
ORIGINAL RESEARCH
published: 28 October 2020

doi: 10.3389/fmicb.2020.576646

Frontiers in Microbiology | www.frontiersin.org 1 October 2020 | Volume 11 | Article 576646

Edited by:

Xiaonan Lu,

University of British Columbia, Canada

Reviewed by:

Abhinav Mishra,

University of Georgia, United States

Alessandra De Cesare,

University of Bologna, Italy

Thomas Alter,

Freie Universität Berlin, Germany

*Correspondence:

Thomas Rawson

thomas.rawson@zoo.ox.ac.uk

Specialty section:

This article was submitted to

Food Microbiology,

a section of the journal

Frontiers in Microbiology

Received: 26 June 2020

Accepted: 15 September 2020

Published: 28 October 2020

Citation:

Rawson T, Paton RS, Colles FM,

Maiden MCJ, Dawkins MS and

Bonsall MB (2020) A Mathematical

Modeling Approach to Uncover

Factors Influencing the Spread of

Campylobacter in a Flock of

Broiler-Breeder Chickens.

Front. Microbiol. 11:576646.

doi: 10.3389/fmicb.2020.576646

A Mathematical Modeling Approach
to Uncover Factors Influencing the
Spread of Campylobacter in a Flock
of Broiler-Breeder Chickens
Thomas Rawson 1*, Robert Stephen Paton 1, Frances M. Colles 2,3, Martin C. J. Maiden 2,3,

Marian Stamp Dawkins 4 and Michael B. Bonsall 1

1Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford, United Kingdom, 2 Peter

Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, United Kingdom, 3National

Institute for Health Research, Health Protection Research Unit in Gastrointestinal Infections, University of Oxford, Oxford,

United Kingdom, 4Department of Zoology, John Krebs Field Station, University of Oxford, Oxford, United Kingdom

Despite continued efforts to improve biosecurity protocols, Campylobacter continues

to be detected in the majority of commercial chicken flocks across Europe. Using an

extensive data set of Campylobacter prevalence within a chicken breeder flock for over

a year, multiple Bayesian models are presented to explore the dynamics of the spread

of Campylobacter in response to seasonal variation, species-specificity, bird health, and

total colonization prevalence. These models indicated that birds within the flock varied

greatly in their response to bacterial challenge, and that this phenomenon had a large

impact on the overall prevalence of different species of Campylobacter. Campylobacter

jejuni appeared more frequently in the summer, while Campylobacter coli persisted for a

longer duration, amplified by the most susceptible birds in the flock. Our study suggests

that strains ofCampylobacter that appear most frequently likely possess no demographic

advantage, but are instead amplified due to the health of the birds that ingest it.

Keywords: Campylobacter, mathematical model, Bayesian model, poultry, transmission dynamics

INTRODUCTION

Poultry meat has been decisively implicated as a leading infection route for campylobacteriosis in
humans (EFSA Panel on Biological Hazards, 2011). With an estimated 450,000 cases a year in the
UK,∼10% of which result in hospitalization (Strachan and Forbes, 2010), Campylobacter presents
an important public health challenge, and an estimated £50 million annual economic burden to
the UK (Tam and O’Brien, 2016). An investigation by Public Health England indicated the extent
to which Campylobacter spp. dominated the commercial poultry industry: seventy-three percent
of supermarket chicken carcasses were found to contain Campylobacter and seven percent of the
outer packaging was similarly contaminated (Jorgensen et al., 2015). Consequently, preventing the
spread of the bacteria to humans by reducing the number of colonized broiler flocks, i.e., chickens
grown specifically for meat, at slaughter is as an urgent endeavor (Wilson et al., 2008).

Current attempts at tackling outbreaks of Campylobacter have largely focused around on-
farm biosecurity measures; however, little impact in reducing incidence has been demonstrated
(Hermans et al., 2011). This is predominantly due to the aggressive rate of proliferation once
Campylobacter has entered a flock, and further complicated by uncertainty in the exact route of
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primary colonization. Specifically designed prevention methods
are also marred by high genetic diversity of Campylobacter spp.
(Tresse et al., 2017).

Campylobacter has historically been considered to be a
gastrointestinal commensal of chickens, but recent studies
suggest that, at least in some circumstances, they are pathogenic
(Humphrey et al., 2014; Wigley, 2015). We here refer to birds
being “colonized” and Campylobacter spp. “shed” where they
could be detected from samples. Once an initial bird has
become colonized by Campylobacter, colonization of the rest
of the flock occurs very rapidly, usually within the course
of a week (Evans and Sayers, 2000; Shreeve et al., 2000;
Stern et al., 2001). The bacteria are spread via the fecal-oral
route. After becoming newly-colonized, the host broiler spends
a brief period in a non-infectious incubation period, before
excreting the bacteria in its fecal and caecal matter. Surrounding
susceptible broilers are then exposed to this via coprophagy
(Shanker et al., 1990).

Understanding of the spread of Campylobacter is hindered
by incomplete understanding of the transmission dynamics of
the bacteria at farm level. Multiple strains of Campylobacter
can simultaneously inhabit broiler flocks (Höök et al., 2005),
with some strains appearing to dominate the flock at different
times (De Cesare et al., 2008; Kudirkienė et al., 2010). It has
been suggested that these dynamical behaviors are driven
by the appearance of demographically superior strains that
outcompete other strains (Calderón-Gómez et al., 2009) within
the gut. However, another study suggests that strains are
lost or transmitted randomly, regardless of their genotypic
differences (Grant et al., 2005). Indeed, recent mathematical
modeling approaches have demonstrated that stochastic
simulations can effectively capture the broad dynamical
differences between strains of equal demographic ability
(Rawson et al., 2019).

An area of more recent study is the role played by
“super shedders,” birds who consistently shed high amounts
of Campylobacter in their feces, in the transmission dynamics
of Campylobacter within a flock. The impact of “super
shedders” has been well-documented as a key factor in
the rapid spread of Salmonella throughout chicken flocks
(Gopinath et al., 2012; Menanteau et al., 2018), but the
impact on the dynamics of Campylobacter spread within broiler
flocks is not well-studied. These “super-shedders” have been
found experimentally to have fewer circulating heterophilic
cells, but this does not appear to be a genetically acquired
trait, nor the result of differences in adaptive immunity
(Barrow et al., 2004). The presence of such super shedders
in broiler flocks has been observed in an experimental
study measuring Campylobacter prevalence (Achen et al.,
1998), and it is reasonable to assume that this could have
implications for the transmission dynamics within a flock.
Despite the lack of studies amongst chickens, variation in
fecal shedding of Campylobacter has been detected in cattle
(Rapp et al., 2012).

Some factors affecting transmission are well-reported, if
incompletely understood. The effect of seasonal variation
on both the carriage rate, and number of Campylobacter

found in the caeca, of colonized chickens has been noted
(Wallace et al., 1997), with an increase often observed in
the spring or summer. The exact timing of these peaks,
however, varies within and among countries (Kovats et al.,
2005), and experimental work is not always able to detect
such an effect (Humphery et al., 1993). Less well-investigated
is the impact of different species of Campylobacter competing
within a flock. C. jejuni, the most common species, has been
found in ∼90% of British chicken flocks, compared with C.
coli appearing in 10% of flocks (Jorgensen et al., 2011). This
ratio has been reported by other studies in broiler flocks (Bull
et al., 2006), with species rarely both being simultaneously
present. It is not understood whether this is due to established
strains suppressing new strains from emerging, demographic
differences, or the short-lifespan of commercial broiler flocks
not providing enough time for multiple species to colonize
a flock. Under laboratory conditions, C. coli has been shown
to have lower growth rates, motility, and invasiveness than
C. jejuni (Aroori et al., 2013), potentially explaining its rarer
appearance in chicken flocks. There is also some suggestion that
C. coli is more commonly isolated from older, free-range, birds
(Colles et al., 2008).

This study explores the impact of multiple factors on the
transmission of multiple sequence types (STs) of Campylobacter
amongst individual birds within a flock across 51 weeks. A broiler
breeder flock, i.e., the parents of broiler/meat birds, was studied
rather than a broiler flock, since the production period of around
a year, compared to a small number of weeks for broiler birds,
allows much greater potential to study the interaction of different
Campylobacter strains over time. When interpreting the results,
however, it should be noted that broiler breeder flocks will differ
from broiler flocks with respect to, for example, host genetics,
age, feed, and flock density. The majority of the Campylobacter
genotypes (STs), however, have been isolated from other chicken
flocks, most typically housed commercial broiler flocks (Colles
et al., 2015).

We use a robust data set from Colles et al. (2015), which is
currently the best available for monitoring the Campylobacter
strain dynamics amongst individual birds within a commercially
reared flock across 51 weeks. Through a Bayesian modeling
approach we show the range of receptiveness to colonization
throughout the flock, and highlight the role that more-
susceptible, “super-shedder,” birds play in driving disease.
The impact of seasonal variation is also investigated, and
specific attention is given to differences between species of
Campylobacter, so as to understand how certain strains persist
at higher levels throughout the flock. Seven exploratory models
are presented, each investigating a specific research question,
analyzing the transition probabilities at both a flock-wide, and
individual level.

A Bayesian approach is considered for this study due to the
methodology’s innate strengths in analyzing incomplete data
(Dorazio, 2016), and enabling efficient inference of missing
data. Numerical computations were carried out using the Just
Another Gibbs Sampler (JAGS) program (Plummer, 2007), a
Markov chainMonte Carlo (MCMC) sampling program utilizing
Gibbs sampling.
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DATA

The field data used for this study were originally presented in
Colles et al. (2015). Within a flock of 500 broiler breeders, 200
birds were labeled with leg-rings and monitored for a total of 51
weeks. Each week, 75 unique birds were picked at random from
the labeled 200, and a swab was taken of the cloacal opening.
These swabs were then tested for the presence of Campylobacter
through standard culture methods, and positive samples were
then genotyped by multi-locus sequence typing (MLST) of
seven house-keeping genes, enabling the sequence type (ST) and
species of the Campylobacter isolate to be specified. Further
experimental details can be found in the original publication
(Colles et al., 2015).

As such we build a dataset providing information on real-time
evolution of Campylobacter prevalence and diversity throughout
the flock. This is shown below in Figure 1, with all positive
samples classified by species of Campylobacter.
Within each species, multiple STs are recorded. In Figures 2,
3 below we plot the 5 weeks moving averages of total positive
samples for each species. Beneath each point we plot a histogram
showing how this average is split between the competing STs.

We notice from Figures 2, 3 that there are more unique STs
of C. jejuni than C. coli, despite both species existing at roughly
equal levels. We also see that C. jejuni appears to peak in the
summer, around the August period, coinciding with a dip in the
population of C. coli STs. Within each species we can observe
that different ST populations grow and shrink across the study
period. For example, within Figure 2 we see that the summer
peak is dominated by the prevalence of ST 51 and 53, however
by November/December, this population shrinks, and instead ST
607 rapidly increases in population.

Figures 2, 3 effectively illustrate the key research questions
tackled by this study. Namely, why do some STs seem to exist at
higher quantities and persevere better than other STs which may
die out? Do the dynamical behaviors of species and STs correlate
to any particular trait? We investigate what mechanisms are
dynamically driving these observed differences through querying
the probability of chickens transitioning from different states of
colonization using a series of Bayesian models presented below.

MODEL DEVELOPMENT

In this section we discuss the general methodology behind all of
our models. A general step-by-step process to model formulation
is also presented in Box 1. Each model begins by classifying each
of the datapoints into certain state labels. For example, at the
simplest level each reading can be classified as either “State 1:
Uncolonized” or “State 2: Colonized.” Other models may use
more states to further distinguish colonizations by species or ST.
After doing this, we are able to convey this classification data in
the form of a matrix S[c, t] where c ∈ {1, 2, ..., 200} is the index
denoting which chicken is considered, and t ∈ {1, 2, ..., 51} is
the index denoting which week is considered. Therefore, each
element of S will be a number conveying the state classification
of that particular data point. For example, S[3, 7] = 1, would
indicate that on week 7, chicken number 3 was classified as state

1; uncolonized. Because only 75 of the 200 chickens were tested at
random each week, many of these matrix elements are undefined,
and as such are marked as ‘‘NA.”

Once thematrix is defined, eachmodel uses a Bayesian process
to find the transition probabilities between these states. Formally
we seek the matrix π , where πi,j = P(S[m, n] = j | S[m, n− 1] =
i), for everym ∈ {1, 2, ..., 200} and n ∈ {2, 3, ..., 51}. In short, πi,j is
the probability that a chicken moves from state i to state j across
a week. The exact choice of how to formulate the expressions
is where our models vary, as different formulations are able
to investigate different relationships governing these transition
probabilities. For example, at the simplest level, we could define

π1,1 = α1 (1)

π1,2 = 1− π1,1

π2,1 = α2

π2,2 = 1− π2,1

where we seek to find the values α1 ∈ [0, 1] and α2 ∈ [0, 1]
that best fit the data S. Note that we have bounded πi,j between
0 and 1, as each value represents a probability. Likewise each row
of π must sum to 1, as these probabilities cover all transition
possibilities. In the example of Equation (1) above, when starting
from state 1, one can transition to state 2 (π1,2), or remain in state
1 (π1,1), hence π1,1+π1,2 = 1. Different models below will use
more complex definitions for π to explore the impact of time,
density dependence, and chicken health on transitions between
different states.

A Bayesian statistical model provides a way to iteratively
deduce parameters of interest in regards to given data. The
process is derived from Bayes’ theorem:

P(θ |D) =
P(D|θ)P(θ)

P(D)
, (2)

where θ is the parameter/s we wish to discover, and D is the
data provided. In short, Equation (2) reads that when starting
from an initial, prior, belief in what values θ may take (P(θ)),
one may obtain an updated, posterior, probability distribution
for these possible values given some provided data (P(θ |D)). A
more thorough introduction to Bayesian modeling is provided in
Appendix 1. In our case, the parameters we seek, θ , are the ones
used in our definition of π , such as α1 and α2 in the example
above. The data, D, we use is the matrix S.

Below we present a series of case studies presenting our
different models and their results. All models were run using
JAGS (Plummer, 2007) from within R using the run.jags package
(Plummer et al., 2016). All code used for the following models is
made available at https://osf.io/m5yua/.

CASE STUDIES

Model 1: Time Dependence
Our first model investigates how time affects the transition
probabilities between states. Following the process outlined in
Box 1, we choose to initially classify our data as one of two states:
“state 1: uncolonized” and “state 2: colonized.”
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FIGURE 1 | Histogram showing the count of positive and negative samples from a breeder flock for different species of Campylobacter. White “NA” counts represent

samples that were negative for Campylobacter.

To assess how the transition probabilities vary through time
we must ensure that we define our transition probabilities such
that they depend on time. One way would be to adapt Equation
(1) above such that π1,1 was a function of α + βt. However,
this would impose structure upon the transition probabilities,
enforcing them to change linearly with time. Ideally a model
formulation should allow as much freedom as possible to fit
to the data. As such, we shall instead construct π as a three-
dimensional array. In essence this means that each time period
can be described by its own transition matrix. Formally we write
this as,

π1,2,t = ilogit(α1 + C1[t]), (3)

π1,1,t = 1− π1,2,t ,

π2,1,t = ilogit(α2 + C2[t]),

π2,2,t = 1− π2,1,t ,

for t ∈ {1, 2, ..., 51}. Here ilogit() is the inverse logit function
defined by ilogit(x) = ex

1+ex . This function is bounded between 0
and 1, scaling the argument so that our probabilities, πi,j,t remain
correctly bounded. The underlying theory is that we assume

there is some mean probability for πi,j,t across all t. These mean
probabilities are described by α1 and α2. We then assume that,
for each t, there is some “correction term” away from the mean
unique to each week. These correction terms are captured by
C1[t] and C2[t] for each t.

Now that we have decided on our model formulation, we
move to step 3 and run the model to find the posterior
distributions for α1, α2, C1, and C2. First we define our prior
probability distributions for each of the model parameters. This
distribution represents our initial assumptions on what value our
variables may take, and is often informed by expert opinion.
Since we do not have any initial assumptions on what values
our variables may take, we use wide non-informative priors. For
α1 and α2 we choose a prior distribution of U(0, 25) for each,
a uniform distribution between 0 and 25. For C1 and C2, we
wish each element of these vectors to be a small perturbation
away from the mean of α1 or α2. As such, we would ideally
have these elements drawn from a normal distribution with
mean 0, and some, yet to be determined, standard deviation.
This represents a hierarchical model formulation (discussed
further in Appendix 1), where we instead define priors on
the two standard deviations for these two normal distributions
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FIGURE 2 | The 5-weeks rolling average number of positive samples for Campylobacter jejuni, with both the total number and separate ST averages. STs that appear

<20 times throughout the entire experiment are amalgamated into a group “Low Count”.

associated with C1 and C2. Following the advice of Gelman
(2006) for non-informative improper priors, we use a uniform
distribution between 0 and 50 for the prior distribution of
each of these standard deviation parameters. The model was
then run using two chains, with a burn-in period of 5,000
iterations, and then a final sample of 25,000 iterations to build
the posterior distributions.

Convergence was considered well-achieved via investigation
of the trace plots of the chains, the effective sample size (ESS)
and Monte Carlo Standard Error (MCSE) of the variables. The
Gelman-Rubin statistic, or “shrink factor,” is the most commonly
used metric for convergence, with a value close to 1 signifying
effective convergence. Heuristically, any shrink factor below 1.1 is
considered by Kruschke (2014) to signify sufficient convergence.
The presentedmodel run resulted in amultivariate potential scale
reduction factor (mpsrf) of 1.0059.

The results for thismodel are presented below in Figure 4. The
median values of the transition probabilities for (4A) π1,1,t , (4B)
π1,2,t , (4C) π2,1,t , (4D) π2,2,t are plotted, and a linear regression
is fit to these outputs using the lm function in R. Fitting a
general additive model (GAM) to these median values revealed
that there was no significant model fit for higher order models,
hence only linear regression fits are displayed. The probability of
transitioning from state 1 (plots 4A and 4B) was not significantly
correlated against time (t-test, p = 0.135), however transitions

from state 2 (plots 4C and 4D) against time were statistically
significant (t-test, p < 0.01).

These findings suggest that, as time progresses, colonized
chickens become more likely to remain colonized, and similarly
become less likely to clear such a colonization. Figures 4C,D
show that, at the start of the experiment, colonized chickens
would bemore likely to clear the colonization the following week,
but by the end of the experiment this had reduced to a probability
of roughly 50%.

Model 2: Species Dependence
For the next model we investigate transition differences between
the two species present in the study: C. jejuni and C. coli. As
such, this time we classify our data as belonging to one of three
states; “state 1: uncolonized,” “state 2: colonized by C. jejuni,” and
“state 3: colonized by C. coli.” Therefore our transition matrix
will be of size 3 × 3. We define each row of the transition
matrix by a 3-variable Dirichlet distribution (the multivariate
generalization of the Beta distribution), ensuring each row sums
to 1. As such, we infer the transition probabilities directly, using
prior distributions of

(π1,1,π1,2,π1,3) = Dirichlet(1, 1, 1),

(π2,1,π2,2,π2,3) = Dirichlet(1, 1, 1),

(π3,1,π3,2,π3,3) = Dirichlet(1, 1, 1).
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FIGURE 3 | The 5-weeks rolling average number of positive samples for Campylobacter coli, with both the total number and separate ST averages. STs that appear

<10 times throughout the entire experiment are amalgamated into a group “Low Count”.

BOX 1 | Model construction process.

1. Decide state classifications.

Choose how data should be classified, and construct matrix S containing all

state classifications for each data point.

2. Decide formulation of transition matrix.

Choose how model will define transition probabilities and dependencies.

3. Run Bayesian model.

Define prior probability distributions for model parameters. Program and run

Bayesian model using JAGS, to acquire a posterior probability distribution for

all model parameters defined in step 2.

4. Assess convergence.

Investigate model output to assure posterior distribution is well-constructed

and has converged.

5. Present results.

Plot the transition probabilities, πi,j , and interpret the results.

The model was run with two chains and an initial burn-
in period of 5,000 iterations. Posterior distributions
were built from a sample of 10,000 iterations.
Convergence was once again well-achieved with a mpsrf
of 1.0035. The results are plotted below in Figure 5.
Results show slight variations between species across the entire
experiment. General transition probabilities from each state are
very similar, however one can note that a chicken is more likely to

be colonized by C. coli when transitioning from a state of already
being colonized by C. coli. We also see that a chicken colonized
by C. coli is less likely to transition to being uncolonized than a
chicken colonized by C. jejuni.

Model 3: Time and Species Dependence
We now combine the previous two models together, to
investigate how the transitions between species alter across time.
We once again therefore classify our data into three categories, as
per the previous model.

We will be constructing a three-dimensional array once again
for our transition probabilities, with each time period being
described by a separate 3 × 3 transition matrix. To ensure each
row of thesematrices sums to 1, we start by framing the transition
probabilities as an unbounded array p, before scaling these into
our final array π . p is defined as

p1,1,t = exp(α1), p1,2,t = exp(α2 + C1[t]), (4)

p1,3,t = exp(α3 + C2[t]), p2,1,t = exp(α4),

p2,2,t = exp(α5 + C3[t]), p2,3,t = exp(α6 + C4[t]),

p3,1,t = exp(α7), p3,2,t = exp(α8 + C5[t]),

p3,3,t = exp(α9 + C6[t]).

The exponential function here assures that, like in our initial
model, our α parameters will describe the average transition
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FIGURE 4 | Transition probabilities between two states, “uncolonized” and “colonized.” Plots show (A) π1,1,t, (B) π1,2,t, (C) π2,1,t, and (D) π2,2,t against time. Each

point is the calculated transition probability for that time point. Also plotted is a linear regression against these points in blue, with a shaded region depicting the 95%

confidence interval of the regression. (C,D) Are significant (p < 0.01).

value across time, with the C parameters describing a small
perturbation away from this mean. C values only need to be
implemented on two probabilities in each row, as we will next
scale these so that each row sums to 1, meaning that two free
correction terms are sufficient to describe the distribution of the
row. Our scaling is then performed like so,

π1,1,t =
p1,1,t

p1,1,t + p1,2,t + p1,3,t
, π1,2,t =

p1,2,t

p1,1,t + p1,2,t + p1,3,t
,

(5)

π1,3,t =
p1,3,t

p1,1,t + p1,2,t + p1,3,t
, π2,1,t =

p2,1,t

p2,1,t + p2,2,t + p2,3,t
,

π2,2,t =
p2,2,t

p2,1,t + p2,2,t + p2,3,t
, π2,3,t =

p2,3,t

p2,1,t + p2,2,t + p2,3,t
,

π3,1,t =
p3,1,t

p3,1,t + p3,2,t + p3,3,t
, π3,2,t =

p3,2,t

p3,1,t + p3,2,t + p3,3,t
,

π3,3,t =
p3,3,t

p3,1,t + p3,2,t + p3,3,t
.

We choose priors of N(0, 1000) for all our α values (normal
distributions with mean 0 and standard deviation 1,000). Like
the first model, we shall construct a hierarchical dependency such

that our Ci[t] are all drawn from a normal distribution for each
t. Motivated by the correlation observed in the first model, we
actually set these six Ci terms to all be drawn from a six-variable
multivariate normal distribution, with mean (0, 0, 0, 0, 0, 0) and
a covariance matrix as our parameter to be defined. JAGS
requires the input of a precision matrix (the inverse of the
covariance matrix) for its formulation of the multivariate normal
distribution, so we set a prior distribution on the precisionmatrix
of Wishart(I6, 6), where I6 is the 6× 6 identity matrix.

The model was run with two chains for an initial burn-in
period of 5,000 iterations, and then a posterior distribution was
built from a sample of 250,000 iterations, thinned at a rate of 1 in
5, meaning only 1 in every 5 iterations was used for the posterior
distribution so as to reduce autocorrelation. Results are plotted
below in Figure 6.

Of the nine transition probabilities presented, five were found
to be statistically significant for correlation against time when a
linear regression was applied: π1,3,t , π2,1,t , π2,3,t , π3,1,t , and π3,3,t

(t-tests, p < 0.0005, p < 0.05, p < 0.05, p < 0.0005, and
p < 0.0005, respectively). We once again see that transitions
to a state of uncolonization reduce over time, however, whereas
model 1 reported overall transitions to a state of colonization
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FIGURE 5 | Transition probabilities between three states, “uncolonized,” “colonized by C. jejuni,” and “colonized by C. coli.” Plots show the median values of the

posterior distributions and the 95% highest density intervals (HDIs).

increasing, model 3 shows that only transitions to colonization
by C. coli increase over time. Given the spread of the data
in Figure 6, we also tested for statistical significance against a
quadratic regression. A quadratic fit would be a strong argument
for the existence of seasonal variation, by capturing a difference
in the middle of the time series as the time axis moves to summer,
before returning to winter. Recall again that this time period
plotted is in weeks from February 2004 to February 2005. Only
one transition probability was found to be statistically significant
however, the transition from colonization by C. jejuni to C. coli,
π2,3,t (t-test, p < 0.05). This quadratic regression is presented in
Figure 7 below. This would correlate with the behavior observed
in Figures 2, 3, whereby C. jejuni appears to be most prevalent in
the summer, and C. coli most prevalent in the winter (similarly
to model 1, fitting a general additive model (GAM) to these
median values revealed that there was no significant model fit for
higher order models, hence only linear regression fits, and the
one quadratic regression fit, are displayed).

Model 4: ST Perseverance
For thismodel, we extendmodel 2 to now capture species-specific
ST perseverance within a chicken. To do this, we re-classify the
data into five different states: “S1: uncolonized,” “S2: new C.
jejuni ST,” “S3: same C. jejuni ST as previous week,” “S4: new C.
coli ST,” and “S5: same C. coli ST as previous week.” To further
clarify the meaning of state 2 and state 4, we mean a ST of
either C. jejuni or C. coli that was not present in the previous

week for the chicken in question. For example, if one chicken
had the following colonization data for 10 days: {“Uncolonized,”
“Colonized by C. coli ST 1089,” “Colonized by C. coli ST 1090,”
“Colonized by C. coli ST 1090,” “NA,” “Colonized by C. coli ST
1090,” “Colonized by C. jejuni ST 958,” “Colonized by C. jejuni
ST 958,” “Colonized by C. jejuni ST 1257,” “Uncolonized},” then
this row of ten would be classified as { 1, 4, 4, 5, NA, 4, 2, 3, 2, 1 }.
Because, by definition, one can only transition to state 3 from
state 2 or state 3, we can fix π1,3 = π4,3 = π5,3 = 0, and likewise
for transitions to state 5: π1,5 = π2,5 = π3,5 = 0. The non-zero
transition probabilities can then be calculated by drawing each
row from a 3 or 4 variable Dirichlet distribution. Formally we set
a prior on each row of,

(π1,1,π1,2,π1,4) ∼ Dirichlet(1, 1, 1), (6)

(π2,1,π2,2,π2,3,π2,4) ∼ Dirichlet(1, 1, 1, 1),

(π3,1,π3,2,π3,3,π3,4) ∼ Dirichlet(1, 1, 1, 1),

(π4,1,π4,2,π4,4,π4,5) ∼ Dirichlet(1, 1, 1, 1),

(π5,1,π5,2,π5,4,π5,5) ∼ Dirichlet(1, 1, 1, 1).

The model was run with two chains for a burn-in period of
5,000 iterations before building posteriors from a final sample
of 10,000 iterations. Chains were well-mixed and convergence
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FIGURE 6 | Transition probabilities between three states, “uncolonized,” “colonized by C. jejuni,” and “colonized by C. coli.” Plots show (A) π1,1,t, (B) π1,2,t, (C) π1,3,t,

(D) π2,1,t, (E) π2,2,t, (F) π2,3,t, (G) π3,1,t, (H) π3,2,t, and (I) π3,3,t against time. Each point is the calculated transition probability for that time point. Also plotted is a linear

regression against these points in blue, with a shaded region depicting the 95% confidence interval of the regression. Five transition probabilities were found to be

statistically significant for correlation against time: π1,3,t, π2,1,t, π2,3,t, π3,1,t, and π3,3,t (t-tests, p < 0.0005, p < 0.05, p < 0.05, p < 0.0005, and p < 0.0005,

respectively).

well-achieved with an mpsrf of 1.0037. Results are plotted below
in Figure 8.

The most notable difference is seen in the perseverance of
C. coli STs compared to C. jejuni STs. Comparing columns 3 and
5 of Figure 8, we see that, a colonization by a new ST of either
C. coli or C. jejuni has a roughly equal chance of persevering to
the next week. However, once a ST has carried over for 1 week,
C. coli colonizations are then considerably more likely to further
persist for later weeks. In fact, a repeated instance of colonization
by a C. coli ST (state 5) is more likely to continue in subsequent
weeks than to transition to any other state (seen by comparing
the pink lines in Figure 8). Comparing also columns 2 and 3 of
Figure 8, we see that transitions to colonizations by new
hboxtextitC. coli/C. jejuni STs are roughly comparable, meaning
that the primary difference we observe between the two species is
in perseverance as opposed to infectivity.

Model 5: Chicken Dependence
Whereas model 1 considered how transition probabilities vary
across time, we now consider how transition probabilities vary
across different chickens. We follow a very similar framework to
model 1, beginning by classifying all data as one of two states: “S1:
uncolonized” or “S2: colonized.” We then, like model 1, consider
some average transition probability that each chicken is close to,

and then consider some small “correction term” unique to each
chicken, which may make them more or less likely to transition
to a certain state. Formally, we write,

π1,2,t = ilogit(α1 + C1[c]), (7)

π1,1,t = 1− π1,2,t ,

π2,1,t = ilogit(α2 + C2[c]),

π2,2,t = 1− π2,1,t ,

for c ∈ {1, 2, ..., 200}. We set a non-informative prior distribution
for α1 and α2 of N(0, 1000). Our chicken correction terms,
C1[c] and C2[c], are each drawn from a two-variable multivariate
normal distribution for each c, with mean (0, 0) and covariance
matrix to be calculated. Like described in model 3, we therefore
set a prior distribution on the precision matrix for this multi-
variate normal distribution of Wishart(I2, 2), where I2 is the 2×2
identity matrix.

The model was run with two chains for an initial burn-
in period of 20,000 iterations, before posteriors were then
constructed from a sample of 50,000 iterations. Convergence
was well-achieved, with all chains well-mixed and all parameters
sampled with a high ESS andMCSE < 0.01. Thempsrf was unable
to be calculated due to the high number of stochastic nodes,
however there were no signs to suggest invalid convergence.

Frontiers in Microbiology | www.frontiersin.org 9 October 2020 | Volume 11 | Article 576646

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Rawson et al. Modeling Campylobacter in a Flock

FIGURE 7 | Transition probabilities between state 2 “colonized by C. jejuni” and state 3 “colonized by C. coli” against time. Each point is the calculated transition

probability for that time point. Also plotted is a quadratic regression against these points in blue, with a shaded region depicting the 95% confidence interval. The

transition probability was found to be statistically significant for correlation against time (t-test, p < 0.05).

Upon calculating our transition probabilities for each bird, we
plot the values for π1,2 against the value of π2,1 for each bird and
investigate the correlation. Figure 9 shows these results overlaid
with a contour of the associatedmultivariate normal distribution,
indicating the probability density of the transition probabilities
for the flock.

The strong linear relation observed reveals the presence of
distinct sub-groups within the flock of birds who are colonized
often, and those who are colonized very rarely.

Model 6: Chicken and Species Dependence
We now alter the previous model to consider the differences in
transition between species of Campylobacter across all birds. As
such, the data is instead classified into the three states: “state
1: uncolonized,” “state 2: colonized by C. jejuni,” and “state 3:
colonized by C. coli.” This model is formulated the same way as
in model 3 above. The transition probabilities follow the same
structure as Equations (4) and (5), except that our correction
terms Ci[c] are corrections for each chicken in the flock (c ∈

{1, 2, ..., 200}) as opposed to each time step. As such we craft a
3 × 3 transition matrix for each chicken. A prior distribution
of N(0, 1000) is used for each αi parameter, and the six chicken
correction terms, Ci[c] are drawn from a six-variate multivariate
normal distribution for each c, with mean (0, 0, 0, 0, 0, 0) and
a precision matrix as a parameter to find. The prior distribution

for this precision matrix is Wishart(I6, 6), where I6 is the 6 × 6
identity matrix.

The model was run with two chains for an initial burn-in
period of 10,000 iterations, before posterior distributions were
constructed from a sample of 50,000 iterations, thinned at a rate
of 1 in 25, meaning only one iteration was kept in every 25.

The idea of this model is to assess how bird variation affects
the transition of each species of Campylobacter. The previous
model revealed the existence of variation in bird resistance to
colonization throughout the flock. Figure 10 below plots the
result of multiple transition probabilities against one-another.
Each point on the graphs represents the transition probabilities
for a specific chicken. Plots 10A–C use π1,1,c, the transition from
uncolonized to uncolonized as the y-axis. This acts as a rough
metric for “bird resilience to colonization,” as the more resistant
birds are more likely to continue being uncolonized. As such
plots 10A–C depict how transitions related to each species vary
according to host bird susceptibility. Plot 10D uses π3,3,c, the
transition from C. coli to C. coli as the y-axis, to compare how the
perseverance of C. coli affects the colonizing ability of C. jejuni.
Linear regressions are fit to all plots in Figure 10, and all were
found to be statistically significant (t-test, p < 0.0001).

Interestingly, the gradients of all the shifting transition
probabilities are different between species, confirming that,
indeed, the transition probabilities of each species varies
differently across chickens. We see that the probability of a
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FIGURE 8 | Transition probabilities between five states, “uncolonized,” “colonized by a new C. jejuni ST,” “colonized by the same C. jejuni ST as previously,”

“colonized by a new C. coli ST,” and “colonized by the same C. coli ST as previously.” Plots show the median values of the posterior distributions and the 95% highest

density intervals (HDIs).

species persisting, unsurprisingly increases as bird susceptibility
increases, but curiously our linear regressions for each species
overlap. This result indicates that, in the more resilient birds, C.
coli is less likely to persevere thanC. jejuni colonizations, however
the inverse is seen in the more susceptible birds.

It is interesting to note that the gradient of the lines in each
plot are distinctly different from one another, highlighting how
each species responds differently to variations in host bird health.

Model 7: Chicken and Density Dependence
This model builds on model 5 by now considering how transition
probabilities are affected by the number of total colonizations in
the previous week. Campylobacter is known to be transmitted
via the fecal-oral route between chickens, so it seems likely that
a higher density of colonizations 1 week will cause an increased
number of colonizations the following week. We classify our data
into two states, uncolonized and colonized.

The model formulation is then as follows,

π1,2,c,t = ilogit

(

α1 + C1[c]+ β1

(

51
∑

i=1

S[i, t]− 1

Nt

))

, (8)

π1,1,c,t = 1− π1,2,c,t ,

π2,1,c,t = ilogit

(

α2 + C2[c]+ β2

(

51
∑

i=1

S[i, t]− 1

Nt

))

,

π2,2,c,t = 1− π2,1,c,t ,

where Nt is the number of birds that data is available for at
time t. Here, as with previous models, αi represents some mean
transition probability that all birds are clustered around, and
Ci[c] represents the slight correction for each bird c. Recall that
the matrix S is populated by elements “1” denoting uncolonized
and “2” denoting colonized. Therefore, the expression S[i, t] −
1 for every i and t shifts this to instead be captured as “0”
signifying uncolonized, and “1” signifying colonized. Therefore,
the expression

∑51
i=1 S[i, t]− 1 will be a tally of exactly how many

birds are recorded as being colonized at time t. Therefore, the

expression
∑51

i=1
S[i,t]−1

Nt
conveys the exact proportion of how

many birds are currently colonized. Note the use of Nt as, for
most weeks 75 birds are recorded for every t, however, as can be
seen in Figure 1, occasionally a few more or less were recorded
each week. Note however, that during the Bayesian modeling
process, values for each element of S will be imputed in the
process, meaning that we can choose to measure our density
dependence using either just the provided data, or also the
imputed data. There are merits to both approaches, and so results
are included for both below. Here βi are parameters signifying the
strength of the density dependent effect.

The model was initialized with prior distributions of N(0,
1000) for all αi and βi parameters. The chicken corrections
terms Ci[c] were, like above, drawn from a multivariate normal
distribution of mean (0,0) whose precision matrix we seek. The
precision matrix was initialized with a prior distribution of
Wishart(I2, 2) where I2 is the 2 × 2 identity matrix. The model
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FIGURE 9 | Transition probabilities for each bird in the flock from a state of being colonized to uncolonized (y-axis) against the transition probability from uncolonized

to colonized (x-axis). Contours show the fit of a multivariate normal distribution to the output.

was run with two chains for an initial burn-in period of 6,000
iterations and then posterior distributions built from a sample
of 25,000 iterations. This was done twice with two variations of
the model. One where density dependence is calculated from
provided data, and one with the addition of imputed data. The
posterior distributions of our model parameters were used to
simulate the transition probabilities for each flock across a full
range of total flock prevalences, i.e., using the median values
for αi, βi, Ci and the precision matrix, we are able to build
the functions

π1,2,c = α1 + C1[c]+ β1D, (9)

π2,1,c = α2 + C2[c]+ β2D, (10)

for any value D ∈ [0, 1], for each chicken c. The results of
these functions for both the imputed and non-imputed density
models are presented below in Figure 11. The data only record
flock colonizations proportions ranging from 0.1818 to 0.6667,
so dotted lines are placed in Figure 11 to show the range beyond
which the result was further imputed.

Importantly Figure 11 confirms that density dependence is
apparent within the flock. This was an important result to
capture to reinforce the findings of model 6. It confirms that
birds are influenced by the colonization prevalence of the flock,
suggesting that the more resilient birds truly are less likely to

become colonized, as opposed to just never becoming exposed
to particularly virulent STs. Of interest here is that the probability
of clearing colonization (transitioning to uncolonized) is affected
far more by flock prevalence proportion than the probability of
becoming colonized.

DISCUSSION

An improved understanding of the transmission dynamics
of Campylobacter among and within poultry flocks in the
commercial environment is essential for the design of effective
intervention strategies to reduce levels of human disease. Here,
these dynamics were evaluated within a flock of broiler-breeder
chickens through a series of seven models, each constructed
to investigate and answer a specific question. The analyses
demonstrated the extent to which data can capture and describe
multiple underlying dynamical behaviors, when queried with
modeling approaches.

A number of the analyses were consistent with the existence
of a “Campylobacter super-shedder” state within the flock,
with other “resilient” birds that rarely or never transmit
Campylobacter (Models 1, 5, 6, and 7). These resilient birds
persisted even with high levels of colonization amongst the
remainder of the flock (Model 7). The existence of super-
shedders, is well-documented for Salmonella colonization in
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FIGURE 10 | Transition probabilities for a three state system. In these plots, “U” refers to being uncolonized, “J” refers to colonization by C. jejuni and “C” refers to

colonization by C. coli. Each of the points is the transition probability for a specific bird within the flock. Linear regression fits are plotted with a shaded region

representing the 95% confidence intervals of the regression. All regressions were statistically significant (t-test p < 0.0001). (A) The transition probabilities of J-to-J

and C-to-C against the transition probability of U-to-U. (B) The transition probabilities of C-to-J and J-to-C against the transition probability of U-to-U. (C) The

transition probabilities of U-to-J and U-to-C against the transition probability of U-to-U. (D) The transition probabilities of J-to-J and U-to-J against the transition

probability of C-to-C.

chickens (Gopinath et al., 2012; Menanteau et al., 2018) and
a small number of studies indicate varied shedding levels of
Campylobacter amongst cattle (Rapp et al., 2012); however,
although the models presented here were developed from
field data, there is otherwise a paucity of published evidence
for a Campylobacter super-shedder status in chickens. This
observation warrants further investigation, as the concept of
individual colonization-resistant birds within a flock raises the
potential of alternative approaches to controlling Campylobacter
colonization in chicken flocks, e.g., those based on feed and/or
probiotics. Small-scale experiments have shown that probiotic
treatment can reduce Campylobacter bacterial load in individual
birds (Willis and Reid, 2008; Ghareeb et al., 2012), but the wider
impact in flock transmission dynamics is poorly understood.
Numerical modeling approaches have, however, highlighted the
growth rate of competing bacteria as the most powerful factor in
reducing the spread of Campylobacter (Rawson et al., 2019).

The models further indicated that individual bird status
was more important than Campylobacter strain in determining
the dynamics of flock colonization (Models 6 and 7) and, to
our knowledge, this is the first time this has been shown.
Most (26/39, 66.7%) of the Campylobacter sequence types
(STs) observed have been isolated from other chickens (Colles
et al., 2015), which is consistent with them being competent
at colonizing chicken hosts, although there is still potential for
competition, for example over space or metabolic advantage.

Whilst Campylobacter is generally considered to be a commensal
of the chicken gut, there is evidence that in some breeds there is a
prolonged inflammatory response, damage to the gutmucosa and
diarrhea (Humphrey et al., 2014). Our results are consistent with
the colonization of a chicken flock byCampylobacter beingmulti-
factorial process, and the health and welfare of individual birds
should be considered alongside Campylobacter strain type. The
immune response of chickens has been shown to be impacted by
welfare measures, such as stocking density (Guardia et al., 2011;
Gomes et al., 2014), food withdrawal, and heat stress (Burkholder
et al., 2008). Consequently these results suggest an additional
incentive to uphold good bird welfare, as only a small sub-
population of susceptible birds can have a large impact on the
colonization status of the whole flock. The birds were weighed on
two occasions through the study, but no correlation was found
between weight and Campylobacter shedding rate.

Having confirmed the existence of variation in bird transition
probabilities, the possible impact of such variation on the
proliferation of Campylobacter STs was investigated. Using
a previously-published stochastic differential equation model
of Campylobacter population dynamics within a broiler flock
(Rawson et al., 2019), two variant scenarios were explored:
(i) one simulating a homogenous flock of chickens; and
(ii) another simulating variation in immune response. The
simulations demonstrated that demographically equal strains of
Campylobacter could be sustained at broadly different levels
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FIGURE 11 | Transition probabilities from a state of uncolonization (by Campylobacter) to colonization, and from colonization to uncolonization using a density

dependent model programmed using (A) recorded data (B) recorded and imputed data. Each colored line represents the transition probabilities for a single chicken,

with a black line depicting the flock mean. Dotted lines show the region for which data was available for such a flock colonization proportion.

across the flock as a consequence of bird immune response
(Appendix 2). This is a random process, in that whichever
strain is initially acquired by a super-shedder is then shed in
large amounts into the environment, increasing the likelihood of
colonizing other birds in the flock. This result implies that the
observation that some STs persist at higher levels than others
in the flock, is likely due to the variation in bird transition
probabilities, as opposed to phenotypic differences between STs.
For example, ST 958 may appear more than ST 45 (Figure 2), not
because it has a competitive advantage, but because it was initially
ingested by super-shedders. Indeed, upon examination of the first
recorded appearance of specific STs, the STs that would appear
most frequently throughout the experiment were first observed
in the most susceptible birds. Likewise the STs that appeared to
die out were first observed in the more resilient birds; however,
as only 75 out of 200 birds were sampled each week the exact date
of when a ST first occurred cannot be determined.

With respect to the two species, there was evidence
that Campylobacter coli was shed by individual birds more
consistently over time compared to Campylobacter jejuni, with
some indication that C. coli was more prevalent in the winter
and C. jejuni more prevalent in summer (Models 2, 3, and 4).
These results should be interpreted with caution since, although
the number of birds from which Campylobacter was detected
was variable from week to week, single colony picks (i.e., one
Campylobacter isolate per bird) were used, meaning the two
variables were not entirely independent in this instance.

Human incidence of campylobacteriosis has been shown to
vary in a repeated pattern each year (Nylen et al., 2002), which
numerous studies have correlated with a similar pattern observed
in broiler house colonization rates (Kapperud et al., 1993; Patrick
et al., 2004; Jore et al., 2010), an observation disputed by other
studies (Humphery et al., 1993). Despite this, there was no effect
of seasonality on Campylobacter spp. shedding rate detected by
the modeling approaches here (Models 1 and 3, Figures 4, 6),
or in the original study examining local environmental variables
(Colles et al., 2015). This lack of seasonality could be due to the
different housing conditions and diet provisions between broiler
and breeder flocks (Leeson and Summers, 2010). Breeder flocks
have also been shown to shed smaller amounts of Campylobacter
than commercial broilers (Cox et al., 2002).

The age of the flock has been shown to be an important factor
associated with increasing Campylobacter strain diversity. C. coli
are more commonly isolated from older broiler flocks and may
be over-represented in this broiler-breeder flock in comparison
to commercially housed broilers, who live for typically 5–10
weeks before slaughter. The finding, of increased colonization
duration as time progressed (Model 3), primarily by C. coli,
was most likely due to the increased flock prevalence resulting
in a positive feedback loop, whereby more Campylobacter is
being shed into the environment by colonized birds, and then
further ingested by the other birds in the flock before they are
able to clear colonization. Biologically, there is some indication
that C. coli differs from C. jejuni based upon its genomic
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structuring, with the majority of farm animal related C. coli
isolates grouping into the large ST-828 clonal complex, and
C. jejuni isolates forming around 40 complexes. The shorter
colonization periods by C. jejuni (Models 4 and 6, Figures 8,
10) potentially reflects a stronger immune response from the
host leading to control or clearance of STs, although this did not
preclude colonization by other C. jejuni (or C. coli) STs. Due
to the inherent nature of sampling, it is not possible to know
if strains were cleared altogether, or if multiple Campylobacter
strains colonized birds simultaneously, although the modeling
methods used in this study were chosen to take this uncertainty
into account as far as possible. These results further highlight the
importance of individual bird responses in determining flock-
wide prevalence, and further ecological competition hierarchy
modeling could be applied to the same data to assess the
impact this phenomenon has on ST population stability across
time. If structured hierarchical competition could be verified,
this would support our contention that flock-wide defensive
strategies should be conducted at an individual bird level.

We also stress the importance of our final model in not
just investigating the weekly bacterial prevalence turnover, but
how it further substantiates the importance of bird-to-bird
transmission. Without this one could argue from our earlier
results that more resilient birds were simply the ones who did
not ingest a more invasive ST. Figure 11 shows the influence of
flock colonization proportion on transition probabilities. Most
notably we see that the transition from uncolonized to colonized
is affected less by total colonization prevalence than the transition
from colonized to uncolonized. This means that in a highly
colonized flock, uncolonized birds still have a possibility to not
become colonized, while those who are already colonized will be
far less likely to then clear their colonization. This would likely
be caused by the immune system of currently uncolonized birds
being just as likely as previously to prevent an initial colonization,
but currently colonized birds will be more likely to add to their
current bacterial load by ingesting more Campylobacter and
reduce their likelihood of recovery.

In conclusion, these analyses have highlighted the diversity
of individual bird response to bacterial challenge, and how
this range of responses can be a key driver of Campylobacter
prevalence dynamics. It is now important to find an observable
metric that correlates with the resilience of a bird to colonization.
If it were possible to identify “super-shedder” birds on the farm,

targeted interventions could be instituted to improve their health,
or to better inform industry of how to raise broiler flocks with low
rates of shedding within a flock. Such super-shedders will amplify
the prevalence of Campylobacter within a flock, leading to rapid

colonization. Now that we have highlighted the critical role that
bird health plays, future work must elucidate how one may act to
help prevent the emergence of super-shedders within the flock.
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