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The mechanism through which oncogenic Ras activates its effectors is vastly important

to resolve. If allostery is at play, then targeting allosteric pathways could help in

quelling activation of MAPK (Raf/MEK/ERK) and PI3K (PI3K/Akt/mTOR) cell proliferation

pathways. On the face of it, allosteric activation is reasonable: Ras binding perturbs the

conformational ensembles of its effectors. Here, however, we suggest that at least for

Raf, PI3K, and NORE1A (RASSF5), that is unlikely. Raf’s long disordered linker dampens

effective allosteric activation. Instead, we suggest that the high-affinity Ras–Raf binding

relieves Raf’s autoinhibition, shifting Raf’s ensemble from the inactive to the nanocluster-

mediated dimerized active state, as Ras also does for NORE1A. PI3K is recruited and

allosterically activated by RTK (e.g., EGFR) at the membrane. Ras restrains PI3K’s

distribution and active site orientation. It stabilizes and facilitates PIP2 binding at the active

site and increases the PI3K residence time at the membrane. Thus, RTKs allosterically

activate PI3Kα; however, merging their action with Ras accomplishes full activation. Here

we review their activation mechanisms in this light and draw attention to implications for

their pharmacology.
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INTRODUCTION

Is allostery driving Ras activation of its effectors? The presumption that this is the case is easy
to understand. Active Ras binds its effectors, and direct binding always perturbs the structures,
initiating and promoting dynamic and at least some conformational changes (1–4). The relevant
question is though—does Ras binding promote signals that propagate, through some allosteric
pathways, and lead to a functional change? That is, do these signals prompt conformational and
dynamic changes that affect the active site and are the dominant mechanism of effector activation?
Even though not directly observed, the premise in the community has been that this is likely to be
the case.

This premise has recently been revisited. Experimental and computational data indicated that
at least for phosphatidylinositide-3-kinase α (PI3Kα) this is not the case (5, 6). Indeed, PI3Kα

is known to be recruited and activated by epidermal growth factor receptor (EGFR), a receptor
tyrosine kinase (RTK), at the membrane (7, 8). For Raf the premise still prevails. Here we overview
PI3Kα and Raf activation, as well as activation of Ras association domain family 5 (RASSF5, a.k.a.
NORE1A) tumor suppressor (Figure 1). We suggest that these Ras effectors are not activated via
allosteric activation through Ras interaction. Further, even though to date there are no data relating
to other Ras effectors, we suspect that this holds. In the case of Raf, a long disordered linker joins
the kinase domain with the regulatory domain containing the Ras binding domain (RBD) and
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FIGURE 1 | Ras signaling pathways. Ras forms nanoclusters and promotes Raf dimerization in the Raf/MEK/ERK (MAPK) pathway (lower left). Monomeric Raf is

autoinhibited in cytosol, and the high-affinity Ras–RBD interaction releases the autoinhibition, activating Raf through side-by-side dimerization. PI3Kα is allosterically

activated by EGFR (middle). The C-terminal phosphorylated tyrosine motif of EGFR liberates the SH2 domains of p85α regulatory subunit from the p110α catalytic

subunit, releasing the autoinhibition of PI3Kα. Ras binding is not link to the allosteric activation of PI3Kα, but its binding contributes to further increase in the residence

time of active PI3Kα at the membrane. NORE1A (RASSF5) is an adaptor protein and autoinhibited by its RA domain interacting with its SARAH domain (upper right). In

the presence of proximal Ras molecules, the Ras–RA interaction liberates NORE1A SARAH to recruit MST1/2 SARAH, promoting MST1/2 dimerization through their

kinase domains that activates MST1/2 via cross phosphorylation. In the presence of Hippo signal, the active MST1/2 kinase promotes phosphorylation cascade

signal, leading to YAP1 phosphorylation and degradation that result in tumor suppressing.

the cysteine-rich domain (CRD), which attaches Raf to the
membrane (9–11). Protein disorder inherently implies no
preferred interactions, no matter the sequence length. In the
absence of specific interactions between the linker and RBD and
the kinase domain, no allosteric propagation can take place. If no
allosteric propagation, it is like there is no linkage between the
two domains. The high-affinity Ras–RBD interaction (12, 13)—
vs. the low affinity autoinhibition—argues in favor of activation
via a shift in Raf ’s population toward the Ras-bound active state.
In the case of PI3Kα, it is allosterically activated by the binding
of the phosphorylated EGFR C-terminal motif to PI3Kα’s Src

homology 2 (SH2) domains (7, 14, 15); not by Ras. These binding
events promote a conformational change which relieves PI3Kα

autoinhibition and recruit PI3Kα to the membrane. Notably,
EGFR activates PI3Kα even in the absence of Ras (16), albeit to a
lesser extent. Activation of NORE1A tumor suppressor resembles
the activation of the Raf proteins (17, 18). Taken together, these
lead us to suggest some guidelines as to when allosterymay not be
involved in activation in binding events. This is important, since
the mechanisms of activation are considered in drug discovery
(19–26). If allostery is at play, disrupting propagation pathways
is often deliberated.
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Below, we first provide a brief background of allosteric
activation. Next, we discuss activation of three Ras effectors,
Raf, PI3Kα and NORE1A, and why allostery is unlikely to be
involved. Finally, we lay out guidelines relating to when allostery
is unlikely.

ALLOSTERIC ACTIVATION: DEFINITION
AND BACKGROUND

Classically, allosteric activation is defined as inducing a
conformational change in the active site of the enzyme by binding
at a location other than the active site. We suggested that if
a conformational change is not observed, then it is likely due
to limitations in the experimental approach used to detect a
conformational change (27). Thus, with this definition, if Ras
only has a role in recruiting the enzyme to the membrane, it
would not be allostery since it does not elicit a conformation
that alters the active site. Similarly, if Ras were to only restrict
the orientation of the active site relative to the membrane
to make productive catalysis more likely, by definition, this
would also not be allostery because it would not involve a
conformational change.

Allostery is linked to structural perturbation events (27–
37). The events can be covalent changes, such as mutations,
allosteric post-translational modifications (PTMs) or covalent
allosteric drugs (38–42), or non-covalent, such as binding of
small molecules (drugs, membrane signaling lipids, cofactors,
water molecules, ions) or macromolecules, such as proteins (43–
45). Allosteric events can take place near or away from the
functional (active, protein-protein interaction, etc.) site; both can
elicit efficient communication and productive allosteric events
(29, 46, 47). Whether covalent or non-covalent, the perturbation
breaks and forms new atomic interactions. In turn, the local
changes promote additional adjustments in the interactions in
their environments. These remodeling perturbations propagate
along multiple pathways, with favored paths extending to the
functional site, shifting the ensemble, thereby accomplishing
distinct conformational and dynamic changes that switch the
protein from the inactive to the active state (vice versa
for repressors) (Figure 2). Thus, conformational dynamics is
implicitly at play since allosteric events take place by a shift
of the ensemble from energetically less favored states to more
favored ones. Notably, the active conformation already exists in
the ensemble; however, the shifts in the ensemble that allostery
promotes increase its population. This conformation is primed
to bind the substrate.

Allostery involves propagation which argues that the location
of the allosteric event with respect to the active site is an
important factor in determining its efficiency. Even though
compact structures can act as efficient vehicles in allosteric
transmission, dynamic segments, such as loops, linkers and
hinges, respond and can efficiently mediate function (48, 49). Ras
effectors are multidomain proteins, and to date no statistics have
been published of the distributions of cancer driver mutations
in multidomain proteins with respect to the functional (active)
site. We expect that driver mutations tend to occur in the domain

whose function is targeted. Mutations occurring in the catalytic
domain make the active site conformation substrate-favored;
those in a regulatory domain that acts in autoinhibition through
its interaction with the catalytic domain, would relieve the
autoinhibition. We are unaware of driver mutations occurring
in non-catalytic domains whose actions propagate via disordered
linkers to alter the active site conformations, as would be the case
if Ras binding to the Raf ’s RBD were to allosterically activate
it. To our knowledge, to date no driver mutations have been
identified in Raf ’s RBD to substitute for its interaction with Ras.

To explain how Ras activates Raf, we consider two
fundamental physical tenets. First, every biomacromolecule
exists in an ensemble of conformations. For rigid molecules the
ensemble is more restricted; for flexible (especially disordered)
it is broad. Second, the most stable state is the most populated
state. The ensemble of Raf monomers can be classified into
three states: an active Ras-bound “open” state; a free “open”
conformational state, and an autoinhibited “closed” state, where
the kinase domain is blocked by another segment of Raf which
prohibits it from dimerization (Figure 1). In the absence of Ras,
Raf largely populates the microensemble of the autoinhibited
state; however, a certain fraction of the population will be in
the free state. The autoinhibited state is unlikely to be stable,
since if it were, it should be possible to experimentally determine
it (by crystallization, NMR). This is not the case for the very
stable Ras–RBD complex. In the presence of Ras, Raf is most
highly populated in the Ras-bound state due to a shift of the
free state fraction. The equilibrium between the autoinhibited
state and the free state will then be restored by a certain shift
of the autoinhibited state to the free state. Kinase domain
dimerization can take place even in the absence of Ras; however,
GTP-bound active Ras raises the otherwise low population of
the active species, with the exposed kinase domain prepped for
dimerization. Ras’ action in NORE1A’s activation resembles its
action in Raf ’s activation (Figure 1).

Allostery is unlikely to be at play in Ras’ contribution to PI3Kα

activation either. RTK binds PI3Kα (Figure 1). Binding promotes
relief of PI3Kα’s autoinhibition and exposure of the active site
to the lipid substrate at the membrane through conformational
change (6). However, no conformational change in PI3Kα is
stimulated by Ras. Consequently, it is reasonable to conclude that
the mechanism of Ras’ activation of PI3Kα is not allosteric. Thus,
even though the mechanisms of Ras activation of its effectors
differ, in none of those explored here allostery is incurred by Ras
action. Below we provide the mechanistic details.

ACTIVATION OF RAS EFFECTORS RAF,
PI3K AND NORE1A

If Not Allostery, What Is Ras Role in PI3Kα

Activation?
PI3Kα is a lipid kinase that phosphorylates phosphatidylinositol
4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-
trisphosphate (PIP3). Binding of Akt protein kinase to PIP3 at
the membrane is a key step in the AkT/mTOR signaling pathway
leading to cell growth and proliferation. Inactive PI3Kα is a
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FIGURE 2 | Schematic diagram for an allosteric propagation pathway and its absence in long disordered linkers. The top two panels display a two-state dynamic

allosteric switch. Both states pre-exist in the population. In the absence of the ligand (A) the protein populates a conformation in the ligand-free state. Upon ligand

binding at the allosteric site (B), a functional switch that is in favor of a ligand-bound state initiates at the binding site and propagates down to the functional site. The

two bottom panels (C,D) depict what happens when two domains are joined by a long, disordered linker. The two-state switch takes place only in the domain to

which the allosteric ligand binds, but do not propagate down the linker. The reason for the absence of allosteric propagation through the long linker is that the

disordered state is distributed in multiple conformations. Since in the disordered state there are no specific stabilized interactions, there is no preferred propagation

pathway. Preferred propagation pathways are required for population shift. In practice, identification of an allosteric propagation pathway in the structure can be

achieved through superposition of the two (active and inactive) structures and locating changes in interactions of residues along pathways extending from the

allosteric site to the functional site.

stable heterodimer. It consists of the p85α regulatory subunit
and p110α catalytic subunit (6, 50) whose active site is blocked
by p85α (15). Conformational changes, elicited primarily by the
nSH2 domain of p85α, are a key step in PI3Kα activation (51, 52).
These are the outcome of allosteric perturbation by EGFR (or
another RTK). The phosphorylated tyrosine motif (pYxxM) in
the C-terminal of RTK, interacts with high affinity with the nSH2
domain (7, 14). This interaction breaks the nSH2–p110α helical
interface eliciting a conformational change that releases the nSH2
from p110α, as well as the p85α iSH2 domain from the p110α
C2 domain, and the movement of the p110α’s adaptor binding
domain (ABD). iSH2 forms strong hydrophobic interactions and
salt bridges with p110α’s ABD, C2 and the kinase domains. Its

rotation breaks its interaction with p110α’s ABD consistent with
hydrogen deuterium exchange mass spectrometry (HDX-MS)
data (53). These conformational changes expose the PI3Kα

membrane binding surface (5, 53–55). The mechanism of PI3Kα

activation that we determined underscores the action of the RTK
motif via its interaction with the nSH2 and the associated large
conformational change. The release of nSH2 permits the C-lobe
of the kinase domain to get away from the C2 domain, priming
PI3Kα for phosphorylation of the PIP2 lipid substrate to PIP3
(15, 56). In oncogenic Ras, in the absence of RTK, calmodulin
(CaM)’s phosphorylated tyrosine can similarly target the nSH2
(and cSH2 domains), recruiting and activating PI3Kα (57–59).
Alternatively, EGFR overexpression can take place.
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What is then Ras’ role in PI3Kα activation? The RTK motif
already accomplishes recruitment to the membrane with the
coupled conformational change that relieves the autoinhibition
and switches it from the inactive to the active state. The
conformational change created by Ras binding is insignificant,
and unlikely to play a role in activation. However, the PI3Kα

population which is favorably positioned and oriented, primed
for substrate binding and catalysis, is limited. We conclude that
Ras binding serves to further increase the PI3K residence time
at the membrane, stabilizing and facilitating PIP2 binding at the
active site. Thus, RTKs allosterically activate PI3Kα; however,
merging their action with Ras accomplishes full activation (5).

If Not Allostery, How Does Ras Activate
Raf?
Raf is a multidomain protein. It has a variable length N-
terminal tail that was proposed to mediate calcium-dependent
B-Raf homo- and hetero-dimerization (60), interact with the C-
terminal (61), and be responsible for A-Raf low basal activity.
It also includes the RBD and CRD domain that latches Raf to
the membrane, a variable-length linker containing the Ser/Thr-
rich segment (10, 11), and the kinase domain. In the inactive
state, monomeric Raf is autoinhibited. It’s likely autoinhibited
organization has recently been reviewed (9) along with the
supporting experimental data and theoretical considerations (11,
61–87).

The high affinity (nanomolar range) active Ras–Raf ’s RBD
binding recruits Raf to the plasma membrane (61, 88). CRD’s
anchorage to the membrane (89–91) is stabilized by its
‘membrane insertion’ loop residues (89, 92) in an organization
that is similar to the one it adopts when alone, not in the Ras–
RBD context (89). The Raf-1 linker connecting RBD and CRD
consists of only 6 residues that further constrain and stabilize the
Ras–RDB-CRD organization at the membrane. No interactions
are observed between KRas4B, including the farnesyl, and CRD.
This is not the case for the HRas farnesyl group. However,
different than KRas, HRas has also two palmitoyls, and the
two membrane-anchored palmitoyls lend stability to the system
(93). Additional interaction details of the different Ras–Raf
systems have also been uncovered (59, 89, 94–96). In a favored
orientation, KRas4B attaches to the membrane through its
farnesylated hypervariable region (HVR) in a way such that
the effector binding site faces away from the membrane and is
largely exposed. This permits the RBD to interact at the effector
binding site while the CRD is anchored at the membrane through
its loop. The nanomolar affinity of the Ras–RBD interaction
has been measured in solution. However, under physiological
conditions at the membrane, fluctuations that take place and
molecular dynamics (MD) simulations indicate that these can
be significant. The tethered Ras–RBD-CRD organization reduces
the Ras–RBD fluctuations, thus increases the residence times of
the productive organization. The enhanced affinity promotes a
population shift of the Raf ensemble toward this Ras-bound state,
relieving the autoinhibition.

High affinity is not the sole factor controlling the relief
of Raf ’s autoinhibition and population shift toward the open

state. Whereas, the disordered linker (∼180 residues in B-Raf;
∼170 residues in Raf-1) between CRD and the kinase domain
deters allosteric transmission, it also encodes residues whose
phosphorylation enhances or abrogates the autoinhibition.
Ser446 phosphorylation of B-Raf weakens the autoinhibition;
phosphorylated Ser259 of Raf-1 is recognized by 14-3-3
proteins (86, 87, 97, 98), promoting the autoinhibition.
Dephosphorylation by protein phosphatase 2A (PP2A)
and protein phosphatase 1 (PP1) releases it, shifting the
equilibrium toward open state (11, 80, 99–101). 14-3-3 also binds
phosphorylated Ser621 of Raf-1 (86, 97, 98). The interaction
of the N-terminal with the kinase domain is likely to be
weak (9). Simultaneous binding at both sites can promote
the autoinhibited state by stabilizing the interaction of the N-
terminal segment and the kinase domain (11, 73, 87, 102–104).
However, these distinct sites that assist in regulating the switch
controlling the On/Off open/closed states, may not need such
long linkers.

Taken together, this raises the question of why long linkers?
We believe that the long linkers permit distancing the kinase
domains from Ras–RBD-CRD at the membrane. The membrane
is crowded. The linker efficiently connects the protein assemblies
at the cytoplasm with signals communicated through receptor
proteins, such as RTKs. In the cytoplasm, dimers of Raf kinase
domains gather in large complexes, including mitogen-activated
protein kinase (MEK) and extracellular signal-regulated kinase
(ERK) dimers. Large scaffolding and adaptor proteins are also
involved, e.g., kinase suppressor of Ras (KSR) (105, 106), IQ
motif-containing GTPase activating protein (IQGAP) (107), heat
shock protein (HSP90) (108), and galectin (109). All are large
multidomain proteins that interact with additional proteins,
such as IQGAP1 with Arp2/3 which stimulates branching of
actin assemblies (110). The long linker provides an effective
and pragmatic solution, enabling formation of clusters in the
cytoplasm thus signaling efficiency. The large clusters are further
favored by the water layer at the membrane surface which
“pushes” or drives the proteins away from the membrane
surface unless there are lipid-favoring residues at the protein
surface, as in the case of CRD. The long linkers also vacate the
requirement for Ras dimerization for Raf ’s activation. They allow
Ras nanoclusters-mediated Raf ’s dimerization and activation
(Figure 1).

Thus, rather than allostery, current data argues for a shift
of the ensemble through release of the autoinhibited, closed
state. In the absence of active Ras molecules, Raf mostly
populates a closed autoinhibited state, with access to the kinase
domain hindered by other segments. In the presence of Ras, the
high affinity Ras–RBD interaction at the membrane shifts the
ensemble. This mechanism is also supported by the dual 14-3-
3 interaction, phosphorylation (dephosphorylation) experiments
and mutational data [e.g., alanine and acidic substitutions at
phosphorylation sites in the activation loop (73–75)]. It can
explain why Raf evolved tight interaction with Ras and why Ras
nanoclusters can function effectively in Raf ’s activation (111). It
can also clarify how the large Raf assemblies with MAPK kinases
and scaffolding proteins can form, act efficiently (112), and allow
signaling dynamics (113) despite the crowdedmembrane surface.
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If Not Allostery, How Does Ras Activate
NORE1A?
Different from Raf and PI3Kα, NORE1A (RASSF5) Ras
effector is not a kinase, but essentially an adaptor protein,
mediating the interactions of Ras and mammalian sterile 20-
like kinase 1/2 (MST1/2). Ras-bound NORE1A activates the
MST1/2 kinase (17, 114–118), which via the Hippo pathway
phosphorylation cascade, leads to Yes-associated protein 1
(YAP1) phosphorylation and degradation. Overexpression of
YAP1 induces cell proliferation (119). In the absence of active
Ras, it is in a closed conformation, with its Ras association (RA)
domain interacting weakly with the Sav-RASSF-Hippo (SARAH)
domain. The linker between the two domains is short (5 residues)
and contains a flexible hinge. In the presence of active Ras,
the equilibrium shifts in favor of the tight Ras–RA interaction.
The dissociated SARAH domain heterodimerizes with the
MST1/2 SARAH domain. The tightly bound SARAH domain
heterodimer releases the MST from its autoinhibited state, where
the kinase domain interacts weakly with the MST SARAH
domain. This shift in the MST ensemble from the inactive closed
state to the open state permits kinase domain homodimerization
and activation via trans-autophosphorylation. The affinity of the
MST1/2 SARAH homodimer is lower than that of the hetero-
SARAH dimer (120, 121), putting it under Ras control. NORE1A
bridges Ras and MST (17), with Ras interaction acting to bring
MST1/2 kinase domains into spatial proximity (18, 122), just like
it activates Raf. Thus, rather than allostery activating NORE1A
to promote its activation of MST kinase, the high (micromolar)
affinity of the SARAH heterodimer drives the equilibrium toward
NORE1A open active state, driving MST1/2 kinase activation via
population shift.

CONCLUDING REMARKS

Conformational ensembles and their shifts underlie biological
processes (1–4, 30, 32, 123–131). Population shifts between
two states due to differences in the stabilities follow the
thermodynamic rule that systems are always driven to their
free energy minima. In the case of the two Ras effectors
described here, Raf and NORE1A, the higher stability of the

interaction with Ras vs. that of the autoinhibited state drives
the changes in the equilibrium. In the third, PI3K, Ras increases
the population time at the membrane, facilitating PIP2 insertion.
Understanding how Ras effectors are regulated is of paramount
importance since it can help in pharmacological discovery.
Ras has additional effectors, including Tiam1, RalGDS, AF6,
RIN, and more. Scenarios involving high affinity to Ras and
long disordered interdomain linkers are likely to discourage
allosteric transmission. A tell-tale is the presence (or absence)
of observable conformational changes (27, 132). If binding
promotes a conformational change, allostery is likely at play
(Figure 2). This is the case for RTK’s phosphorylated motif
promoting conformational change in the interactions of the
nSH2 domain of the p85α, which expose p110α active site. On
the other hand, in ourMD simulations of PI3Kα RBD complexed
with KRas4B, we observed only insignificant conformational
changes in RBDmaking an allosteric mechanism unlikely, in line
with experimental data discussed here.

Finally, Ras does not have an allosteric role for the three
effectors discussed above. However, this is not necessarily always
the case for Ras or Ras-like GTPases. One example is the Ras
family GTPase RHEB that appears to have a primary role as an
allosteric activator of the mTORC1 complex (133).
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