCC with more than 90 % accuracy. Given that the subject of prediction of 
fibre-reinforced SCC properties is comparatively unexplored, the studies regarding prediction of residual mechanical properties of 
HFR-SCC after exposure to elevated temperatures are even more scarce. Thus, this study intends to develop empirical equations for 
forecasting cs and fs of HFR-SCC. 

3. Research significance 

As discussed earlier, SCC is a revolutionary concrete composite which has the ability to replace conventional concrete as a sus-
tainable building material. The incorporation of a mix of natural and synthetic fibres can improve the crack resisting properties of SCC 
and greatly enhance its widespread use. Thus, it is important to have a method for reliably predicting the strength properties of SCC. 
However, there aren’t many studies about properties prediction of HFR-SCC using ML techniques and particularly using genetic 
programming techniques. Also, it is noteworthy that there exists no study to the best of authors knowledge, which reports the pre-
diction of residual properties of HFR-SCC exposed to elevated temperatures using GEP. Thus, this study is a novel attempt to develop 
accurate equations to predict cs and fs of HFR-SCC having temperature as an important input parameter. The advantage of using a 
technique like GEP instead of ANN, RF or XGB is that it represents its output in the form of an empirical equation. The other ML 
algorithms don’t have this ability and thus are frequently categorized as black-box models [58]. In contrast, GEP is a grey-box model 
because it provides transparency and insight into the prediction process in the form of an empirical relationship between input and 
output variables [59]. Also, GEP does not call for the need of optimization of a pre-defined model architecture like in ANN etc, thus 
reducing the time and computing power required to make predictions [60]. 

4. Gene expression programming (GEP) 

John R. Koza introduced genetic programming (GP) for the first time in 1994 [61]. The basic idea of GP revolves around the 

Table 1 
SCC properties prediction by different researchers.  

S. 
No 

Machine learning method Data 
set 

Outputs Year Admixtures References 

1. Neural Networks 111 fʹc 2011 Fly ash 
Bottom ash 

[45] 

2. Inverse Gaussian 
Extreme Gradient Boosting Extremely Randomized Trees Poisson 
Gaussian 

515 fʹc 2022 Fly ash [46] 

3. Multivariate adaptive regression splines 
M5′ algorithm 

114 fʹc 
V-funnel time 
L-box ratio 
Slump flow 

2018 Fly ash [47] 

4. Support Vector Machine 327 fʹc 2023 Fly ash [48] 
5. Genetic Programming 26 fʹc 

Slump flow 
J Ring 

2009 Fly ash [49] 

6. Multivariate Regression 63 fʹc 
Modulus of Elasticity 
Flexural Strength 

2020 Silica fume 
Crumb rubber 

[50] 

7. Artificial Neural Network 114 fʹc 
Slump flow 
V-funnel time 
L-box ratio 

2016 Fly ash [51] 

8. Extreme Learning Machine 
Long short-term memory 

48 Slump flow 
J Ring 

2021 Slag 
Fly ash 
Limestone 
powder 
Silica fume 

[52] 

9. Neural Networks 
Support Vector Machine 

85 fʹc 2022 Fly ash 
Silica fume 

[53] 

10. Multilayer perceptron network 
Random Forest 

1030 fʹc 2022 Fly ash 
Slag 

[42] 

11. Deep Learning 
Support Vector Regression 

24 fʹc 
Splitting tensile 
strength 

2021 Fly ash 
Silica fume 

[54]  
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amalgamation of natural selection and genetics concept [62]. It utilizes non-linear parse trees in place of binary strings of a pre-defined 
length and this attribute makes it a useful and versatile instrument to solve mathematical modelling problems. GP makes use of 
Darwin’s theory of evolution and its functioning is very similar to the genetic processes of recombination, mutation, and crossover in 
humans [61]. It develops models on the basis of genetic evaluation by combining regression and natural selection techniques. These 
processes help the model to converge to the solution and to remove the sets of least accuracy through the whole evolutionary process 
[63]. 

GEP is a sub technique and modification of GP concept based on the evolutionary population algorithm [64]. It outperforms GP 
because it uses parse trees and fixed length chromosomes. GEP uses genes developed using various arithmetic functions known as 
primitive functions of fixed lengths to create expression trees (ETs). An ET is basically a non-linear representation of individuals as 
linear strings having different shapes and sizes but with fixed length [65]. An expression tree contains variables, arithmetic operators, 
and constant values to represent a mathematical expression. Each ET represent a smaller part of the code which can be combined in 
various ways to develop the full code containing solution to the problem. The general representation of ET is given in Fig. 4. An ET has 
different nodes such as root, functional and end nodes as shown in Fig. 4. The expression trees are combined through the genetic 
processes of mutation and crossover. The visual representation of these processes is given in Fig. 4. These processes result in two 
offspring which contain the information from their parent. Crossover involves developing a new offspring by combination of two 
parent trees while mutation means changing an existing parent to get a new offspring [66,67]. 

The evolution of a computer program to solve the problem on hand begins with creating a randomized set of individuals. These 
individuals are called chromosomes and the whole set of chromosomes is named as a population. After the population creation, each 
chromosome is assessed by a pre-determined function called “fitness function” such as average error or R2. The chromosomes with an 
acceptable fitness value are selected to be the part of next population while the worst performing chromosomes are removed from the 
population [62]. This process makes sure that the program eventually converges as close to the real value as possible. This process is 
repeated many times giving rise to several populations each with a slightly better accuracy then the previous one [68]. This process 
allows the algorithm to evolve gradually approaching towards the most feasible solution of highest accuracy [43]. The complete 
sequence of steps followed by GEP algorithm is shown in Fig. 5. The steps outlined in Fig. 4 are repeated over many generations before 
termination of the algorithm at the most accurate solution. 

5. Data collection and analysis 

The collection of data to be used for model development is the most crucial step in the development of a ML-based model. Thus, a 
comprehensive database consisting of 114 data instances for HFR-SCC has been gathered from experimental findings published in 
international literature [15]. The whole dataset has been divided into training (70 %) and testing (30 %) sets in order to make model 
accurate to be used on unseen datasets and not overfitted to the training data [69]. This study considers eight input variables and two 
output variables. The description of these input and output variables along with the statistical description of dataset is given in Table 2. 

The distribution of input and output variable(s) is an important factor to consider while collecting data because the performance of 

Fig. 4. Representation of expression tree and genetic processes.  
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a data-driven model depends upon the distribution of explanatory variables. Thus, the contour plots of input variables with both 
outputs are shown in Fig. 6. Notice from the figure that the input and output variables are spread across a broad range. The contour 
plots give insight into the variation of output variables with variation in a particular input and the frequency distribution curves at 
right and above of the contour plots provide information about the distribution of variables. It is evident from contour plots that the 
output variables are significantly affected by the variation in input variables. These distributions provide a key role in capturing model 
behaviour and developing a robust model because a model developed using a broader range of data will be more accurate and widely 
applicable [70]. 

Fig. 5. GEP algorithm flowchart.  

Table 2 
Descriptive analysis of data.   

Units Symbol Maximum Minimum Mean Standard Deviation 

Water-to-cement ratio kg/m3 A 1.08 0.340 0.688 0.354 
Fly ash kg/m3 B 300 0 126.31 133.73 
Slag kg/m3 C 292.5 0 128.28 145.78 
Fine Aggregate kg/m3 D 973.8 756 820.86 85.85 
Coarse Aggregate kg/m3 E 1143 167.6 720.12 434.21 
Superplasticizer kg/m3 F 22 7.2 12.02 5.13 
Fiber kg/m3 G 83.25 0 32.86 37.29 
Temperature oC H 900 20 376.31 286.9 
Compressive Strength MPa cs 103.6 3.84 48.85 27.16 
Flexural Strength MPa fs 20.98 0.04 5.238 4.28  
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6. Performance assessment 

The developed models using GEP will be checked by means of different error metrices because it is necessary to make sure that the 
models can effectively solve the given problem without abnormally large errors [71]. The metric R2 is frequently used as an indicator 
of model’s general accuracy [72]. However, due to its insensitivity towards some conditions such as a constant value being multiplied 
or divided with the output [73], several other metrices are used alongside it. The metrices MAE and RMSE are described as crucial for 
evaluating a ML based model [71]. MAE measures average error between real and predicted values and RMSE gives an indication of 
presence of larger errors [74]. The two metrices performance index (PI) and objective function (OF) are commonly used as indicators of 
model’s overall performance because they simultaneously consider correlation coefficient, relative root mean squared error, and the 
relative number of data points in both training and testing sets to assign a performance value to the model [75]. Thus, every metric has 

Fig. 6. Contour plots between inputs and outputs.  

W. Bin Inqiad et al.                                                                                                                                                                                                   



Heliyon 10 (2024) e32856

9

its own importance. The employed error metrices, their mathematical formulas, their range and suggested criteria for acceptable 
models are given in Table 3. The criteria given in Table 3 will be used to check the suitability of the resulting equations by GEP. 

7. Results and discussions 

7.1. Compressive strength prediction using GEP 

The GEP algorithm was employed using a software known as GeneXpro Tools. Before starting the actual model creation process, 
there are several fitting parameters of GEP algorithm that need to be selected. These parameters were selected using a trial-and-error 
method in which these parameters were varied across a range of possible values and the combination of parameters which resulted in 
maximum accuracy were selected. The combination of hyperparameters used for cs prediction process is shown in Table 4. Notice that 

Fig. 6. (continued). 
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only simple arithmetic functions are chosen to be included in the final equation as an attempt to keep the resulting equation simple and 
compact. Also, addition is used as linking function. It means that the sub-expressions resulting from each tree were added to get the 
final result. These sub-expression trees are shown in Fig. 7 and the resulting equation for computing cs obtained after summation of 
expressions from each tree is given by Equation (1). The description of variables A,B,C, …etc. used in Equation (1) is given in Table 2. 
Moreover, the description of constants C1,C2,… is also given in Table 5. The prefixes T1,T2,… added with the constants specify the 
tree in which the particular constant is present. 

cs=T1 + T2 + T3 + T4 (1)  

Where. 

T1 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
D + [D − {(− 8.579 − C + 2H) − 0.327H}]

√

T2 =
F
A
−

⎡

⎢
⎢
⎣

̅̅̅̅
H

√
−

(
B
F

)

̅̅̅̅̅̅̅̅
F.A

√

⎤

⎥
⎥
⎦

T3 =

{(
H

− 3.494F

)( ̅̅̅̅̅̅̅̅̅̅̅̅̅
H + H

√ )}

+

̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅
G.B

√
√

T4 =

( ̅̅̅̅̅̅̅̅
H.F

√

(H.G) + (H.E)

)(
− 1059.89d5

5.483 − B

)

7.2. Flexural strength prediction using GEP 

The flexural strength prediction was also done using the same software as cs. The hyperparameters were also varied across the 
permissible range before reaching a combination of parameters which led to the most accurate equation. This combination is given in 
Table 4. The GEP algorithm displayed the result in the form of several expression trees given in Fig. 8. The expression from each tree 
was linked by the chosen linking function, addition in this case to get the final result given by Equation (2) for residual fs prediction of 
HFR-SCC. The description of variables involved in equation (2) and constants involved in expression trees is given in Tables 2 and 5 
respectively. 

fs=T5 + T6 + T7 + T8 (2)  

T5 =
18.347

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(13.169 + B)

√

Table 3 
Summary of error evaluation criteria.  

No. Metric Abbreviation Formula Range Suggested value 

1. Mean absolute error MAE Σ |x − y|
n 

0 to+ ∞ Close to zero 

2. Root mean square error RMSE ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(x − y)2

n

√ 0 to+ ∞ Close to zero 

3. Coefficient of determination R2 
1 −

∑
(x − y)2

∑(
y − ymean

)2 

0 to 1 R2 > 0.8 

4. Performance index PI RRMSE
1 + R 

0 to+ ∞ PI < 0.2 

5. Objective Function OF (nTraining − nTesting

n

)
PITraining + 2

(nTesting

n

)
PITesting  

0 to+ ∞ OF < 0.2  

Table 4 
Hyperparameter settings of GEP.  

Parameters Settings 

cs Prediction fs Prediction 

No. of Chromosomes 30 30 
No. of Genes 10 8 
Head Size 4 4 
Linking Function Addition Addition 
Constants per Gene 10 10 
Functions +, -, x, ÷, sqrt +, -, x, ÷, sqrt  
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T6 =
d7

[G − {(E + D) − D}] − 6.034  

T7 =F +
H

[{(B − G)2.676} − D] − C  

T8 =
̅̅̅̅
A

√

7.3. Error assessment of developed models 

The summary of calculated error metrices for training and testing sets used for cs and fs prediction of HFR-SCC by GEP algorithm is 
given in Table 6. Notice that the R2 values for both datasets for cs and fs prediction are greater than the permissible value of 0.8 which 
is an indication of remarkable accuracy of GEP to accurately predict values. The R2 values are greater for cs prediction than fs. Also, the 
value of performance index is lower in the case of cs prediction. Moreover, the OF value which is an indication of overall performance 
of the model is least for cs. It means that GEP algorithm did a good job in predicting residual cs of HFR-SCC rather than fs. But it is 
noteworthy that the developed model for fs is also accurate with an average error of mere 1.1 MPa. Also, all the other error metrices are 
within the suggested range for fs prediction as they are for cs prediction. The accuracy of models can also be visualized by means of 
scatter plots as shown in Fig. 9. The scatter plot of cs prediction is given in Fig. 9 (a) and it can be seen that the points lie close to the 
ideal fit lines for both training and testing data phases which indicates the accuracy of the algorithm. The linear fit line joins the point 
where there is a 100 % correlation between actual and predicted values and the closer the points are to the linear fit line, the more 
accurate the algorithm is, and vice versa. Also, the residual distribution plot is placed above the scatter plot to provide more insights 

Fig. 7. Expression tree representation of GEP equation to predict compressive strength.  

Table 5 
Result of error evaluation of developed models.  

Name Value 

T1C5 − 8.579 
T3C2 − 3.49 
T4C2 − 1059.89 
T4C3 5.48 
T5C3 5.178 
T5C9 13.169 
T6C3 6.034 
T7C1 2.673  
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into the difference between actual and model predicted values. Residual means the difference between actual, and model predicted 
values and it is important for highlighting the minimum, maximum, and average difference between the actual and predicted values. 
Notice from Fig. 9 (a) that most of the residuals lie in the small range of − 5 to 5 which shows that GEP does not give large errors in 
prediction of cs. Similarly, the scatter plot and corresponding residual distribution plot for fs prediction are given in Fig. 9 (b) and 
notice that the points also lie close to the linear fit line except for a few points. Thus, from the error evaluation summary and scatter 
plots, it can be inferred that GEP proved to be robust to estimate both residual cs and fs of HFR-SCC. 

A common problem which can occur when developing ML models is overfitting. It refers to a condition where a model achieves 
good accuracy on the training data but doesn’t perform well on unseen data [76]. A comparison between the error metrices of training 

Fig. 8. Expression tree representation of GEP equation to predict flexural strength.  

Table 6 
Result of error evaluation of developed models.   

cs fs 

Training Validation Training Validation 

MAE 4.671 4.54 1.07 1.1 
RMSE 5.875 5.649 1.37 1.625 
R2 0.952 0.963 0.89 0.90 
PI 0.058 0.089 0.139 0.147 
OF 0.076 0.154  
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and test phase can provide an indication of overfitting. If the error metrices of testing set are significantly greater than those of training 
set, it indicates that the model is overfitted to the data it is trained on [77] and such model is not suitable to be used practically. 
Regarding the models developed in current study, it can be seen from Table 6 that the testing error metrices of for both cs and fs 
prediction are less than the training ones. It means the models maintained their accuracy when used on test data and have good 
generalization capacity. It further reinforces the robustness of GEP-based equations to accurately predict cs and fs of HFR-SCC. 

Although the accuracy of GEP to model fs and cs of HFR-SCC can be compared by using the values of statistical error metrices given 
in Tables 6 and it is beneficial to have a visual representation of the model’s predictions compared to the experimental values. Thus, 
Fig. 10 represents curve fitting or series plots between real and predicted values for both cs and fs prediction models. These curve 

Fig. 9. Scatter plot between actual and predicted values; (a) cs; (b) fs.  
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fitting plots prove very useful to visualize the predictive capabilities of the model. It is evident from Fig. 10 that GEP predicted accurate 
values of both cs and fs at most of the points. However, GEP failed to accurately predict fs at some points and as a result, the difference 
between actual and predicted values for fs model is large at several points as evidenced by Fig. 10 (b) as compared to the errors in 
predicting cs in Fig. 10 (a). 

7.4. External validation of models 

Table 7 provides the summary of some external validation checks applied on the developed equations to independently validate 
their accuracy. It is evident from Table 7 that the developed equations for fs and cs satisfy all the validation checks. In the table, s or ś  

are used as a description of slope of regression lines passing through the origin and their value must lie between 0.85 and 1.15 for a 
model to be acceptable [78]. Similarly, R2

o represents correlation between real and predicted values and it must be closer to 1 [79]. 
Also, Rm is used to measure the absolute difference between R2

o and R2 [80]. Moreover, the index n is also frequently utilized as an 
external validation check and its value must be less than 0.1 for a good model [81]. 

7.5. Sensitivity analysis (SA) 

The developed equations for cs and fs prediction of HFR-SCC went under SA to gain further insights about the significance of 
different input parameters in predicting the output. It is necessary to carry various explanatory analysis on developed ML models 
because the good performance of a model on training and testing datasets can’t be used as a sole indication of model’s robustness [82]. 
The result of SA of both equations are given in Fig. 11. The description of variables A,B,C,…. etc is already given in Table 2. It can be 
seen from Fig. 11 that the residual fs and cs are most affected by the temperature. This is because exposure to elevated temperature 
results can bring about physical and chemical changes in concrete thus reducing its strength and deteriorating it physically [15]. At 
temperature of about 105oC, water present in the pores of concrete evaporates, also gypsum present in the cement starts decomposing 
at temperatures as low as 110oC. Moreover, at temperature ranging from 400oC to 600oC, the Ca(OH)2 dehydrates and converts into 
CaO, which results in development of shrinkage stains and strength deterioration [83]. Thus, temperature is the most predominant 
factor in estimation of residual mechanical properties of HFR-SCC. After temperature (51 %), water-to-cement ratio (22.6 %) and 
superplasticizer (6.2 %) are the important factors in determining cs of HFR-SCC. In a recent study conducted by Pakzad et al. [84], the 
authors described the profound importance of superplasticizer and water-cement ratio for determining strength of SCC reinforced with 
different types of fibres. The importance of water-cement ratio has also been highlighted in many other studies and it has been listed as 
the top contributing factor for cs and fs of SCC [85,86]. Similarly, the importance of fine materials added to SCC mixture including 
mineral admixtures (fly ash and slag) and fine aggregate has been reported earlier in similar studies [87,88]. Also, Zheng et al. [89] 
documented the role of fibres after mineral admixtures to predict SCC strength. Moreover, Ahmed et al. [90] reported the 

Fig. 10. Series plot of actual and predicted values; (a) compressive strength; (b) flexural strength.  

W. Bin Inqiad et al.                                                                                                                                                                                                   



Heliyon 10 (2024) e32856

15

comparatively lesser role of coarse aggregate in SCC strength determination. Thus, the result of SA aligns perfectly with the real world 
and findings of the previously conducted research. 

7.6. Practical implications of the study 

It is important to highlight the practical implications of such empirical studies to further highlight their importance. It has already 
been discussed in introduction section that SCC has the potential to replace conventional concrete as a feasible alternative due to its 
significant advantages and help in transitioning towards sustainable building materials. The incorporation of fibres in SCC can help 
improve its ductility and post-cracking behaviour. However, the accurate prediction of mechanical properties of HFR-SCC is important 
to foster its widespread use to make precast concrete products and other applications. In case of a fire event, the members made out of 
HFR-SCC can suffer a significant loss in mechanical strength and sometimes the structure can collapse if the residual strength is less 
than the service loads of the structure. Thus, it is important to have an idea of the residual strength of the concrete members to make 
sure that they can withstand their service loads. 

This study was conducted in an attempt to provide empirical equations which can be effectively used by professionals in the fire 
safety industry to get an idea about the residual mechanical properties of HFR-SCC members after their exposure to elevated tem-
perature. The physical properties of HFR-SCC suffer a significant loss in mechanical properties and change in chemical composition 
after a fire event, and the equations developed in this study can be used to know whether the structure has sufficient residual strength 
for safely serving its purpose or not. The use of these equations will escalate the process of determining residual strength by eliminating 
the need of rigorous experimental work and will aid in quick deployment of remedial measures. 

8. Conclusions 

This study was conducted to develop accurate equations to predict residual compressive and flexural strength of HFR-SCC exposed 
to high temperatures using GEP due to the reason that it can represent its output in the form of an empirical equation unlike other 
black-box ML algorithms. The dataset for HFR-SCC collected from literature had a mix of steel and synthetic polypropylene fibres. The 
main conclusions of this study are. 

Table 7 
External validation checks applied on the models.  

Expression Criteria cs fs 

s =

∑n
i=1

(
xi × yi

)

∑n
i=1

(
x2

i
)

0.85 < s < 1.15 0.969 0.941 

ś =

∑n
i=1(xi × y)
∑n

i=1
(
y2

i
)

0.85 < ś  < 1.15 1.02 1.013 

Rm = R2 ×

(

1 −

⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒R2 − R2

o
⃒
⃒

√ ) Rm > 0.5 0.790 0.58 

R2
o = 1 −

∑n
i=1

(
yi − xo

i
)2

∑n
i=1

(
yi − yo

i
)2 , xo

i = s× yi 
R2

o ≈ 1 0.926 0.999 

R =
(n

∑
y − (

∑
x)(

∑
y))

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
n
∑

x2 − (
∑

x)2
)(

n
∑

y2 − (
∑

y)2
)√

R > 0.8 0.977 0.940 

m =
R2 − R2

o
R2

o  

m < 0.1 0.03 − 0.11  

Fig. 11. Relative importance of variables to predict outputs.  
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• GEP algorithm yielded empirical equations for prediction of both residual properties of HFR-SCC and error evaluation of developed 
equations revealed that both are accurate, and errors lie within the suggested criteria.  

• GEP did a good job in predicting residual cs as evident from a testing R2 of 0.96 compared to fs prediction whose testing R2 was 
equal to 0.90. Similarly, cs prediction equation had an OF value of 0.076 demonstrating the superior overall performance of the 
model compared to 0.154 value of for fs prediction.  

• The developed equations also went under some external validation checks which again approved the robustness of both models.  
• Sensitivity analysis was done on both models and the results revealed that temperature is the most significant factor in determining 

residual cs and fs of HFR-SCC followed by water-to-cement ratio, admixtures, and superplasticizer dosage. 

9. Recommendations 

Although this study is a significant contribution to the literature about predicting residual strength of HFR-SCC using ML tech-
niques, it is important to highlight its limitations and give suggestions for future research.  

• The models presented in this study were developed using a dataset of 114 points taken from already published literature. However, 
it is important to consider a larger dataset for future studies to develop more robust prediction models.  

• Different material properties like nominal aggregate size, average length of incorporated fibres, type of superplasticizer used, and 
some other properties like time of exposure to high temperature etc. affect the residual properties of SCC. This study does not 
explicitly incorporate the effect of these factors but recommends considering them in future studies.  

• The models in this study were developed using a data whose range is given in Table 2. For the development of more widely 
applicable models, it is necessary to consider a wider range of data. 
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Appendix  

Table A 
Dataset used for model development.  

No. A B C D E F G H cs fs 

kg/
m3 

kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 oC MPa MPa 

1. 0.444 100 0 764 764 7.2 0 600 21.12 0.54 
2. 0.444 100 0 764 764 7.2 2 600 24 0.64 
3. 0.444 100 0 764 764 7.2 40 600 23.68 0.67 
4. 0.444 100 0 764 764 7.2 55 600 26.65 0.66 
5. 0.444 100 0 764 764 7.2 43 600 27.09 0.72 
6. 0.444 100 0 764 764 7.2 57 600 27.95 0.67 
7. 0.444 100 0 764 764 7.2 0 900 3.84 0.04 
8. 0.444 100 0 764 764 7.2 2 900 6.6 0.05 

(continued on next page) 
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Table A (continued ) 

No. A B C D E F G H cs fs 

kg/
m3 

kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 oC MPa MPa 

9. 0.444 100 0 764 764 7.2 40 900 5.76 0.07 
10. 0.444 100 0 764 764 7.2 55 900 5.85 0.1 
11. 0.444 100 0 764 764 7.2 43 900 6.93 0.12 
12. 0.444 100 0 764 764 7.2 57 900 7.8 0.12 
13. 1.085 0 292.5 756 1143 9 0.2 500 33.6 3.22 
14. 1.085 0 292.5 756 1143 9 0.3 500 34.9 3.11 
15. 1.085 0 292.5 756 1143 9 0.5 500 35.9 2.66 
16. 1.085 0 292.5 756 1143 9 0 750 15.3 0.74 
17. 1.085 0 292.5 756 1143 9 0 750 11.9 0.6 
18. 1.085 0 292.5 756 1143 9 0.1 750 12.4 0.78 
19. 1.085 0 292.5 756 1143 9 0.2 750 12.5 0.71 
20. 1.085 0 292.5 756 1143 9 0.3 750 11.9 0.6 
21. 1.085 0 292.5 756 1143 9 0.5 750 12.7 0.55 
22. 1.085 0 292.5 756 1143 9 0.1 750 12.4 0.92 
23. 1.085 0 292.5 756 1143 9 0.2 750 13 0.82 
24. 1.085 0 292.5 756 1143 9 0.3 750 13.8 0.76 
25. 1.085 0 292.5 756 1143 9 0.5 750 14.1 0.72 
26. 0.444 100 0 764 764 7.2 0 20 64 2.53 
27. 0.444 100 0 764 764 7.2 2 20 60 2.44 
28. 0.444 100 0 764 764 7.2 40 20 64 2.51 
29. 0.444 100 0 764 764 7.2 55 20 65 2.93 
30. 0.444 100 0 764 764 7.2 43 20 63 2.35 
31. 0.444 100 0 764 764 7.2 57 20 65 2.91 
32. 0.444 100 0 764 764 7.2 0 300 53.12 2.1 
33. 0.444 100 0 764 764 7.2 2 300 51.6 2.42 
34. 0.444 100 0 764 764 7.2 40 300 53.76 2.16 
35. 0.444 100 0 764 764 7.2 55 300 59.8 1.51 
36. 0.444 100 0 764 764 7.2 43 300 54.81 1.48 
37. 0.444 100 0 764 764 7.2 57 300 57.85 1.52 
38. 1.085 0 292.5 756 1143 9 0.1 100 42.9 6.04 
39. 1.085 0 292.5 756 1143 9 0.2 100 40.2 6.41 
40. 1.085 0 292.5 756 1143 9 0.3 100 40.1 6.62 
41. 1.085 0 292.5 756 1143 9 0.5 100 37.8 6.46 
42. 1.085 0 292.5 756 1143 9 0.1 100 43.6 6.32 
43. 1.085 0 292.5 756 1143 9 0.2 100 45.4 6.46 
44. 1.085 0 292.5 756 1143 9 0.3 100 46.4 6.77 
45. 1.085 0 292.5 756 1143 9 0.5 100 47.3 6.56 
46. 1.085 0 292.5 756 1143 9 0 300 40.2 4.6 
47. 1.085 0 292.5 756 1143 9 0 300 39.4 4.44 
48. 1.085 0 292.5 756 1143 9 0.1 300 39.4 4.8 
49. 1.085 0 292.5 756 1143 9 0.2 300 38.3 4.84 
50. 1.085 0 292.5 756 1143 9 0.3 300 37.6 4.62 
51. 1.085 0 292.5 756 1143 9 0.5 300 36.4 4.39 
52. 1.085 0 292.5 756 1143 9 0.1 300 39.9 5.2 
53. 1.085 0 292.5 756 1143 9 0.2 300 41 5.12 
54. 1.085 0 292.5 756 1143 9 0.3 300 43.9 5 
55. 1.085 0 292.5 756 1143 9 0.5 300 44.5 4.81 
56. 1.085 0 292.5 756 1143 9 0 500 39 2.22 
57. 1.085 0 292.5 756 1143 9 0 500 35.6 2.35 
58. 1.085 0 292.5 756 1143 9 0.1 500 33.1 2.93 
59. 1.085 0 292.5 756 1143 9 0.2 500 28.7 2.75 
60. 1.085 0 292.5 756 1143 9 0.3 500 27.3 2.42 
61. 1.085 0 292.5 756 1143 9 0.5 500 26.7 2.35 
62. 1.085 0 292.5 756 1143 9 0.1 500 34.6 3.36 
63. 0.34 300 0 949 167.5 19 80 250 101 8.81 
64. 0.34 300 0 929.6 164 18 83.25 250 97.5 9.58 
65. 0.34 300 0 937.7 165.5 18 82.38 250 96.1 9.31 
66. 0.34 300 0 973.8 171.8 15 0 500 60.9 3.16 
67. 0.34 300 0 952 168 16 80 500 79.1 6.12 
68. 0.34 300 0 918.5 162.1 20 83.25 500 64.1 8.47 
69. 0.34 300 0 922.6 162.8 18 82.38 500 63.6 8.28 
70. 0.34 300 0 949.5 167.6 19 80 500 79.3 5.42 
71. 0.34 300 0 914 161.3 22 83.25 500 68.9 8.28 
72. 0.34 300 0 914 161.3 22 82.38 500 67.6 6.97 
73. 0.34 300 0 949 167.5 19 80 500 83.6 5.4 
74. 0.34 300 0 929.6 164 18 83.25 500 71.6 6.53 
75. 0.34 300 0 937.7 165.5 18 82.38 500 71.3 6.41 

(continued on next page) 
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Table A (continued ) 

No. A B C D E F G H cs fs 

kg/
m3 

kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 oC MPa MPa 

76. 0.34 300 0 973.8 171.8 15 0 750 19.4 1.55 
77. 0.34 300 0 952 168 16 80 750 34.4 3.16 
78. 0.34 300 0 918.5 162.8 20 83.25 750 25.7 5.45 
79. 0.34 300 0 922.6 162.8 18 82.38 750 23.8 5.09 
80. 0.34 300 0 949.5 167.6 19 80 750 34.7 2.53 
81. 0.34 300 0 914 161.3 22 83.25 750 30.7 4.61 
82. 0.34 300 0 914 161.3 22 82.38 750 27.2 3.83 
83. 0.34 300 0 949 167.5 19 80 750 36.6 1.95 
84. 0.34 300 0 929.6 164 18 83.25 750 32.9 3.54 
85. 0.34 300 0 937.7 165.5 18 82.38 750 31.7 3.31 
86. 1.085 0 292.5 756 1143 9 0.2 23 54.3 6.6 
87. 1.085 0 292.5 756 1143 9 0.3 23 50 6.69 
88. 1.085 0 292.5 756 1143 9 0.6 23 50.2 6.69 
89. 1.085 0 292.5 756 1143 9 0.2 23 48.9 7.06 
90. 1.085 0 292.5 756 1143 9 0.3 23 48.1 7.27 
91. 1.085 0 292.5 756 1143 9 0.5 23 44.1 7.15 
92. 1.085 0 292.5 756 1143 9 0 23 50.5 6.82 
93. 1.085 0 292.5 756 1143 9 0 23 51.3 7.24 
94. 1.085 0 292.5 756 1143 9 0 23 52 7.51 
95. 1.085 0 292.5 756 1143 9 0.1 23 53.4 6.92 
96. 1.085 0 292.5 756 1143 9 0.2 100 47.3 5.86 
97. 1.085 0 292.5 756 1143 9 0.3 100 43.3 5.78 
98. 0.34 300 0 973.8 171.8 15 0 25 85.1 8.63 
99. 0.34 300 0 952 168 16 80 25 100.4 12.49 
100. 0.34 300 0 918.5 162.1 20 83.25 25 92.4 20.98 
101. 0.34 300 0 922.6 162.8 18 82.38 25 90.6 17.63 
102. 0.34 300 0 949.5 167.6 19 80 25 101 12.37 
103. 0.34 300 0 914 161.3 22 83.25 25 95 16.44 
104. 0.34 300 0 914 161.3 22 82.38 25 93.1 15.74 
105. 0.34 300 0 949 167.5 19 80 25 103.6 12.11 
106. 0.34 300 0 929.6 164 18 83.25 25 99.6 15.72 
107. 0.34 300 0 937.7 165.5 18 82.38 25 97.9 14.1 
108. 0.34 300 0 973.8 171.8 15 0 250 61.1 8.28 
109. 0.34 300 0 952 168 16 80 250 97.3 9.39 
110. 0.34 300 0 918.5 162.1 20 83.25 250 86.5 15.74 
111. 0.34 300 0 922.6 162.8 18 82.38 250 85.5 12.24 
112. 0.34 300 0 949.5 167.6 19 80 250 98.4 8.94 
113. 0.34 300 0 914 161.3 22 83.25 250 93 11.41 
114. 0.34 300 0 914 161.3 22 82.38 250 91.3 10.32 

Note: The explanation of variables A,B,C,…. is given in Table 2. 
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