
ARTICLE

Mapping anthropogenic mineral generation in
China and its implications for a circular economy
Xianlai Zeng 1,2, Saleem H. Ali 3,4,5, Jinping Tian 1 & Jinhui Li 1✉

Anthropogenic mineral is absorbing wide concern in the context of circular economy, but its

generation mechanism and quantity from product to waste remain unclear. Here we consider

three product groups, 30 products, and use the revised Weibull lifespan model to map the

generation of anthropogenic mineral and 23 types of the capsulated materials by targeting

their evolution from 2010 to 2050. Total weight of anthropogenic mineral on average in

China reached 39 Mt in 2010, but it will double in 2022 and quadruple in 2045. Stocks of

precious metals and rare earths will increase faster than most base materials. The total

economic potential in yearly-generated anthropogenic mineral is anticipated to grow mark-

edly from 100 billion US$ in 2020 to 400 billion US$ in 2050. Furthermore, anthropogenic

mineral of around 20 materials will be capable to meet projected consumption of three

product groups by 2050.
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There is wide recognition that humans have indelibly affected
planetary processes to merit current times being termed the
Anthropocene1,2. The recent rapid expansion of high-tech

industries3,4, along with manufacturing innovations and consumer
demand, have revolutionized societal investments in infrastructure
for networking and for the rapid expansion of international
commerce. However, the shortening useful life expectancy of the
product, driven by rapid innovation, miniaturization and afford-
ability, and an increasingly anthropogenic metabolism have led to
a major increase in the accumulation of product waste, which
could potentially be classified as anthropogenic mineral (AM,
some relevant terminologies definition and boundaries are pro-
vided in Supplementary Information Note 1)3,5. One such waste
stream is strictly regulated by the Chinese government. It is
referred to as AM and was defined by the National Development
and Reform Commission in 2010 to comprise the iron, non-
ferrous metals, precious metals, plastic, or rubber material found
within three types of product waste: waste electrical and electronic
equipment (WEEE, all the abbreviations and acronyms are also
provided at Supplementary Information Note 2), end-of-life
vehicle (ELV), and waste wire and cable (WWC)6,7. These are
identified as the core scope of AM not only in China, but also in
many industrial nations8–11.

Critical raw materials have also been sinking into AM reserves,
while accelerating the depletion of natural minerals12–15. AM is
expected to play an increasing role in resource supply. On the
other hand, China is not only the world’s major manufacturing
power, but also one of the largest consumers and exporter of
products16. Nowadays China has all types of industries in UN
International Standard Industrial Classification System and led in
the production of 220 of 500 global industrial products17. China
in recent years was also the largest importer of secondary
resource to alleviate domestic material scarcity. Such features
could highlight the unique opportunity for China to uncover the
potential of AM supply18,19.

EEEs and vehicles are the most fashionable aspiration of assets
in Chinese households, which are the hallmark of the Four Big
Items that consumers are aspiring towards (see Supplementary
Fig. 2). Their rapid evolution and popularity since the 1970s have
led to a dramatic rise in waste accumulation and resource con-
sumption. The consumption of some mineral resources has wit-
nessed multiple increases20, resulting in a shortage of important
strategic resources and a growth of external dependence21–23. To
meet future resource consumption, mining from AM has become
a global concern and raised the popularization of the concept of a
circular economy.

How to measure the quantity of AM generation and its role in
future resource supply is still a crucial scientific challenge. Basic AM
information—including generation, composition, and resource flow
—is imperative to formulate effective policies making for the
recycling industry. At least two gaps can be found in previous
studies. First, there is a lack of full discussion for the quantity and
quality of China’s whole AM reserve and instead only individual
types of waste streams have been considered. Zeng et al. (2016)
measured the quantity and quality of e-waste, and uncovered
China’s recycling potential24. For ELV, van Schaik and Reuter
defined the obsolescence rate and recycling rate in the EU25, and
Field et al. (2017) initialed a comprehensive assessment of strategic
and minor metals use for passenger cars and light trucks26. Xue
et al. (2013) established the discarding model to examine the
recycling potential of ELV27. Furthermore, the other gap is no
publication to accurately measure AM supply meeting potential for
the future consumption. The dynamic transfer of existing resources
from in-use stock to waste increases both the need for, and possi-
bility of, sustainable resource harvesting from AM28–30.

Urban metabolism is devoted to facilitate the analysis of the
flows of the materials and energy within cities31. Theoretically,
the generation and quantity of AM are subject to urban meta-
bolism affected by a variety of regulations, resultant policy, and
technological change32,33. However, due to challenges in tracking
and recording, the accurate estimation of AM remains difficult to
obtain34. To complete this study, we collect all the available data
and initially create the mathematical models of AM recycling and
meeting potential. Four procedures are employed: data collection
for the consumption, importation, exportation, and material
composition of AM; method development based on material flow
analysis (MFA); generation estimation of AM quantity, and
resultant economic potential; and validation of results using
comparison with previous studies or reported data, sensitivity
analysis, and uncertainty analysis (the detailed technical route can
be seen in Fig. 1 and Supplementary Fig. 3).

Results
AM generation. We firstly pre-mined the available data for fur-
ther estimation of domestic generation of AM: First, lifetime
distribution function of all the relevant products is determined by
Supplementary Text 3 and Table 13; Second, data regression is
enabled with Supplementary Figs. 7-9 for the annual net pro-
duction and imported scraps until 2050. In this year China was
attempted to become one moderately developed country; and last,
the incremental error or range are configured for the estimation
of future demand and importation (Supplementary Tables 11,
14). Accordingly, domestic generation of WEEE, ELV, and WWC
are uncovered (Supplementary Fig. 10 and Fig. 2). The weight of
WEEE on average was 4.67 million tons (1 Mt= 1000 kt= 106

tons; 1 ton= 103 kg) in 2010, but it will reach 27.22Mt in 2030
and 51.60 Mt in 2050. The distribution of WEEE types in China is
also evolving in its economic and material waste profile through
the period 2010–2050. In 2015, the four types, by weight, were
AC, DPC, monitor, and RF, accounting for 73% of the total
WEEE. However, in 2020, the four types, by weight, will be DPC,
AC, RF, and monitor, accounting for 76% of total WEEE. In
addition, by 2030, the four types are expected to be AC, DPC, RF,
and WM, accounting for 81% of total WEEE. The weight share of
the remaining WEEE types has been shrinking since 2010.

For ELV, a continued increase also can be found both in weight
and in quantity (Fig. 2). Actually, since 2009 China has become
the largest generator and seller of vehicles. In the end of 2015, the
total registered vehicles in service reached 279 million (M)35,
exceeding 264M of the U.S.36. The total ELV reached 11.01 Mt in
2010, and three-fold rise will occur in 2017. Later, it will reach
around 61.37Mt in 2030 and 97.10 Mt in 2050. Thus, the average
annual amount of ELV will be over 2 Mt in 2010–2050. Among
the main large ELV, the share in 2010 was nearly 54%, 18%, 9%,
2%, and 0 for CT, PV, RV, tractor, and EV, respectively. With
respect to WWC, those weights will remain under 5 Mt before
2025, and then dramatically increase to 33Mt in 2040 (Fig. 2).

Regarding the importation, steel scrap, copper scrap, alumi-
num scrap, and plastics scrap are the majority of imported AM.
In July 2017, China issued a rigorous policy of phasing out waste
import, including some unrestricted import of waste (Supple-
mentary Table 10)37. The linear fitting has been employed to
model the imported e-waste and scraps from 2010 to 2050
(Supplementary Fig. 9 and Table 11). Illegal importation of e-
waste will shrink and disappear in 2020s. The total importation of
scraps was around 21 Mt in 2010, but will dramatically decrease
to 1Mt in 2040. In weight of imported scraps, plastics scrap is
leading (verified by Brook et al. studies38), followed by steel scrap,
copper scrap, and aluminum scrap (Fig. 3e).
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Totally, the weight of the yearly-generated AM in China was
about 40Mt in 2010. Driven by the large expansion of WEEE,
ELV, and WWC, total generation weight will reach 71Mt in 2020,
101Mt in 2030, and 176Mt in 2050 (Fig. 2). The average
increasing amount in 2010–2050 will be 3.4 Mt per year, and over
one half will be provided by ELV, thus ELV may impose more
stresses and tensions on government and industry than WEEE
and WWC in the future. In addition, importation will shrink
when its share in total AM is cut down from 51% in 2010 to 7% in
2025 (Fig. 2).

Evolution of valuable resources in AM. When some products
reach their EoL, a large quantity of valuable resources is inevitably
encased in AM39, regardless of whether in hibernating stock or
not9,40. The amount of encased eleven base materials (e.g., Cu, Al,
Fe, Co, Pb, Zn, Sn, Mg, plastics, rubber, and glass), five precious
metals (e.g., Au, Pd, Ag, Pt, and Rh), two rare metals (e.g., In and
W), and five rare earths (including Nd, Dy, La, Y, and Eu) in
yearly-generated AM can be easily determined (Supplementary
Fig. 11). Almost all mineral resources encased in WEEE, ELV,
and WWC have been constantly growing since 2010, and can be
expected to continue to rise, at least until 2050.

Totally, for base materials, eight metals, except Pb, maintain
the increasing tendency despite a rapid decline of importation. In
2010, the mineral resources of Cu, Al, Fe, Zn, Co, Sn, and Mg
were approximately 7.03 Mt, 4.46Mt, 14.69 Mt, 0.78 kt, 5.82 kt,
0.16 kt, and 46 kt, respectively, but they will rise to 28.52Mt,
16.35Mt, 82.63 Mt, 10.65 kt, 23.49 kt, 2.23 kt, and 441 kt on
average by 2050, respectively (Fig. 3). The amount of Co and Fe
will lead in the increasing rate among all the base materials due to
the dramatic and continuing boom of battery and vehicle. The
popularity of display substitution and the build-up of vehicles, in
particular used with lead-acid battery, have resulted in a peak of
4.3 Mt for Pb generation around 2020, verified by the previous
studies41,42. Simultaneously, the amount of plastic, glass, and

rubber will increase around 55%-fold, 8-fold, and 7.7-fold from
2010 to 2050 (Fig. 3).

The total precious metals are always keeping the growth trend
in the year of 2010–2050. The amounts of Au, Pd, Ag, Rh, and Pt
were only 89.95, 92.98, 473.84, 2.98, and 6.96 tons, respectively in
2010, but they will grow roughly 15-fold, 19-fold, 14-fold, 8-fold,
and 8-fold in 2050 (Fig. 3c). Actually, around global 85% Rh, 50%
Pd, and 43% Pt were used in automobile catalyst scraps43. The
same ascending trend in total rare metals and rare earth remains
as the other metals. The amounts were approximately 0.15 kt,
26.75t, 0.44 kt, and 0.92 kt for In, W, Nd, and other rare earth,
respectively, but they will rise to 2.04Mt, 366 tons, 5.38 kt, and
12.52 kt by 2050, respectively (Fig. 3).

Economic potential of AM. From an economic perspective, the
large amount of valuable resources accumulated in AM is also
enhancing the recycling potential44. Despite of the wide range
imposed by market price of resource, the average of economic
potential from urban mining has been evolving from roughly
74 billion US$ in 2010, to an anticipated 170 billion US$ in 2030
and 428 billion US$ by 2050 (Fig. 4a). During the evolution of
recycling potential until 2050, base materials and precious metals
have the major economic potential. But the former will drop from
90% in 2010 to around 70% in 2030–2050, and the latter
will sharply go up from 4% in 2010 to 15% in 2030–2050 (Sup-
plementary Fig. 12). The remaining recycling potential is pre-
dominantly provided by rare metals. Furtherly, the highest-value
materials—Cu metal—comprise on average 40%, followed by Au
(5–18%), In (4–13%), Al (8–13%), Pd (2–11%), and plastic
(5–10%). As a result, Cu, Al, plastic, and Au is currently major
recycling targets from AM, but in the future Cu, Au, In, and Al
will become the crucial valuable materials (Fig. 4b).

Meeting potential of AM supply. The future consumption of
product is theoretically equal to net addition to in-use stock,

Exportation

a

b

Exportation

Domestic
production

Domestic
production

Net product

Net product

Data regression

Data regression ValidatingData collection

China

Weibull lifespan curve

Consumption

Consumption

Anthropogenic
mineral

Anthropogenic
mineral

Theoretical
demand

Theoretical
demand

Meeting
potential

Meeting
potential

Comparison

Sensitivity
analysis

Uncertainty
analysis

Importation

Importation

Importation

Importation

Fig. 1 The designed framework of research methods in this study. a Material flow analysis framework for anthropogenic mineral generation and its
boundary; Note: green color for product, and orange color for anthropogenic mineral, and dash line indicates the boundary for this study. b Four approaches
of data collection, data regression, Weibull lifespan curve, and validating methods.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15246-4 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1544 | https://doi.org/10.1038/s41467-020-15246-4 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


which is the difference between the demand and the generated
AM (Eq. 7 and Supplementary Fig. 1). All the relevant materials
are also chosen to uncover the future resource consumption
imposed by EEE, vehicle, and wire and cable. Cu, Al, Au, and Pd
will maintain the growth until 2030 and afterwards keep stable
(Fig. 5), which is attributed to the flourish of wiring and cable and
EEE45. Pb demand increased from 0.91Mt in 2000 to 7.75Mt in
201441, but Pb, Fe, Zn, and rubber are quickly decreasing until
2020, and afterwards almost keep the unchanged range while
vehicle and EEE are approaching the final saturation; Co will
increase and reach the peak in 2030 because the cathode material
in lithium-ion battery is gradually substituted from lithium cobalt
oxide to lithium nickel cobalt aluminum oxide and lithium iron
phosphate in electric vehicle and consumer electronics46; Other
fifteen materials of future consumption have entered a stabilized
phase. The plastic, for instance, will always maintain about 6Mt
in 2010–2050 while the falling importation and the increasing
production will mingle together.

We further uncover the supply potential of AM. With the
dramatic rise of AM generation and the gradual saturation of

material consumption, the potential supply from AM is becoming
possible to overtake the resource consumption of three product
groups (Fig. 5). Although we are currently still far from a closed-
loop society owing to low recycling rate47, a rapid advancement is
indeed arising for regulation, policy, and technology of circular
economy and urban mining. The highly-efficient collection and
the cutting-edge recycling will significantly enhance the recycling
rate in the future. Thus, if substantial recycling, eighteen materials
of AM could meet their demand before 2020, and in 2050 they
probably provide over two-fold consumption. The meeting time
of Sn and Pd will be approximately 2030 and 2041, respectively.
Although Cu, Al, and Co of AM cannot meet their potential
consumption by 2050, the disparity gap between their consump-
tion and AM will be greatly reduced in the following decades
(Fig. 5w). Consequently, AM supply has a growing potential to
meet their future resource consumption.

Discussion
Deeper discussion is enabled here at three levels of obtained
results, potential implications, and recommendation. Firstly, the
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detailed comparison from the previous studies to real-world data
was indicated in Supplementary Information Note 4, which can
verify the obtained results, and further consolidate the relevant
results (Fig. 2). Thus, China has already overtaken the U.S. to
become the world’s leading producer of e-waste since 201424.
MC, car, and EV in quantity will maintain a rapid increment
from 2015 to 2050. China provided half of global EV stock with a
selling of 1.1 million in 201848. Other vehicles are moving
towards saturation (Supplementary Fig. 10). The evolution of
WWC weight is subject to longer lifespan of wiring and cable
than those of EEE and vehicle. Rapid urbanization and economic
growth in 1980s–2010 will impose a significant influence on AM
generation after 2025. China has revised the standard of lifespan

for wiring and cable from 20 years to 70 years, which can decrease
the obsolescence of wiring and cable. In addition, the Chinese
government has issued strict mandates to continue cracking
down on smuggling of dangerous trash, medical waste, e-waste,
and household garbage (Supplementary Table 10)37,49. The
importation of AM will fall dramatically leading to eventual
cessation of such external sources within a few years (Fig. 2e).
Around 99% plastic waste, for instance, has been descended from
7.05 Mt in 2017 to 0.076 Mt in 2018. The solution to plastic waste
management is becoming an increasing concern in the European
countries, like the UK and France.

Secondly, natural minerals extraction is encountering tre-
mendous challenges. Au, Ag, and In in current global underground
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reserves can only sustain future consumption for 36 years, 9 years,
and 4 years50. Their exploration and mining will be far harder and
more costly owing to the increasing depth of exploration and
declining grade51,52. Most anthropogenic base metal minerals have
a higher grade and purity (as the pure metal or alloy) than the
general natural minerals. Eventually, through a circular economy
paradigm AMs will play an essential role for supply security and
for overall sustainability objectives. China’s focus will be shifting
from the dependence of virgin mining and waste imports to
domestic urban mining of AM.

Lastly, to improve urban mining by circular economy, the fol-
lowing points could be also considered: First, some specific uses of
metals (e.g., indium53, aluminum54) were more difficult to fully
recycling from AM owing to their high dispersion or potential
thermodynamic limit55. Further efforts in regulation and more
targeted technologies related to the circular economy and zero
waste have the potential to ameliorate this situation56; Second,
investment in research and infrastructure to allow for AM mining
can be an effective approach to relieve this resource shortage
bottleneck22,57,58. Meanwhile, the increase in the amount of AM, as
shown by our data, suggests more economic viability in harnessing
this reserve; Third, last but not least, the environmental and social
risks associated with harnessing AM should be fully considered59.

With such appropriate policy impetus and precautions, the role of
AM in achieving the targets set forth in the United Nations Sus-
tainable Development Goal 12 (responsible production and con-
sumption) are far more likely to be achieved for China and indeed
for other rapidly growing economies.

Methods
Data collection. To ascertain the recycling potential of AM, we collected all
available material data needed for our supply sources and substantially con-
solidated the output (Fig. 1), including detailed classification of EEE, vehicle, and
wiring and cable (Supplementary Fig. 4); statistics of domestic production for EEE,
vehicle, and wiring and cable in China for 1990–2016 (Supplementary Table 1);
statistics of importation and exportation of EEE, vehicle, wiring and cable, e-waste,
metal scraps, waste plastics for 1990–2016 (Supplementary Table 2); the weight
ranges and those data distributions of each WEEE, ELV, and WWC determined
from large samples (Supplementary Table 3); the average content of specific
resources without any prejudice in a typical AM (Supplementary Tables 4, 5), and
uncertainty rates of all the content are estimated as no more than 20% and obey
normal distribution60,61, and the market prices of the resources contained in the
AM (Supplementary Table 6).

We collected the global available data and found that the average life spans of
private passenger vehicles, government and business vehicles, non-operating buses,
heavy duty, medium duty and light duty trucks are 14.5, 13.1, 11.5, 12.8, 10.1, and 8
years, respectively (Supplementary Table 12). Average life spans of taxis, transit
buses and non-transit operating buses are 5, 9, and 5.5 years with the pattern of
mandatory scrappage62.
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Material flow analysis framework. More than ten methods or models have been
adopted for AM estimation in previous studies (Their applications and difference
can be seen in Supplementary Tables 6, 7). The selection of a particular method
depends mainly on data availability and robustness63,64. During the process of
urban metabolism, products flow into the society (sales), then accumulate in the
built environment (stock); when reaching end of life (EoL) after a certain period
(lifespan), they flow out as an AM65. MFA models quantitatively describe the
dynamics, magnitude and interconnection of product sales, stocks and lifespans66.
Along this flow, China’s AM can be sourced both domestically consumed products
and imported waste (Fig. 1). Domestic AM yield is attributed to products’ man-
ufacturing, exportation, and importation. Therefore, total weight of the AM can be
defined by

TðxÞ ¼ DðxÞ þ I0ðxÞ ð1Þ
where T (x) is total China’s AM by weight (in ton), x is the year; D(x) is domestic
AM weight (in ton), and I’ (x) is imported AM weight (in ton).

Data regression. Any given products as the net production from Eq. 1 was
assumed to be both consumed and discarded in China, and its future demand was
then determined using a time-step method based on data regression (Fig. 1).
Ideally, the inverted-U shape, in particular for flying geese evolving pattern67, can
describe the relationship between resource consumption and economic growth. It
is characterized of the rapid growth at the start stage, stable growth at the middle
stage, slow growth for a constant, and final decrease at the late stage, and could be
expressed by exponential function, linear function, constant value, and linear
function, respectively. In addition, the decline of production and consumption
commonly occurs while the product is replaced. This principle is substantially
applied to align the unavailable data.

Weibull lifespan curve. Although products updating and consumer lifestyles can
affect the utilization of products, the theoretic lifespan of products relies on the
fatigue of the component materials subject to utilization. The Weibull curve is
sophisticated to depict the relationship between endurable fatigue and life time (or
cycles to failure)68. In particular, the Weibull statistical distribution was chosen for
this study to model the lifetime of product (Fig. 1). For no regulated-lifespan
products like EEEs and bicycle, the probability density function (PDF) of the
Weibull distribution is given by Eq. 2. Regarding the regulated-lifespan products
like vehicle, and wiring and cable, the regulated lifespan should be considered for a
revised Weibull lifespan curve (Eq. 3).

f ðxÞ ¼
β
η ðxηÞβ�1e�ðx=ηÞβ x ≥ 0

0 x < 0

(
ð2Þ

f ðxÞ ¼

0 x > L

e�ðx=ηÞβ x ¼ L
β
η ðxηÞβ�1e�ðx=ηÞβ 0 ≤ x < L

0 x < 0

8>>><
>>>:

ð3Þ

The cumulative distribution function (CDF) for the Weibull distribution is69

FðxÞ ¼ 1� e�ðx=ηÞβ ð4Þ
where β is the shape parameter (β > 0), η is the scale parameter (η > 0), and L is the
maximum lifetime of products regulated in China’s legislation system (in year)
(Supplementary Table 13). EoL units for a particular time x can be mathematically
described as reference70. Eventually, the AM generation, resource stock, and
meeting potential can be determined by the following equations:

DðmÞ ¼
X31
i¼1

Z m

x0
fiðxÞ � D0

iðxÞ � widx¼DðmÞWEEE þ DðmÞELV þ DðmÞWWC

¼
X15
i¼1

fiðm� 1990Þ ´D0
ið1990Þ þ fiðm� 1991Þ ´D0

ið1991Þ þ Kþ fið1Þ ´D0
iðm� 1Þ� �

þ
X15
i¼1

fiðm� 1991Þ ´D0
ið1991Þ þ fiðm� 1992Þ ´D0

ið1992Þ þ Kþ fið1Þ ´D0
iðm� 1Þ� �

þ fiðm� 1996Þ ´D0
ið1996Þ þ fiðm� 1997Þ ´D0

ið1997Þ þ Kþ fið1Þ ´D0
iðm� 1Þ� �

ð5Þ

D0ðxÞ ¼ PðxÞ � EðxÞ þ IðxÞ ð6Þ

CðxÞ ¼ D0ðxÞ � DðxÞ ð7Þ

Dm; j ¼
X31
i¼1

Z m

x0
fiðxÞ � D0

iðxÞ � widx � cij
� �

ð8Þ

Cm; j ¼ D0
m;j � Dm;j

X31
i¼1

½D0
iðmÞ � DiðmÞ� � wi � cij� � ð9Þ

M ¼ D
C

´ 100 ¼ D
D0 � D

´ 100 ð10Þ
where m is the assigned year (2010–2050) for the concerned generation; i is the ith
category of product; 31 is total estimated categories for EEE, vehicle, and wiring
and cable; x0 is the initial year of production (x0= 1990 for EEEs, x0= 1991 for
vehicle, and x0= 1996 for wiring and cable); D’(x) is the demand quantity of
product flow from production, exportation, and importation (in million or ton); C
(x) is the theoretical consumption of product (in million or ton); wi is the weight of
ith category of each product (in kg or ton); P(x) is the domestic production
quantity (in million); E(x) is the exportation of product (in million); I(x) is the
importation of product (in million); j is the jth resource category; cij is the content
of the jth resource in the ith category of products; Wm,j is the total weight of jth
resource in the yearly-generated AM at the year of m (in ton), which indicates the
supply potential of AM; Cm,j is the total weight of jth resource in the consumption
at the year of m (in ton), andM is defined as the meeting ratio of a certain resource
supply from AM to the resource consumption from the three product groups (%).

Sensitivity analysis. Demand prediction based on data regression, market price of
materials, and importation of AM will be evaluated using sensitivity analysis
(Fig. 1) because we only know their errors and ranges (Supplementary Tables 5,
11). An incremental error for the future demand of EEEs, vehicle, and wiring &
cable is shown in Supplementary Table 14. Correspondingly, the sensitivity using
the feasible errors or ranges is indicated for the weight of AM and their materials.
Importation is consisted of the legal importation for metals scrap (e.g., Cu, Al, and
Fe) and plastic scrap, and the illegal importation for toxic waste (e.g., e-waste).
Those ranges will affect the uncertainty of total AM. High but known importation
in recent years means high influence on total AM. However, the low range or error
of importation in recent years means that it is not sensitive for share of impor-
tation. With the error increasing and urban mining growth, the biggest uncertainty
occurred in 2023 when importation share ranges from 4% to 19%. Later, rise of
domestic AM and decline of importation result in that importation’s biggest sen-
sitivity imposed on total AM will drop to 10% in 2030, and less than 4% in 2050
(Supplementary Fig. 5a).

Uncertainty analysis. Both the method and the input data will affect the uncer-
tainty of estimated results. The method, in particular from data regression, will be
identified with the feasible error. The data including weight and average content
will be assessed with uncertainty analysis (Fig. 1). Here, a Monte Carlo simulation
(105 iterations) was conducted to obtain final estimates of flows and their uncer-
tainties in this study. Based on the relevant collected data, and those distributions
illustrated in Supplementary Tables 3, 4, 13, uncertainties of total AM weight and
yearly-added resource stock (e.g., Cu and Al) in 2017 and 2030, for instance, are
performed and presented in Supplementary Fig. 5. Similarly, the resources stock
from Monte Carlo simulation can also cover the forecasting results at the max-
imum probability interval.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper (and its supplementary information files).
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