
ll
OPEN ACCESS
iScience

Article
Mapping transcriptional heterogeneity and
metabolic networks in fatty livers at single-cell
resolution
Laetitia Coassolo,

Tianyun Liu,

Yunshin Jung, ...,

Hannele Yki-

Jarvinen, Russ B.

Altman, Katrin J.

Svensson

katrinjs@stanford.edu

Highlights
Hepatic steatosis is

characterized by high

hepatocyte heterogeneity

Single-cell analysis reveals

Nr1i3 as a NAFLD-

enriched nuclear receptor

in mice

Artificial intelligence

independently identifies

NR1I3 as a human NASH

gene

Nuclear NR1I3 protein

expression correlates with

steatohepatitis in humans

Coassolo et al., iScience 26,
105802
January 20, 2023 ª 2022 The
Author(s).

https://doi.org/10.1016/

j.isci.2022.105802

mailto:katrinjs@stanford.edu
https://doi.org/10.1016/j.isci.2022.105802
https://doi.org/10.1016/j.isci.2022.105802
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.105802&domain=pdf


iScience

Article

Mapping transcriptional
heterogeneity and metabolic networks in fatty
livers at single-cell resolution

Laetitia Coassolo,1,2,3 Tianyun Liu,4 Yunshin Jung,1,2 Nikki P. Taylor,4 Meng Zhao,1,2,3 Gregory W. Charville,1

Silas Boye Nissen,1,5 Hannele Yki-Jarvinen,6,7 Russ B. Altman,8 and Katrin J. Svensson1,2,3,9,*

SUMMARY

Non-alcoholic fatty liver disease is a heterogeneous diseasewith unclear underlying
molecular mechanisms. Here, we perform single-cell RNA sequencing of hepato-
cytes and hepatic non-parenchymal cells to map the lipid signatures in mice with
non-alcoholic fatty liver disease (NAFLD). We uncover previously unidentified clus-
ters of hepatocytes characterized by either high or low srebp1 expression. Surpris-
ingly, the canonical lipid synthesis driver Srebp1 is not predictive of hepatic lipid
accumulation, suggestive of other drivers of lipid metabolism. By combining tran-
scriptional data at single-cell resolution with computational network analyses, we
find that NAFLD is associated with high constitutive androstane receptor (CAR)
expression.Mechanistically, CAR interactswith four functionalmodules: cholesterol
homeostasis, bile acid metabolism, fatty acid metabolism, and estrogen response.
NuclearexpressionofCARpositively correlateswithsteatohepatitis inhuman livers.
These findings demonstrate significant cellular differences in lipid signatures and
identify functional networks linked to hepatic steatosis in mice and humans.

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) and the more severe condition non-alcoholic steatohepatitis

(NASH), are now affecting 25% of the global adult population.1 NAFLD is a progressive metabolic disease

characterized by hepatic lipid accumulation, inflammation, fibrosis, and insulin resistance. NAFLD has

become the most common form of chronic liver disease in the US and has no pharmacological treatment.2

In recent years, our molecular understanding of the process of diet-induced hepatic steatosis has

emerged.1,3 Several genes have been identified as risk factors for elevated hepatic lipid accumulation,

including a single-nucleotide polymorphism in the PNPLA3 gene, generating a PNPLA3-I148M variant

that increases the risk of developing fatty liver disease4–6 and an HSD17B13 variant that is protective.7,8

In addition to genetic factors, environmental factors such as nutrient availability are well-known contribu-

tors to hepatic steatosis and NAFLD. Fat consumption,9–11 excessive fructose intake,12–14 hyperinsuline-

mia, and obesity15,16 positively correlate with NAFLD. However, there is an unmet need to understand

the molecular characteristics and changes in cell-type composition and expression in NAFLD.

Interestingly, earlier studies have shown that lipid accumulation is not uniformly induced in all hepatocytes, with

most cells having a relatively low accumulation of lipids and fewer cells with very high lipid storage.17 Elevated

intra-hepatocyte lipid content in NAFLD is partly attributable to increased de novo lipogenesis,18 a process

largely driven by the transcription factor sterol regulatory element-binding protein-1 (SREBP-1) isoforms

SREBP1a and SREBP1c.19–21 Yet, whether SREBP1 is homogenously expressed in hepatocytes, and whether

other transcriptional regulators are associated with NAFLD pathogenesis remains underexplored.

Here, by using single-cell analyses, we demonstrate cellular differences in lipid signatures in livers of mice

with fatty liver disease. We find that both hepatocyte lipid accumulation and Srebf1 (Srebp1c) expression

are heterogeneous and identify Nr1i3, the constitutive androstane receptor (CAR), as a gene that is en-

riched in NAFLD livers from mice. While prior reports on CAR have been conflicting,22 we show that

CAR protein levels localized to the nucleus are highly elevated in human livers of patients with steatohe-

patitis. Our study reveals how NAFLD alters the transcriptomic landscape of hepatocytes during liver path-

ogenesis and identifies a highly associated NAFLD gene in mice and humans.
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Figure 1. Hepatic steatosis is characterized by high hepatocyte heterogeneity

(A) Histological analyses using H&E and Oil red O (lipids) in livers from mice fed NAFLD diet for 0, 3, 6, and 9 weeks, n = 5 mice per group (10 images per 5

biological replicates in total). Scale bars = 100 mm.
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RESULTS

Hepatic steatosis is characterized by high hepatocyte heterogeneity

Previous single-cell analyses of livers have shown remarkable heterogeneity in cell populations.23,24 How-

ever, while hepatocyte proteomic analyses have shown dramatic subcellular reorganization of proteins dur-

ing the development of fatty liver disease,25 the cellular and metabolic heterogeneity of hepatocytes in

NAFLD remains largely uncharacterized.

To dissect the transcriptional changes upon the induction of hepatic steatosis, we first set out to determine

the earliest time point of detectable physiological and biochemical changes in liver cell populations iso-

lated from mice fed a high-fructose, high-fat (NAFLD, or amylin) diet26,27 for 3, 6, and 9 weeks compared

with 0 weeks (chow diet). Mice on NAFLD diet demonstrate weight gain starting at 6 weeks (Figure S1A)

and induction of ad lib blood glucose levels, indicative of insulin resistance (Figure S1B). Gene expression

analyses of livers demonstrate elevated levels of the lipogenesis genes sterol responsive element binding

protein-1c (Srebf1), demonstrating the activation of lipid synthesis (Figure S1C). In addition, we observe

increases in the inflammatory genes F4/80 (Emr1), tumor necrosis factor alpha (Tnf-a), interleukin-1b

(Il1b), transforming growth factor b 1 (Tgfb1), and the fibrosis genes collagen type1 a 1 (Col1a1) andmatrix

metalloproteinase 9 (Mmp9), suggestive of the activation of inflammation and fibrosis transcriptional pro-

grams in diet-induced NAFLD (Figure S1C). Liver dysfunction was evidenced by a significantly higher liver

mass at 9 weeks (Figure S1D) and an increase in plasma ALT levels to 35 U/L at 6 weeks, and 60 U/L at

9 weeks (Figure S1E). Histological analyses of livers confirmed an increase in lipid accumulation by Oil

red O staining (Figure 1A) as well as macroscopically larger livers (Figure 1B). Next, we isolated paren-

chymal hepatocytes and non-parenchymal cell populations in the liver using density gradients.28 Surpris-

ingly, hepatocytes isolated frommice with established NAFLD demonstrate a large degree of heterogene-

ity in their ability to accumulate lipids (Figure 1C). The validity of the cell isolation method was further

confirmed by the expression of hepatocyte markers Pon1, Albumin (Alb), and Srebf1 in the hepatocyte frac-

tion (Figure 1D), and the highly enriched immune cell markers Il-6, Il-1b, and Emr1 (Figure 1E), as well as the

fibroblast markers Tgfb1, Mmp9, Col1a1 and a-Sma in the non-parenchymal cell fraction (Figure 1F).

To characterize the molecular changes and heterogeneity at the single-cell level, we next performed sin-

gle-cell RNA sequencing (scRNA-seq) at 6 weeks, at which time point a >2.5-fold increase in intracellular

lipid accumulation was observed (Figure 1G). Freshly isolated hepatocytes and non-parenchymal cells

were isolated from chow-or NAFLD-fed mice (n = 5 mice/group), combined, and processed for single-

cell RNA sequencing library synthesis preparation after confirming cell viability. Importantly, all samples

were sequenced in the same round to avoid the need for batch correction. A total of 5932 cells expressing

17,606 genes were included in the analysis following filtering to remove very high (>0.5) mitochondrial

genome transcript ratio, genes detected (UMI count >0) in less than three cells, and cells with very small

library size (<1000) (see STAR Methods). Cells were clustered and visualized using aggregated single-

cell expression relationship profiles with t-distributed stochastic neighbor embedding (t-SNE) plots using

Seurat29 (Figures 1H and 1I). 16 populations were clustered: 12 distinct hepatocyte populations, and 4 non-

parenchymal cell types (Figures 1H and 1I). We identify five main cellular identities in both conditions—he-

patocytes, stellate cells, Kupffer cells, myeloid and endothelial cells in line with previously described cell

Figure 1. Continued

(B) Macroscopic photographs of livers frommice fed chow diet or NAFLD diet for 6 weeks. One representative image is shown from an experiment with n = 5

mice per group.

(C) Oil red O staining demonstrating the cellular accumulation of lipids in hepatocytes isolated from mice fed chow or NAFLD diet for 6 weeks. One

representative image is shown from an experiment with n = 5 mice per group.

(D) Gene expression analysis of hepatocyte markers in isolated hepatocytes and non-parenchymal cells (n = 3 samples/group). Data are presented as

mean G SEM *p < 0.05, **p < 0.01, ***p < 0.001 by two-tailed Student’s t test.

(E) Gene expression analysis of immune cell markers in isolated hepatocytes and non-parenchymal cells (n = 3 samples/group). Data are presented as

mean G SEM *p < 0.05, **p < 0.01, ***p < 0.001 by two-tailed Student’s t test.

(F) Gene expression analysis of fibrosis/stellate cell markers in isolated hepatocytes and non-parenchymal cells (n = 3 samples/group). Data are presented as

mean G SEM *p < 0.05, **p < 0.01, ***p < 0.001 by two-tailed Student’s t test.

(G) Oil red O staining quantification of hepatocytes isolated from chow of NAFLD livers (n = 10 samples/group). Data are presented as mean G SEM of

biologically independent samples. *p < 0.05, **p < 0.01, ***p < 0.001 by two-tailed Student’s t test.

(H) Gene set enrichment criteria for the identification of cell types in the dataset of merged chow and NAFLD clusters identified by Seurat. Values are

presented as [log2] fold change. Enrichment was calculated for cells in the cluster over all cells outside the cluster.

(I) Aggregated t-SNE plot of merged chow and NAFLD cell clusters identified by sc-RNA sequencing.
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types in the liver (Figure S1F).30,31 These data confirm that the liver is characterized by high hepatocyte

heterogeneity.

Hepatocytes display dynamic changes during non-alcoholic fatty liver disease progression

To perform more in-depth analyses of the gene signatures in hepatocytes during NAFLD progression,

we next clustered cells based on significant cell identity and expression. While Kupffer cells, endothelial

cells, and myeloid cells did not markedly change their expression at the six-week time point

(Figures S2A–S2D and S3), hepatocytes from NAFLD mice demonstrated large changes in expression

as illustrated in the t-SNE plots comparing chow and NAFLD livers (Figure 2A). The overlap between

Kupffer cells, endothelial cells, and myeloid cells in chow and NAFLD livers groups argues that these

differences are due to batch effects (Figures S2A–S2D). Specifically, we observe distinct gene signatures

in the hepatocyte clusters, illustrated in ridgeline plots showing the heterogeneous expression of Glul

(glutamine synthetase) (Figure 2B), a gene encoding for a metabolic enzyme abundantly expressed in

hepatocytes.32,33 Other hepatocyte genes such as lipocalin-2 (Lcn2), Hpx, Apcs, Gstp1, and Cyp4a10

demonstrate similar heterogeneity in expression across hepatocyte clusters, suggesting distinct cellular

states (Figure 2B). Furthermore, fibrinogen alpha (Fga) is enriched in the chow hepatocyte clusters (Fig-

ure 2C), while 2-iminibutanoate/2-iminopropanoate deaminase (Rida), and serine dehydratase (Sds), two

enzymes involved in amino acid metabolism, are enriched in NAFLD hepatocyte clusters (Figure 2D).

Interestingly, two genes, Gm42418 and Ay036118 were enriched in NAFLD hepatocyte clusters, indi-

cating a potential function during NAFLD (Figure 2D). These analyses demonstrate that NAFLD is asso-

ciated with dramatic changes in lipogenic gene expression that are heterogeneously distributed even

within a given cell type.

Hepatocyte populations display large heterogeneity in Srebf1 expression, but Srebf1

expression does not predict hepatic lipid levels

Srebf1, which is under the direct control of both insulin and fructose is one of the most well-described tran-

scriptional drivers of lipogenesis.5,34,35 Interestingly, under both chow and NAFLD conditions, there were

two main clusters defined by high or low expression of Srebf1 (Srebp1c) (Figures 3A and 3B). Notably, the

high expression of lxra (Nr1h3) and Chrebp (Mlxipl) in Srebf1high clusters suggests a broad activation of the

classical lipid synthesis pathways (Figures 3A and 3B). The general hepatocyte marker albumin (Alb) was

equally expressed across hepatocyte clusters, suggesting that the NAFLD state specifically induces the

expression of genes involved in lipid synthesis. This finding was unexpected and led us to question whether

these changes in expression could explain the differences in lipid accumulation seen in these hepatocytes.

Nuclear Srebp1 staining revealed a highly heterogeneous expression in both chow and NAFLD when

Srebp1high and Srebp1low cells were quantified (Figures 4A–4C). To correlate lipid accumulation with

Srebp1 protein levels in Srebp1high and Srebp1low cells in intact liver sections, we performed co-immunos-

tainings of Srebp1 and the lipid droplet dye LipidSpot. Expectedly, only negligible levels of lipid droplets

could be detected under chow conditions, while lipid droplet accumulation and increased lipid droplet size

were observed in NAFLD at 6 weeks. Notably, nuclear Srebp1 protein expression did not co-localize with

the areas that demonstrated a high density of lipid droplets (Figures 4D and 4E). These data support that

both Srebp1high and Srebp1low cells with robust lipid droplet accumulation in NAFLD are present, suggest-

ing that alternative lipogenic drivers might exist.

Identification ofNr1i3 (Car) as a non-alcoholic fatty liver disease-enriched nuclear receptor in

mice

To identify other transcriptional regulators that might play a role in NAFLD, we next compared the liver

transcriptome between human and mouse livers using a previously published human dataset from Bader

et al. in combination with the current mouse single-RNA sequencing dataset. Out of 21,128 detected genes

Figure 2. Hepatocytes display dynamic changes during NAFLD progression

(A) t-SNE plot of cell clusters separated by chow and NAFLD identified by Seurat.

(B) Ridgeline plots of the hepatocyte genes Lcn2, Hpx, Apcs, Gstp1, Glul, and Cyp4a10 across all cell clusters identified by Seurat. Values are presented as

log2 fold change.

(C) t-SNE plots of hepatocyte-enriched genes Fga, Apcs, Cyp4a10, and Glul across chow (gray) and NAFLD (red) groups identified by Seurat. Expression in

tSNE plots is shown as normalized transcript counts on a color-coded log2 scale.

(D) t-SNE plots of hepatocyte-enriched genes Rida, Sds, Gm42418, and Ay036118 across chow (gray) and NAFLD (red) groups identified by Seurat.

Expression in tSNE plots is shown as normalized transcript counts on a color-coded log2 scale.
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Figure 3. Hepatocyte populations display large heterogeneity in Srebf1 expression

(A) Violin plots of Srebf1, Chrebp (Mlxipl), Usf1, lxra (Nr1h3), Alb, and Pon1 in cell clusters. Values are log2 expression

levels.

(B) t-SNE plots of Srebf1high and Srebf1low clusters displaying the cell type localization of Srebf1, Chrebp (Mlxipl), Usf1,

lxra (Nr1h3), Alb, and Pon1.
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Figure 4. Hepatic Srebp1 levels are heterogeneous and do not correlate with lipid levels

(A) Confocal microscopy analyses of Srebp1 (yellow), and nuclei (blue) in liver tissues in chow and NAFLD (6 weeks) livers. Scale bar denotes 25 mm.

(B) Threshold for Srebp1high cells and Srebp1low cells based on intensity.

(C) Representative images of Srebp1high and Srebp1low hepatocytes are shown by enlarged pictures and quantification of Srebp1high and Srebp1low

populations (n = 10 images per group). Data are presented as mean G SEM *p < 0.05 by two-tailed Student’s t test.

(D) Confocal microscopy analyses of Srebp1 (yellow), lipid droplets (magenta) and nuclei (blue) in liver tissues in chow and NAFLD (6 weeks) livers. Scale bar

denotes 25 mm.

(E) Srebp1 positive cells were quantified from ten lipidhigh or lipid1low representative areas of NAFLD livers. Bar graph shows the fraction of Srebp1-positive

nuclei within lipid-negative or lipid positive areas. Data are presented as mean G SEM of n = 10 images per group and by two-tailed Student’s t test.
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in either dataset, 12,398 genes were present in both humans and mice (Figures 5A and S4A) and correlated

well in expression (Figure S4B). In the mouse dataset, we next analyzed the differentially expressed genes

between NAFLD and chow across all hepatocyte populations (Figure 5B and Table S1) and identifiedNr1i3

(nuclear receptor subfamily 1, group I, member 3), or constitutive androstane receptor (Car) as the only

transcription factor among the top NAFLD-enriched genes (Figure S5A and Table S1). These data are

consistent with prior studies of the global Car-KO mice, which are protected from hyperlipidemia and

diet-induced fibrosis.36,37 However, the role of CAR in human NAFLD and steatohepatitis is unclear. Anal-

ysis of the distribution of Nr1i3 expression reveals that Nr1i3 is heterogeneously expressed but present in

all hepatocyte populations (Figure S5B). When performing single cluster analysis of the Nr1i3 expression,

two main populations appear to be dominant:Nr1i3high (clusters 2, 3, 8, 9, 10, 12) andNr1i3low (clusters 1, 4,

5, 6, 7, 11) (Figure 5C). Interestingly, five out of six Nr1i3high hepatocyte clusters overlap in expression with

Srebp1high. We next sought to identify genes that correlated with Nr1i3 expression. The analysis revealed

that 48 genes positively and significantly correlated with Nr1i3 expression with a correlation score higher

than 0.63 (Figure 5D). Among these genes, some have previously been associated with lipid metabolism

and NAFLD progression, including Tsukushi (Tsku).38 Future studies on the relationship between Nr1i3

and these co-expressed genes, will be important to understand the function of Nr1i3 in NAFLD.

A predictive model independently identifies NR1I3 (CAR) as a human non-alcoholic

steatohepatitis gene

Independently, using Artificial Intelligence (AI) embeddingmethods, we created a predictive model to identify

NAFLD/NASH-related genes andpathwayswith the hypothesis that the predicted genes wouldmodulate rele-

vant liver biology. To identify disease-associated genes, we built a predictive NASHmodel based on the prox-

imity of the genes to functional modules in our embeddedmap of protein-protein interactions (PPIs) (see STAR

Methods and Figure S6A). We performed 10-fold cross-validation and systematically varied the parameters of

the model. We tested 308 NASH genes from the Be-Free dataset from DisGeNET,39 and 134 NASH gene set

identified experimentally (Table S2). Ourmodel achieves AUCof 0.82 and 0.83, respectively in recovering these

NASH disease genes (Figure S6B). In seeking key genes, we were particularly interested in transcription factors

that might drive the steatohepatitis processes of lipogenesis, fibrosis, and others. To estimate a gene’s asso-

ciation with the NASH model, an empirical cutoff of 0.6 was used. Using the above NASHmodel, CAR (human

gene name NR1I3) was independently identified as a transcription factor with high likelihood (p-value 0.02) to

associate with NASH in humans with a score of 0.86. From a group of 1165 transcription factors, 22 are compu-

tationally identified as liver expressed, and 12 out of 22 are associated with NASH. Interestingly, CAR interacts

with four critical functional modules: Cholesterol Homeostasis, Bile Acid Metabolism, Fatty Acid Metabolism,

and Estrogen Response (Figure 6).

Nuclear constitutive androstane receptor localization correlates with steatohepatitis in

humans

Given that CAR was independently identified in both our transcriptional single-cell analysis and AI embed-

ding model, we next sought to determine whether CAR expression levels correlated with NAFLD in human

livers. 26 liver sections from 13 patients with no histopathological abnormality and 13 patients with histo-

logical steatohepatitis were included in the analysis (see STAR Methods). There was no significant differ-

ence in body mass index (BMI) (Figure 7A), age (Figure 7B), or sex (Figure 7C) between the groups. The

steatohepatitis group had higher triglyceride levels (Figure 7D), alanine aminotransferase activity (ALT)

(Figure 7E), and aspartate transaminase (AST) activity (Figure 7F) and were diagnosed with histologic

grades of 1–2 (Figure 7G) and histologic stage of 0–3 (Figure 7H). Using a specific validated antibody for

CAR,40 we quantified the pixel intensity (Figure 7I) of CAR nuclear staining across the 26 liver samples.

Representative microscopic images validate the lipid droplet size and nuclear localization of CAR (Fig-

ure 7K), with no staining in the negative control (Figure S7A). Interestingly, we found that CAR protein levels

were > 2-fold higher in livers with steatohepatitis (Figures 7J and 7K), and positively correlated with lipid

droplet size and steatohepatitis (R2 = 0.51, p = 0.008) (Figures 7L and 7M). This was in contrast to no cor-

relation in the gene expression in a separate cohort, suggesting that transcript levels of NR1I3 do not

necessarily predict protein expression (Figures S7B–S7I). Lastly, correlation analyses show that CAR dem-

onstrates a weak, but significant, correlation with ALT and AST (Figures S7J and S7K), while BMI did not

significantly correlate with CAR levels (Figure 7N). These results show that nuclear CAR protein expression

correlates with steatohepatitis in humans independently of BMI and confirm a potential role for CAR in he-

patic lipid accumulation in NAFLD. In conclusion, we here use three orthogonal models; single-cell ana-

lyses, human liver expression, and computational network prediction to predict and validate new genes
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Figure 5. Identification of Nr1i3 (Car) as a NAFLD-enriched nuclear receptor in mice

(A) Overlap of human and mouse genes detected across two independent single-cell RNA seq datasets.

(B) Differentially expressed genes in NAFLD vs chow aggregated across all clusters identified in the single-cell RNA

sequencing dataset expressed as average [log2 fold change (FC)].

(C) Violin plots of Nr1i3 (Car) in cell clusters. Values are log2 expression levels.

(D) Heatmap of the genes with scLink correlation higher than 0.63 with Nr1i3.
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and their importance in disease pathogenesis providing a resource for identifying new genes for future

functional interrogation.

DISCUSSION

Our study uncovers several aspects of liver biology that were previously unknown. First, we find that hepa-

tocytes are highly heterogeneous in their capacity to store lipids andmetabolic profiles. By capturing these

lipid-laden hepatocytes for single-cell analyses, we find that this heterogeneity is associated with lipid

metabolism in a subset of hepatocytes. Elegant previous work analyzing transcriptional changes in hepa-

tocytes isolated from mice fed a 60% high-fat diet showed that hepatic steatosis sensitizes cells to hepa-

tocyte inflammation,41 suggesting that the stored lipid content is a principal determinant of hepatocyte

function. How the lipid heterogeneity of hepatocytes contributes to NAFLD progression will be an area

for future exploration.

Second, we find that high Srebp1 expression is not directly associated with higher lipid accumulation, indi-

cating the involvement of other driving factors in a subset of hepatocytes. The finding of a subset of genes

in hepatocytes co-expressed with srebf1 warrants further studies into the mechanisms regulating lipid

metabolism in vivo.

Third, using experimental and AI predictive models, we identify CAR as a gene highly associated with stea-

tohepatitis in mice and humans.CAR is abundantly expressed in hepatocytes, but the reported role in non-

alcoholic fatty liver disease is controversial.36,42–44 Here, we find that CAR is localized to the nucleus and

overexpressed in patient livers diagnosed with steatohepatitis. Future studies should assess the associa-

tion and functional correlation between CAR and NAFLD/NASH, as well as explore targeting CAR using

specific agonists. Moving forward, it will be important to investigate whether CAR regulates lipogenesis,

inflammation, or fibrosis during NASH using relevant models.

Collectively, our results uncover an unexpected heterogeneity in hepatocyte steatosis and identify lipo-

genic cell populations. In conclusion, this study facilitates the discovery of previously unrelated genes

involved in lipid metabolism, which may be used to better understand how to target fatty liver disease.

Figure 6. A predictive model independently identifies CAR interacting with four NASH-related functional

modules

The predicted NASH gene NR1I3 (large purple dot) directly interacts with three genes from Bile Acid Metabolism Module

(CYP7A1, CYP7B1, and CYP8B1), one gene from Fatty Acid Metabolism Module (CYP1A1). These four genes further interact

with other genes and form a network consisting of fourteen genes from the bile acid metabolism module, three genes from

estrogen response early module, seventeen genes from the fatty acidmetabolismmodule, and one gene from the cholesterol

homeostasis module. The edges represent the predicted associations between NR1I3 and these genes.
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Limitations of the study

There are limitations to this work. While our study demonstrates heterogeneous hepatocyte cell state

signature in NAFLD, the functions of these distinct hepatocyte populations remain to be determined. In

addition, single-cell analyses of hepatocytes should be complemented with single nuclei analyses to

confirm the hepatocyte cell states identified in this article.
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Figure 7. Nuclear CAR localization correlates with steatohepatitis in humans

(A) Body mass index (BMI) of individuals with normal livers vs. livers with steatohepatitis (n = 13 patient samples per group). Data are presented as mean G

SEM p value = ns (non-significant) by two-tailed Student’s t test.

(B) Age of individuals with normal livers vs. livers with steatohepatitis (n = 13 patient samples per group). Data are presented as mean G SEM p value = ns

(non-significant) by two-tailed Student’s t test.

(C) Sex of individuals with normal livers vs. livers with steatohepatitis (n = 13 patient samples per group). Data are presented as mean G SEM p value = ns

(non-significant) by two-tailed Student’s t test.

(D) Triglyceride (TG) levels in mg/dL of individuals with normal livers vs. livers with steatohepatitis (n = 13 patient samples per group). Data are presented as

mean G SEM **p < 0.01 by two-tailed Student’s t test.

(E) Alanine transferase (ALT) activity in U/L of individuals with normal livers vs. livers with steatohepatitis (n = 13 patient samples per group). Data are

presented as mean G SEM **p < 0.01 by two-tailed Student’s t test.

(F) Aspartate transaminase (AST) activity (in U/L of individuals with normal livers vs. livers with steatohepatitis (n = 13 patient samples per group). Data are

presented as mean G SEM **p < 0.01 by two-tailed Student’s t test.

(G) Histological grade of individuals with normal livers vs. livers with steatohepatitis (n = 13 patient samples per group).

(H) Histological stage of individuals with normal livers vs. livers with steatohepatitis (n = 13 patient samples per group).

(I) Segmentation of positive (Red) and negative (blue) cells based on pixel intensity in the nuclei from all images combined to determine the positive

threshold for quantification. Each dot represents one cell.

(J) Quantification of the % number of CAR-positive nuclei of individuals with normal livers vs. livers with steatohepatitis (n = 13 patient samples per condition,

4 images per sample). Data are presented as mean G SEM *p < 0.05 by two-tailed Student’s t test.

(K) Representative histological images of CAR staining (n = 13 patient samples per condition, 4 images per sample) in normal livers or livers with

steatohepatitis. Bar scale: 100 mm or 50 mm.

(L) Quantification of the % of Lipid Droplet area of individuals with normal livers vs. livers with steatohepatitis (n = 13 patient samples per condition, 4 images

per sample). Data are presented as mean G SEM ****p < 0.0001 by two-tailed Student’s t test.

(M) Correlation plot of CAR levels and lipid droplet size across 26 individuals. **p value <0.01 by two-tailed Student’s t test.

(N) Correlation plot of CAR levels and BMI across 26 individuals. p value = ns (non-significant by two-tailed Student’s t test.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Goat anti-Mouse IgG (H+L) Cross-absorbed

Secondary Antibody, Alexa Fluor 488

Thermo Fisher Scientific Cat# A11001;

RRID:AB_2534069

Mouse monoclonal anti-SREBP1 (2A4) Santa Cruz Biotechnology Cat# sc-13551;

RRID:AB_628282

Mouse monoclonal anti-NR1I3 Thermo Fisher Scientific Cat# CF805306

Bacterial and virus strains

One Shot Top10 Chemically Competent E. coli ThermoFisher Cat# C404003

Chemicals, peptides, and recombinant proteins

HBSS buffer Gibco Cat# 14175-095

Potassium chloride Sigma Cat# 112-033-101

D-(+)-Glucose Sigma Cat# G8270

Sodium bicarbonate Sigma Cat# S6297

UltraPureTM 0.5M EDTA, pH8.0 Invitrogen Cat# 15575-038

William E media Quality Biological Cat# 112-033-101

Corning� Regular Fetal Bovine Serum Corning Cat# 35-010-CV

Sodium pyruvate ThermoFisher Cat# 11360070

Dexamethasone Sigma Cat# D1756

HEPES buffered saline Sigma-Aldrich Cat# 51558

DMEM high glucose Sigma Cat# D6429

Insulin, Human Recombinant Millipore Sigma Cat# 91077C

Penicillin/Streptomycin Gibco Cat# 15140-122

Collagenase IV Sigma Cat# C5138

PBS Gibco Cat# 10010-023

10x PBS Gibco Cat# 70011044

Percoll Sigma Cat# P1644

Ethanol FisherScientific Cat# 22-032-601

BSA Sigma Cat# A7906

Glutamax ThermoFisher Cat# 35050061

Isopropanol FisherChemical Cat# BP2632-4

Oil Red O solution Sigma Cat# O1391

Formalin SIP Brand Cat# C4320

Rat tail Collagen I Corning Cat# 354236

Trypan Blue Stain (0.4%) Invitrogen Cat# T10282

High-Capacity cDNA Reverse Transcription Kit ThermoFisher Cat# 4368814

2X SYBR GREEN qPCR MASTER MIX Bimake Cat# B21203

Trizol ThermoFisher Cat# 15-596-026

Trichrome Stain (Masson) Kit Sigma Cat# HT15

LipidSpotTM610 Biotium Cat# 70069

ImmPACT DAB substrate Vector laboratories Cat# SK-4105

Hematoxylin solution Sigma Cat# MHS32

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Alanine Transminase Colorimetric Activity Assay Kit Cayman Cat# 700260

Countess II FL Automated Cell Counter Life Technology Cat# AMQAF1000

ImmPRESS� HRP Horse Anti-Mouse IgG Polymer

Detection Kit

Vector laboratories Cat# MP-7402

Deposited data

Raw and analyzed sequencing data This paper Gene Expression Omnibus

GSE210501

Experimental models: Cell lines

Primary hepatocytes from C57BL/6J Mus musculus This paper This paper

Experimental models: Organisms/strains

C57BL/6J Mus musculus The Jackson Laboratory Cat# 000664;

RRID: IMSR_JAX:000664

Oligonucleotides

See Table S3

Software and algorithms

SPOT Advanced SPOT IMAGINGTM SPOT56A

RRID:SCR_016613

10x Genomics Cell Ranger 10x Genomics Version 3.1.0

RRID:SCR_017344

10x Genomics Loupe Browser 10x Genomics Version 3.3.1

RRID:SCR_018555

R Core https://www.r-project.org/ Version 4.0.2

RRID:SCR_001905

R Studio https://rstudio.com/ Version 1.3

Seurat Butler et al., Nature Biotechnology 2018 Version 3.2.0

RRID:SCR_007322

ImageJ N/A ImageJ

RRID:SCR_003070

GraphPad Prism GraphPad Prism RRID:SCR_002798

DisGeNET https://www.disgenet.org/

Piñero et al., 2020

DisGeNET v7.0

RRID:SCR_006178

Node2vec Grover and Leskovec, 2016

HMDB https://hmdb.ca/

Wishart et al., 2007

Version 5.0

RRID:SCR_007712

MSigDB Liberzon et al., 2015 Molecular Signatures

Database v7.5.1

RRID:SCR_016863

ImmProt http://www.immprot.org/

Rieckmann et al., 2017

STRING https://string-db.org/

Szklarczyk et al., 2019

STRING V11.5

RRID:SCR_005223

Other

Blood Glucose meter OneTouch UltraMini meter N/A

Blood Glucose Strips GenUltimate Cat# 100-50

Rodent NASH diet Research Diets Cat# D09100310

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Dr. Katrin J. Svensson (katrinjs@stanford.edu).

Materials availability

All reagents used in this study are commercially available.

Data and code availability

d All raw and processed single-cell RNA sequencing data have been deposited to Gene Expression

Omnibus (GSE210501).

d The script for immunohistochemistry quantification is available at https://github.com/Svensson-Lab/

Coassolo2022.

d All information required to reanalyze the data is reported in this paper.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human samples

The human liver samples used for histological characterization of CAR levels were obtained at Stanford Uni-

versity under IRB protocol #58373 using excess/archival material. The subjects were identified by searching

the pathology archive database for liver disease diagnoses. Exclusion criteria were liver cancers and tumors

as identified by information stored in the pathology database. Clinical and laboratory data were obtained

by retrieving existing data in the electronic medical record. The human liver cDNA samples were obtained

from de-identified NAFLD/non-NAFLD patients from Hannele Yki-Jarvinen, and approved by the Ethics

Committee in Helsinki, Finland. The human single-cell RNA sequencing data was re-analyzed from a pub-

lished dataset by Macparland et al.24

Animals

Animal experiments were performed per procedures approved by the Institutional Animal Care and Use

Committee of the Stanford Animal Care and Use Committee (APLAC) protocol #32982. C57BL/6J mice

were purchased from the Jackson Laboratory (#000664). Unless otherwise stated, mice were housed in a

temperature-controlled (20–22�C) room on a 12-hour light/dark cycle. All experiments were performed

with age-matched male mice housed in groups of five unless stated otherwise. For single-cell RNA

sequencing experiments, 12-week-old male mice were fed with either chow diet (Envigo, #2018) or

NAFLD diet (40% fat, 20% kcal fructose, and 2% cholesterol, #D09100310 ResearchDiets) for 6 weeks

and sacrificed at 18 weeks of age.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

70um cell strainer BD Falcon Cat# 352350

25G x 7/8 Needle BD Cat# 305124

Petri dish FisherbrandTM FisherScientific Cat# FB0875713

Fisherbrand� Variable-Flow Peristaltic Pump FisherScientific Cat# 13-876-2

Perfusion tubing connectors 3/3200

Polypropylene Coupler

United States plastic Corp Cat# 65600

Perfusion tubing 1/3200 ID x 3/3200 OD Silicone United States plastic Corp Cat# 57286

Corning Costar Flat bottomed cell culture plates Fisher Scientific Cat# 07-200-82

Countess II FL Automated Cell Counter Life Technology Cat# AMQAF1000

Millex-GS Syringe Filter Unit, 0.22 mm Millipore Sigma Cat# SLGSV255F

BD Syringes without Needle, 50 mL Fisher Scientific Cat# BD309653

LEICA TCS SP8 X Confocal microscope Leica N/A

QuantStudioTM5 – 384 – Well Block qpcr machine Thermo Fisher Cat# 272530639
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METHOD DETAILS

Isolation of cells for single-cell RNA sequencing

All cells were cultured in a humidified atmosphere containing 5% CO2 at 37�C. Primary hepatocyte isola-

tion was performed using gradient separation.28 12-week-old male C57BL/6J mice fed with either chow

diet or NAFLD diet for 6 weeks were sacrificed. The inferior vena cava was cannulated with a 25G needle

connected to tubing for perfusion with 20 ml of 37�C pre-heated pH 7.4 HBSS buffer (#14175-095, Gibco)

containing 5.4 mM KCl, 30 mM Sodium bicarbonate and 0.285 mM EDTA at a rate of 1 ml per minute. After

2 minutes of perfusion, the hepatic portal vein was cut. After perfusion, 20 ml of liver digestion medium

containing 1 mg/ml collagenase type IV ((#C5138, Sigma), 10% FBS and 1 mM HEPES was added to the

perfusion buffer tube. After 7–10 minutes, the liver was dissected and transferred to a petri dish and me-

chanically dissociated by gently swirling the tissue in 10 ml Williams E medium containing Glutamax

(#112-033-101, Quality Biological), 10% FBS, 2 mM sodium pyruvate, 1uM dexamethasone and 0.1uM insu-

lin. The dissociated liver cells were filtered through a 70 mm cell strainer and centrifuged at 50 xg for 4 mi-

nutes to separate hepatocytes and non-parenchymal cells (NPC). For isolation of hepatocytes, cell pellets

were resuspended in plating medium and mixed with 90% or 25% Percoll (#P1644, Sigma) followed by

centrifugation at 100 xg for 10 minutes and 50 xg for 3 minutes. For isolation of NPCs, cell suspensions

were centrifuged at 100 xg for 5 minutes to reduce the number of erythrocytes. NPCs were isolated and

washed as follows: 300 xg for 7 minutes, 650 xg for 4 minutes, 240 xg for 5 minutes, and 650 xg for 4 minutes.

Pellets were then combined with hepatocytes. Cells were combined as one sample (chow andNAFLD, n = 5

mice/group) and processed for single-cell RNA sequencing library synthesis preparation after confirming

cell numbers and viability. For culture of hepatocytes and non-parenchymal cells, cell pellets were resus-

pended in plating medium. 4 hours after seeding on collagen-coated plates, cells were washed with

PBS, followed by the addition of maintenance mediumWilliams E supplemented with 0.2% BSA, 2 mM so-

dium pyruvate, 0.1 mM dexamethasone.

Library preparation, single-cell RNA sequencing and data preprocessing

All samples were sequenced in the same round to avoid the need for batch correction. The libraries were pre-

pared using the 10X Genomics 30 version 3 single cell gene expression kit. Then they were sequenced on the

IlluminaHiSeq4000with a 2x101 bp reads.Dual indexed libraries of isolatedmouse liver cells were thenpooled

and sequenced on an Illumina HiSeq 4000 sequencer at the Stanford Genome Sequencing Service Center in a

100-bp paired-end configuration. The read structure was dual indexed sequencing run with Read 1 starting

fromaRead1 being 28bases including cell barcodeand uniquemolecular identifier (UMI), index i7 of 10 bases,

index i5 of 10 bases and Read 2 being 90 bases containing transcript information. The libraries were processed

and decomplexed using the pipeline from 10x Genomics Cell Ranger 3.1.0.45

Cluster identification and expression analysis of single-cell RNA sequencing data

The data was analyzed using Seurat29 in R Studio. Raw count tables were loaded into Seurat for both data-

sets (chow and NAFLD) and the Seurat ‘‘merge’’ function was applied to perform pooled analysis. After

removing cells that were either less than 200 genes or more than 50,000 genes and filtering out over 5%

mitochondrial content, gene expression was normalized by global-scaling normalization method, ‘‘Log-

Normalize’’, merged and clustered following the standard Seurat package procedures.29,46 The combined

dataset of chow and NAFLD mice liver identified populations consistent with prior reports.47–49 The cluster

definition heatmap illustrates three representative markers of gene expressions shown in log2 value for

each cluster to define the population. For comparisons between mouse and human sc-RNA sequencing

data, the Rshiny app provided by the Bader lab was used to generate and analyze the hepatocyte clusters.

In Bader et al., clusters 1, 3, 4, 6, 14, and 15 were identified as hepatocytes. The following analyses were

performed: (1) scatter plot for all mouse and human genes (12,398 genes found in common between

13,519 genes in themouse and 20,007 genes in the human datasets) expressed as average gene expression

across all samples in the human dataset (8444 cells ) vs. mouse (5932 cells, NAFLD and chow), (2) venn di-

agram of overlap in mouse and human genes, and (3) extraction of the clustering information for the human

dataset to determine if genes were heterogeneously expressed in the human hepatocyte clusters. P values

were adjusted using Bonferroni correction for multiple testing.

AI embedding models for predicting pathogenesis genes

To identify disease associated genes, we have built predictive models based on the proximity of the genes

to functional modules in an embedded map of PPIs.50 We applied node2vec to capture network topology
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features of the 14,707 genes (from STRING-2019) in a 64-dimensional embedding space.51 Node2vec is a

graph algorithm that uses the local connectivity around a gene to summarize its interactions in a low dimen-

sional space;52 neighboring nodes have similar interactions and are ‘‘close’’ in the embedding space, as

measured by cosine distance. We then estimated a gene’s role in pathogenesis by computing its embed-

ding distance from a set of 220 functional modules (47 immune response modules from ImmProt,53 50

signaling pathway modules fromMsigDB,54 123 metabolic modules fromHumanMetabolic Reaction Data-

base55 to those of known disease genes. Methods for constructing the NASH predictive model are

described in Figure S6. Given a module consisting of a set of genes, we summed the individual gene

embedding vectors to generate a summary vector for the functional module. Cosine similarity measures

proximity between gene embeddings and module vectors. For a given gene, we can calculate its similarity

to each of the above functional modules; the vector of values describes the genes functional relationships.

Given a gold standard set of genes involved in disease, we can predict additional disease genes using ma-

chine learning on these embedded representations of functional relationships. As a proof of concept, we

collected 70 NASH genes from DisGeNET39 as a gold-standard list. We identified the functional modules

that are closest to these 70 NASH genes. We used a Linear SVM to create a classifier for defining additional

genes with a similar profile as the known 70. A held out set of randomly chosen genes were used as negative

examples. We performed 10-fold cross validation and systematically varied the parameters of the model

(Figure S6). Using large-scale gene embeddings,50 module embeddings were calculated by summing

the individual gene embedding vectors within a given functional module to generate a summary vector.

Immunohistochemistry

Immunohistochemistry on mouse livers was performed on OCT-embedded 6 mm thick frozen sections. Tis-

sue sections were fixed in 3% formalin in PBS for 1h at 20�C. For hematoxylin and eosin (H&E) staining,

slides were stained with hematoxylin, washed with water and 95% ethanol, and stained with eosin for

30 min. Sections were then dehydrated with ethanol and xylene and mounted with mounting medium. Tri-

chrome staining was performed according to the manufacturer’s instructions using Trichrome Stain Kit

(Sigma, #HT15). For CAR quantification, immunostaining was performed on paraffin-embedded human

liver tissues. In brief, the paraffin blocks were sliced into 5-mM thick sections, deparaffinized with xylene

and rehydrated with decreasing concentrations of ethanol in water. Antigen retrieval was achieved by incu-

bating slides in sodium citrate buffer (pH 6.0) for 25 min at 95�C, followed by 20min of cooling at room tem-

perature. Endogenous peroxidases were quenched by incubating the slides in 3% hydrogen peroxide for

10 min. The sections were then washed with phosphate-buffered saline (PBS) for 5 min. Endogenous avidin

and biotin were blocked using a blocking kit according to manufacturer instructions (Vector Laboratories,

Burlington, ON, Canada). Primary antibody (1/100, #CF805306, ThermoFisher) was applied for 2h at room

temperature in a humidified chamber. After rinsing the slides in PBS, they were incubated in polymer-HRP

secondary antibody (Vector Laboratories) for 30 min at room temperature. After washing with PBS for 5 mi-

nutes, the slides were incubated with Vectastain ABC reagent (Vector Laboratories) for 30 min. After

washing with PBS for five minutes, color development was achieved by applying diaminobenzidine tetra-

hydrochloride (DAB) solution (Vector Laboratories) for two minutes. After washing in distilled water, the

sections were counterstained with hematoxylin and blue in ammonia water, dehydrated through ethanol

and xylene, and cover-slipped using a xylene-based mounting medium. All slides were reviewed at the

same time with a Nikon eclipse e1000 upright light microscope and images were captured with a Nikon

Digital Sight DS-Fi1 color camera and Spot Advanced software.

CAR quantification

Segmentation was done independently for each image by converting an RGB image into grayscale

and stretching the converted pixel intensities such that the top 1% and the bottom 1% of the pixels

were saturated. A threshold was introduced at 40% of the maximum pixel intensity. Any pixel with a gray-

scale intensity below that threshold was considered part of a cell nucleus. To improve the segmentation

further, a flood-filled operation and a 5-pixel disk-shaped morphological opening were applied. The

average RGB pixel color inside each segmented nuclei was calculated, which was considered the most

likely color of that cell nuclei. To classify nuclei into positive and negative cells, the RGB pixel color was con-

verted into HSV space. Any cell nuclei with a hue inside the interval [120; 300] was considered negative;

otherwise, the cell was considered positive. The script is available at https://github.com/Svensson-Lab/

Coassolo2022.
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Oil red O staining and quantification

For Oil red O staining on slides or in cells, samples were fixed with 3% formalin in PBS, washed twice with

water, incubated with 60% isopropanol for 5 min and then incubated with premixed Oil Red O solution

(Sigma, #O1395) at the ratio of 3:2 of Oil Red O:H2O for 20 min followed by washing with H2O. For quan-

tification of Oil Red O staining in cells, Oil Red O staining was extracted by adding 0.5 ml isopropanol to

stained cells in a 24-well plate and transferred to a 96-well clear flat-bottomed plate. Absorbance was read

at 540 nm. Values are expressed as absorbance normalized by cell number.

Immunofluorescence staining and quantification

For Srebp1 (Santa Cruz, sc-13551) and LipidSpot dye (Biotium, 70069, 1:1000 dilution in PBS) co-staining,

the staining was performed sequentially. The Srebp1 antibody (1:200 dilution in PBS/1% BSA) was applied

for 24 h at 4�C, followed by a secondary fluorescent antibody (Thermo Fisher Scientific, A11001, 1:500 dilu-

tion in PBS/1% BSA) for 1h. LipidSpot dye was then applied for 2h on the same liver tissue, according to the

manufacturer’s protocol. The fluorescent images of Srebp1 and LipidSpot were taken using a Leica SP8

confocal microscope using a 63x objective. Quantification of nuclear-localized Srebp1 was performed us-

ing immunofluorescence images with the ImageJ software. Ten images were analyzed in each group. For

quantification of Srebp1 high and low cells, the number of nucleus per image were quantified using the

DAPI staining. The intensity of Srebp1 staining was measured in each nucleus and the average pixel inten-

sity of Srebp1 staining was used as a threshold to determine positive or negative expression. The cut-off

value was set to 108,5 as defined as the average pixel intensity of Srebp1 staining (Figure 4B). Srebp1

expression was interpreted as positive when expressed above the 50th percentile. The values are ex-

pressed as the percentage of Srebp1high and Srebp1low cells. The statistical analysis was performed by

comparisons between Chow Srebp1high and NAFLD Srebp1high using two tailed Student’s t-test and a

P-value of < 0.05 was considered significant. For quantification of Srebp1 expression within lipid-positive

or lipid-negative areas, 10 representative pictures (90 mm3 90 mm) of lipid positive and negative areas were

selected from the 6 weeks of NAFLD diet mice. Lipid positive areas were determined by quantifying the

Lipid Spot staining. The co-localized area (mm2) between Srebp1 and DAPI staining was quantified in

each area. The values are expressed as percentage of Srebp1 positive nuclei. In total, 10 lipid-positive

and lipid-negative areas were quantified. The statistical analysis was performed by comparisons between

lipid positive and negative areas using two tailed Student’s t-test and a P-value of < 0.05 was considered

significant.

Plasma alanine transaminase (ALT) activity measurement

Animals fed with either chow or NAFLD diet were sacrificed, and blood was drawn by cardiac puncture and

collected in heparinized tubes. Blood was centrifuged at 6000 xg for 10 minutes at 4�C to collect plasma and

the supernatant was transferred to a new tube and kept at �80�C. ALT activity measurements and analyses

were performed according to the manufacturer’s protocol using Alanine Transaminase Colorimetric Activity

Assay Kit (Cayman, #700260). Briefly, 150 ml of substrates, 20 ml of cofactor and 20 ml of 2x diluted plasma sam-

ples were loaded onto 96 well plates in duplicates including positive controls that were provided in the kit.

The plates were incubated for 15 minutes at 37�C. After incubation, the reactions were initiated by adding

20 ml of ALT initiator followed by immediate measurement of the absorbance at 340 nm every 10 minutes

at 37�C. The absolute difference in absorbance value between two time points was divided by the time point

difference, which then was multiplied by the extinction coefficient of 0.21/(4.11 x 0.02) and the dilution factor.

Values are expressed as units (U)/L.

RNA expression analysis

Total RNA from cultured cells or tissues was isolated using TRIzol (#15596018 Thermo Fisher Scientific) and

Rneasymini kits (# 74104Qiagen). RNAwas reverse transcribed using the ABI high-capacity cDNA synthesis

kit. For qRT-PCR analysis, cDNA, primers and SYBR-green fluorescent dye (ABI) were used. Relative mRNA

expression was determined by normalization with cyclophilin levels using the DDCt method. The primer

sequences used are listed in Table S3.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis of cellular and animal experiments

All values in graphs are presented asmeanG SEM P-values represent ****: p <0.001, ***: p <0.01, **: p <0.05,

*: p <0.1, non-significant: p>0.1. Two-way ANOVA was used for repeated measures (*p < 0.05, **p <0.01,
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***p < 0.001). Student’s t test was used for single comparisons. Values for n represent biological replicates for

cultured cell experiments or individual animals for in vivo experiments. Specific details for n values are noted

in each figure legend. For cellular assays, n corresponds to the number of experimental replicates using cells

isolated from individual mice. Each animal experiment was repeated using at least two cohorts of mice. For

animal experiments, n corresponds to the number of animals per condition. Mice were randomly assigned to

treatment groups for in vivo studies.
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