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The number of studies with information at multiple biological levels of

granularity, such as genomics, proteomics, and metabolomics, is increasing

each year, and a biomedical questaion is how to systematically integrate these

data to discover new biological mechanisms that have the potential to elucidate

the processes of health and disease. Causal frameworks, such as Mendelian

randomization (MR), provide a foundation to begin integrating data for new

biological discoveries. Despite the growing number of MR applications in a wide

variety of biomedical studies, there are few approaches for the systematic

analysis of omic data. The large number and diverse types of molecular

components involved in complex diseases interact through complex

networks, and classical MR approaches targeting individual components do

not consider the underlying relationships. In contrast, causal network models

established in the principles of MR offer significant improvements to the

classical MR framework for understanding omic data. Integration of these

mostly distinct branches of statistics is a recent development, and we here

review the current progress. To set the stage for causal network models, we

review some recent progress in the classical MR framework. We then explain

how to transition from the classical MR framework to causal networks. We

discuss the identification of causal networks and evaluate the underlying

assumptions. We also introduce some tests for sensitivity analysis and

stability assessment of causal networks. We then review practical details to

perform real data analysis and identify causal networks and highlight some of

the utility of causal networks. The utilities with validated novel findings reveal

the full potential of causal networks as a systems approach that will become

necessary to integrate large-scale omic data.
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Introduction

Due to recent technological advances, data acquisition of

molecular components on large scales and in multiple omics

capacities has been realized. Yet, advanced analytic methods

are desperately needed to systematically integrate these data

to facilitate discoveries and improved understanding of the

biological process that impacts omics health and disease.

Systematic analysis refers to the simultaneous analysis of all

data in the study while considering their interconnectivity/

dependency. Identifying the underlying relationships among

molecular entities as a network provides insights into

complex processes that would not be revealed by focusing

on individual entities in isolation (Barabasi and Oltvai, 2004;

Bebek et al., 2012). Such an analysis requires the

incorporation of further relevant biological information

(Ainsworth et al., 2017).

Causal networks, as a systematic analysis of data, are

ideally suited for analyzing multi-omics and heterogeneous

data sets to reveal the role of entities individually or as a

module in a system (e.g., an omic, such as metabolomics).

Using the principles of MR on a genome-wide scale and

integrating genetics with other omic data allow researchers

to relate information at different levels of omic data in a

cohesive analytic framework and possibly uncover the

underlying relationships that represent molecular networks

(Badsha and Fu, 2019a; Ahangaran et al., 2019). Causal

networks not only represent the connectivity among

observations but also facilitate extracting causality from

observational data (Holmes et al., 2017; Dorvash et al.,

2020; Hackett et al., 2020; Khan et al., 2020).

Identifying causality through classical MR has received

attention in biomedical research. The characteristic of this

framework is hypothesis-driven with a focus on a small set of

entities with known underlying relationships (known causal

diagram) (Richmond et al., 2016). In modern biomedical

research, i.e., large-scale omic data, however, there are

several hundred or thousands of entities, and there is

limited knowledge about interconnectivity among them.

Causal networks are pragmatic to address the challenges of

large-scale omics.

We here review the integration of classical MR and causal

networks which seem mostly as two distinct branches of

statistics. Here, we first briefly review some recent

developments in the classical MR framework then, we

discuss the identification of causal networks, evaluation of

the underlying assumptions, and introduce some tests to

assess the stability of the networks. We also review

practical steps to identify causal networks on real data and

review some utilities of causal networks, such as the

identification of molecular regulatory sub-networks and the

identification of molecules with an essential role in the system

under study.

An overview of mendelian randomization

To estimate causal relationships when experiments cannot be

controlled or randomized, which is often the case for biomedical

studies, statistical regression models are frequently used by

regressing a response variable on an explanatory variable.

However, regression models can give biased results when an

explanatory variable is correlated with the regression model’s

error term. To overcome this limitation, instrumental variables

(IV) can be used, but with strong assumptions. A valid IV induces

changes in the explanatory variable but not the response of

interest other than through the explanatory variable, hence

allowing identification of the causal effect of the explanatory

variable on the response variable. The basis of MR is the use of

IVs, as discussed extensively in the literature (Sanderson et al.,

2022). In biomedical studies, genetic variants are frequently used

as IVs because of assumptions of Mendelian genetics: random

mating of parents and random transmission of alleles from

parents to offspring. An IV is valid under the following

assumptions (Bowden et al., 2015):

1. IV is associated with an explanatory variable conditional on

other covariates in the model.

2. IV is not associated with unmeasured confounders.

3. IV is not associated with response conditional on the

explanatory variable and unmeasured confounders.

In MR applications, when a genetic variant affects

response via a different biological pathway from the

explanatory variable, IV assumptions could be violated

(i.e., a pleiotropic effect). Satisfying the second and third

IV assumptions means a lack of pleiotropic action of IV,

neither through the unmeasured confounder

(i.e., correlated pleiotropic effect) nor directly

(i.e., uncorrelated pleiotropic effect) (Xue et al., 2021). In

the case of multiple independent genetic instruments for an

explanatory variable, lack of pleiotropy can be replaced with

the weaker Instrument Strength Independent of Direct Effect

(InSIDE) assumption (Bowden et al., 2015): If there is no

correlation between the genetic associations with the

explanatory variable and the genetic associations with the

response, the IV assumption is satisfied. To identify IVs with

pleiotropic effects see the test heterogeneity in dependent

instruments (Gao et al., 2016). Some recent efforts to relax

MR assumptions and account for confounding due to

pleiotropy are based on plurality validation of IVs: in large

samples, while (Wald) ratio estimates of the target causal

effect from invalid IVs will take different values, ratio

estimates from all valid IVs should approach the true

causal effect and thus, the valid IVs form the largest group

of SNPs among all the groups giving different ratio estimates

(Xue et al., 2021). For models based on plurality validation see

e.g., constrained maximum likelihood and model averaging
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(Xue et al., 2021), MR mixture (Qi and Chatterjee, 2019), and

MR-cause (Morrison et al., 2020). In addition to pleiotropy,

another confounding factor in the summary-statistics MR

approach is sample structure, such as population

stratification and sample overlap, which needs to be

considered, see (Hu et al., 2022).

Some recent progress in the classical MR
framework

One of the recent MR developments in the classical MR

framework includes applications with several explanatory

variables, called multivariable MR. Multivariable MR

enables estimating the effects of multiple individual

explanatory variables (primary and secondary explanatory

variables) on one response to avoid violation of MR

assumptions due to secondary explanatory variables being

the confounders of the primary explanatory variable and

response relationship (Porcu et al., 2019), Figure 1A. One

approach to estimate the effects is the following. First, regress

each explanatory variable (X) on the IV to estimate a predicted

explanatory variable X̂. Then, regress the response on the

predicted explanatory variables X̂s, the regression coefficients

are called the causal effects of explanatory variables on

response,

X̂h � α h IVh, h � 1, . . . , n, (1)
Response � β0 + β1 X̂1 + β2 X̂2 + . . . + βn X̂n + e. (2)

In Eqs 1 and 2 with the assumption of additive effects, X̂ is

estimating the value of the explanatory variable (X) using IV, α is

the effect of IV on the explanatory variable X, coefficients β

represent the causal effect of the explanatory variables X on the

response, n is the number of explanatory variables in the

multivariable MR.

The application of multiple uncorrelated IVs is suggested to

increase the power of the IV approach to estimate the

explanatory variable and as a result, to assess the relationship

of the explanatory variable with the response, Figure 1B. This

leads to predicting the explanatory variable as the following,

X̂ � α1 IV 1 + . . . + αk IVk. (3)

Since the instruments are uncorrelated, the variation

explained by each of the instruments is independent from the

other.

FIGURE 1
MR applications. (A).Multivariable MR. Multiple IVs for multiple explanatory variables of the same response to estimate the direct effect of each
explanatory variable on the response. U stands for a set of confounders. (B).Multiple uncorrelated IVs. Multiple uncorrelated IVs for one explanatory
variable to predict significant variation in the explanatory variable, satisfy a robust relationship between the IV and the explanatory variable. (C). Two-
step MR for mediation analysis. In the case that there is a mediator, considering two IVs (one for the explanatory variable and one for the
mediator) facilitates measuring the direct effect of the explanatory variable X on the response.
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In mediation analysis, the interest is in the contribution of

variables that lie on the causal pathway from an explanatory

variable to a response, Figure 1C. In this case, two-step MR is

often applied which is a combination of two univariate MRs,

estimating the causal effect of the explanatory variable on the

mediator and then estimating the causal effect of the mediator on

the response (Sanderson et al., 2019). Different causal effects

including direct, indirect, and total effects in Figure 1C are as

follows:

τ corresponds to the effect of explanatory variable X on the

mediator: mediator � τ 0 + τ X̂ IV1 + e′, (4)
γ corresponds to the effect of the mediator on

response: response � γ 0 + γ M̂IV2 + e″, (5)
φ Corresponds to the direct effect of explanatory variable X

on response: φ � β − τ γ (6) where β stands for the total effect of

the explanatory variable on response calculated as

Response � β 0 + β X̂ IV1 + e. Here X̂ IV is the predicted value

of explanatory variable X by IV, i.e., variation in the

explanatory variable explained by IV.

Due to high measurement costs or lack of appropriate

biospecimens, data on IV, explanatory variable, and response

might not be available for all participants. In this setting, to infer

a causal relationship between an explanatory variable and a

response, two-sample MR is applied, where one sample has

data on the genetic and explanatory variable, and the other

has data on genetic and response, e.g., (Gao et al., 2016). The

algorithm for a two-sample MR application is provided in

Figure 2. One way to predict the explanatory variable in

sample two is

X̂ � ∑
k

i�1βIVi, sample1
pIVi,sample2, (4)

where X̂ stands for prediction of the explanatory variable for

sample two; k stands for the number of uncorrelated IVs,

βIVi, sample1
stands for the effect size of the ith genetic variant

with a significant association with the explanatory variable in

sample 1, and IVi,sample2 is the corresponding genetic variant in

sample 2.

This approach can also be applied to summary statistics of

both samples without having the individual levels (Lawlor, 2016;

Zhu et al., 2016). In this setting, the causal effect of the

explanatory variable on response is estimated by the effect of

genetic variants on response in sample two divided by the effect

of genetic variants on the explanatory variable in sample 1.

The application of summary statistics and two-sample

studies are common for wide association studies, such as

transcriptomic/phenotypic wide association studies, where the

association of the predicted-explanatory variable and the

response of interest is tested. Two-sample studies based on

summary statistics are also used in colocalization, where we

estimate the probability of the same signal for GWAS and the

study of quantitative trait loci (QTL), such as expression or

metabolite QTL. However, in these studies, the MR assumptions,

especially the lack of pleiotropic effect, are not assessed.

Otherwise, these studies will be the same as MR studies, see

(Barfield et al., 2018).

The transition from the classical MR
framework

The applications above assume that a causal diagram is

specified, i.e., the role of each component such as being a

mediator, explanatory variable, or response is specified in a priori

in a small set of variables, and the interest is finding an individual

cause of a specific response. Even in multivariable MR when

multiple explanatory variables are considered, the interest is in

finding the individual causes of a response and not revealing the

underlying relationships among the entities in the study. Therefore,

the classical MR framework is hypothesis-driven (Richmond et al.,

2016), which is a major limitation of the classical MR framework to

address questions in modern biomedical studies where we have

limited knowledge about relationships among entities, we do not

know which entity is the response variable and which is the

explanatory variable. In other words, in modern biomedical

studies, the causal diagrams are unknown.

To overcome this limitation of the classical MR framework,

one of the early proposals was to consider all possible causal

diagrams for the set of entities in the study, then, investigate each

one independently using a statistical method, and finally, select

the most likely causal diagram, Figure 3A, (Shin et al., 2014;

Wittenbecher et al., 2022).

This approach is challenging computationally and

statistically because when the number of entities in the study

FIGURE 2
Two-sample MR. A diagram representing the application of
two-sample MR when data on IV, explanatory variable, and
response are not available for all samples. Sample 1 has genetic
and explanatory variable records; therefore, we measure the
effect size of genetic variants on the explanatory variable. Sample
2 has genetic variant and response records and not explanatory
variable measurements, therefore, to estimate the genetic
variation of any explanatory variable, we use the effect size from
sample 1. Then, we estimate the causal relationship between the
genetically estimated explanatory variable and response.
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increases, the number of possible causal diagrams grows

exponentially.

Causal networks

Unlike classical MR framework, systems approaches such

as causal networks deal with all entities under study at the

same time. Causal networks are systematic analyses of data

where connections among entities (nodes in the network) are

essential to the conclusions. In this framework, each entity can

be an explanatory variable, mediator, confounder, as well as a

response at the same time. The key feature of causal networks

is being discovery-based, and suitable for handling large-scale

data, where we have limited knowledge about the underlying

interconnectivity. There are different applications of

systematic analysis of omics including causal networks

(Zhu et al., 2012; Franzén et al., 2016; Broumand and

Dadaneh, 2018; Ahangaran et al., 2019; Ahangaran et al.,

2020; Yazdani et al., 2020; Gerring et al., 2021). For

instance one of the early applications is the integration of

genetic variants, metabolites, gene expressions, and proteins

on yeast data to identify the underlying molecular networks

(Zhu et al., 2012). Another example is the identification of

different patterns of gene expression for patients with

coronary artery disease (Franzén et al., 2016). More

recently, the causal network successfully identified genes

that are differentially regulated in schizophrenia-cases

versus controls and found essential genes for human brain

functions (Yazdani et al., 2020).

Causal networks can be based on Bayesian networks

augmented with the principles of MR (Aten et al., 2008;

Yazdani et al., 2016a; Badsha and Fu, 2019b; Howey et al.,

2020). For details of the causal-network identification, see

Supplementary, for a recent review of methods see

(Ainsworth et al., 2017; Ghassami et al., 2017; Hu et al.,

2018; Glymour et al., 2019), and for a comparison of MR

performance and causal networks in both real and simulated

data see (Howey et al., 2020). The MR approaches for causal

network identification can be different for different data types

(e.g., different omics). For entities whose levels are

controlled by one or two local single nucleotide

polymorphisms, we can use the related QTLs as IVs

(Tsamardinos et al., 2006; Yazdani et al., 2016b).

Otherwise, the use of a polygenic approach may facilitate

the identification of IVs (Burgess et al., 2017; Yazdani et al.,

2019; Yazdani et al., 2020). In the polygenic approach, we

extract information from genetic variants to generate IVs

(instead of using natural genetic variants) which can be

carried out using principal component analysis or multiple

correspondence analysis (Abdi and Valentin, 2007).

Polygenic factors explain a large amount of genetic

variation and thus have the potential to generate a

stronger association with explanatory variables (Yazdani

et al., 2016a). This approach prevents spurious estimates

and increases the accuracy of findings compared to the

cases where too many genetic variants are used. This

approach also prevents highly sensitive estimates due to

ignoring a majority of data and using a few genetic

variants (Burgess et al., 2017). Extracting information from

the genome and therefore generating many IVs provides an

opportunity to allocate multiple independent IVs to each

explanatory variable and increase the power of the MR

analysis (Pierce et al., 2011) and identify causal networks

on a large scale (Yazdani et al., 2016b).

Causal networks and the evaluation of the
IV assumptions

Causal networks are in the framework of Causality and the

underlying assumptions to infer causality are the same as classical

MR. The application of invalid IVs results in unstable causal

networks. Therefore, for causal network identification, we not

only embed theMR assumptions in the algorithms but also assess

the stability of causal networks after identification and determine

FIGURE 3
A transition from the classical MR framework. Interest is in finding the causal relationship between a metabolite and a lipid where we do not
know which one is the response. Two of the possible causal diagrams are represented and each one will be assessed separately to select the most
likely causal diagram.
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if the MR assumptions are violated in one or some parts of the

networks.

In the constraint-based algorithms, causal networks are built

upon conditional independence and simultaneous assessment of

the lack of pleiotropic effect (the effect of IV on response is only

through the explanatory variable). The causal relationship

Mi → Mj is concluded if the property 7) is satisfied which

explains that the effect of IV on response Mj is only through

the explanatory variable Mi,

Mj ⊥ IV
∣∣∣∣Mi,

i.e., p(M j , IV |Mi) � p(Mj|Mi), (5)
And the deterministic representation of (7) is

Mj � f(Mi, IV,U) ≡ Mj � f(Mi,U), (6)

where all factors that affect variableMj when variableMi is held

constant is confined in U. In the property Mj ⊥ IV |Mi, the

notation “⊥“ stands for statistical independence.

If this property is not satisfied, the variable used as IV does

not qualify to investigate the causal relationship Mi → Mj, and

as a result, will not be included in the analysis.

As reviewed above, the validity of IVs in causal networks is

correspondence to causal network stability. In addition to

the tests that we will introduce in the following,

minimizing Hamming distance is one of the well-

established assessments for the stability of the networks

(Tsamardinos et al., 2006; Norouzi et al., 2012). Using

Hamming distance, only robust connections remain in the

network including IV - explanatory variable connections.

Assessing the strength of IV connections using Hamming

distance and pleiotropy assessment in Eq. 7 are implemented

in the Genome granularity Directed acyclic Graph

(G-DAG) algorithm to identify causal networks (Yazdani

et al., 2016a).

We here introduce some tests to assess the stability of an

identified causal network. Understanding the tests requires some

background in basic concepts for causal network exploration,

such as the “graphically” identification of cofounders using the

“back-door” criterion, see Supplementary or (Pearl, 2011;

Yazdani A, 2015). Due to some technical notations, the

formal descriptions are provided in Supplementary.

Confounding-equivalent Test. Assume we are interested in

the effect of X on Y, as two entities, in an identified causal

network. Two sets, S1 and S2 are confounding-equivalent

(relative to X and Y), if the following equality holds for every

x and y:

∑
S1�s1

P(Y � y
∣∣∣∣X � x, S1 � s1)P(S1 � s1) � ∑

S2�s2
P(Y � y

∣∣∣∣X

� x, S2 � s2)P(S2 � s2).

This equality guarantees that, adjusting for either set S1 or S2
would produce the same asymptotic bias relative to the target

quantity, which is the identification of the effect X on Y.

The confounding equivalent property was introduced

previously in (Pearl, 2011). Here, we are introducing it as a

test to assess if the underlying assumptions are satisfied. Assume

a causal network of five variables {E, F, Z,X, Y} is identified, e.g.,
Figure 4A. From the network, sets {E, Z} and {F, Z} are

confounding-equivalent for the identification of the causal

effect of X on Y, and therefore, either of the sets is sufficient

for this purpose. This means the estimated effect ofX on Y based

on either of these two sets do not vary significantly, which can be

assessed by a statistical test. If this is not the case, the causal

network is not stable and is an indicator of violation of

underlying assumptions.

Variable-Reduction Test. In an identified causal network,

consider a node that has only a role as a response/receptor. The

property of this node is no arrows out but arrows in, such as node

FIGURE 4
Examples for stability tests. (A). To assess the effect of {X} on {Y} in this causal network, there are two equivalent sets of confounders {E,Z} and
{F, Z}, which means considering either of the sets, the study of the effect {X} on {Y} is unconfounded and the effect does not vary significantly
(Confounding-equivalent Test). (B). To assess the effect of {X} on {Y} in this causal network, {Z} is the confounder. Therefore, knowing the value of
variable T does not change estimating the effect of {X} on {Y} if we hold the variable {Z} constant.
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Y in Figure 4A. From the network, we conclude that the

corresponding variable to node Y does not affect any other

variables. Therefore, if we remove the corresponding variable

from the set of variables, and then, identify a causal network of

the subset, we expect the relationships among the variables in the

subset to stay the same as before, see the decomposition of the

joint probability distribution in Supplementary.

To quantify this in practice, we can use the receiver operating

characteristic (ROC) curve for a different number of nodes

having only a role as a response/receptor in the network

(Yazdani et al., 2020). If this test leads to an unstable result,

the underlying MR assumptions, while identifying the causal

network, are violated.

Variable-Increment test. Assume we are interested in the

effect ofX onY in an identified causal network, andZ is the set of

confounders identified graphically. ForT ∉ Z, we conclude either

Y ⊥ T|(X,Z) or X ⊥ T|Z.
Considering Figure 4B, and the additive assumption to

estimate the effect of X on Y, we expect the equality β 1 � β′1
from y � β 0 + β 1 x+β 2z + ey and y � β′+β′1 x+β′2z+β′3t + ey
since the asymptotic bias produced by these two equations is the

same. The equality β 1 � β′1 can be assessed by a statistical test,

such as a Z-test.

Permutation Test. Permutation analysis can be performed to

examine the stability of an identified causal network. Since the

implementation of the permutation test for causal networks is

not straightforward, here, we review how to perform a

permutation test to assess the stability of a causal network

(Yazdani et al., 2020): the sets of randomly selected nodes for

permutation must be entirely from the receptors (no arrows out

but arrows in) or broadcasters (no arrows in but arrows out)

since the impact of receptors and broadcasters in the network are

different. For each permutation, we may select different numbers

of nodes for permutation depending on the size of the network,

e.g., 10 nodes, that all have the same number of arrows out (out-

degree) and the same number of arrows in (in-degree). Then,

permute the nodes and after that, assess the stability of the

identified connections using the ROC curve.

Identification of causal networks in real
data

In this section, we review an application to identify a causal

network in real data. We review a study of systematic integration

of genetics and metabolomics to identify the metabolomic-causal

network (Yazdani et al., 2016b). Metabolomic and genomic data

were available for 2,479 individuals. First, we adjusted

metabolites for the set of covariates in the study, such as age,

sex, and body mass index. Second, we selected a set of IVs with a

strong association with the metabolites in the study. These IVs

can be identified through a metabolite QTL study, and/or by

generating polygenic factors. We did not remove from the study

the entities with no strong IVs. In the third step, we assessed

conditional independence properties among metabolites using a

constraint-based Bayesian algorithm. Note that this step can be

carried out using a score-based algorithm too. Fourth, for each of

the conditional dependence properties from step 3, we assessed

the exclusive effect of the IV of a metabolite (as an explanatory

variable) on the other metabolite (as a response). If the effect is

not significant, the lack of pleiotropy assumption is satisfied.

After selecting valid IVs through steps 2 and 4, we assess the

causal effect of a metabolite on the other metabolite. These steps

were embedded in the G-DAG algorithm (Yazdani et al., 2016a),

and the metabolomic-causal network of 122 metabolites was

identified using 325 valid IV where the tuning parameter was set

equal to 0.001 determined by minimizing the average Hamming

Distance (Tsamardinos et al., 2006), Figure 5A.

A close-up of the network is depicted in Figure 5B. We see

that using IV s (pale nodes) facilitated the identification of causal

relationships among metabolites (orange nodes). However, there

was a part of the network, where no IV was identified for the

metabolites and therefore, no causal conclusion could be made,

depicted as bi-directed links in Figure 5C. Interestingly, these

metabolites are diet-related metabolites and therefore, influenced

mostly by environmental factors and not genetics and that is the

reason that no genetic IV s were identified for them.

We may not be able to identify causal relationships between

metabolites with no, however, having them in the analysis

provides us with an opportunity to reveal the relationship

with other modules or metabolites in the network

(Figure 6A). Extracting information from the metabolomic-

causal network and further applications are briefly reviewed in

the next section as utilities of causal networks.

The utilities of causal networks

The utilities of causal networks are multiple and flourishing,

such as revealing principles governing omics under study and

understanding them as a system, understanding functional links,

explaining the results of perturbations, as well as facilitating

efficient experimental/clinical designs. We here review the

utilities by exploring the metabolomic-causal network

identified in the previous section as well as using the network

for downstream analysis.

In addition to effect size and significance level for each entity,

using causal networks, we can reveal the role of entities in the

system under study. Through exploring the network, we can

identify modules/sub-networks, a set of entities that interact with

each other to control a specific function (Figure 6A). The border

of each module is determined using causal effect size and the in-

degree and out-degree of nodes (Yazdani et al., 2016b). Each of

the modules in a network can be explored to understand the

module as a sub-network and reveal the metabolites with

essential roles. For example, for exploring the fatty acid
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FIGURE 5
Metabolomic-causal network. (A). In total, 325 polygenic factors satisfied MR assumptions/valid IVs (pale nodes) and were used to facilitate the
identification of the causal network of 122metabolites (orange nodes). (B). A close-up of the network. (C). A part of the network with no genome IV a
result, some of the causal relationships are not identified, depicted as bi-directed links. Interestingly, we noticed that the corresponding metabolites
are dietary-related metabolites that are mostly influenced by environmental factors and not genetics.

FIGURE 6
Causal Network Parameters. Numbers stand for metabolites, edges for conditional dependence properties, and arrows for causal relationships.
(A).Modules. The set of entities that highly interact. The identified modules generally coincide with known pathways. For example, the blue and pink
circles consist of related fatty acid and amino acid molecules respectively. (B). Example of a broadcaster. Intervention in broadcasters may change
the level in the entire system since they directly or indirectly influence multiple other entities in system. (C). Example of a receptor. The level of
receptors may predict the level of the entire system since they capture the effect of multiple other entities.
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module in Figure 6, and the dietary hypotheses made by

exploring the module see (Yazdani et al., 2016c). In addition

to the property of entities as a group, we can also extract

information about individual entities. For example, in a causal

network, we are able to identify if a hub (a highly connected

node) is an entity that significantly influences the system (a

broadcaster) or is significantly influenced by the system (a

receptor), or is a combination of both (Yazdani et al., 2016b;

Yazdani et al., 2019; Yazdani et al., 2020). Broadcasters can be

seen as targets for intervention to change the level of entities in

the system. On the other hand, receptors can be seen as targets to

predict the level of the whole system under study (Figures 6B,C).

Note that the identification of the role of a hub in the system and

distinguishing between receptors and broadcasters are possible

only through causal networks. Other causal network parameters

can be measured to better understand the system under study,

such as the effect blocking steps and the strength. Interested

readers are referred to (Yazdani et al., 2016b).

The causal networks do not only lead to a deeper

understanding of how the metabolites affect each other, but

also serve as the basis for downstream analyses. We explain

this utility with the systematic integration of the

metabolomic-causal network with triglycerides, a known

risk factor for cardiovascular disease (Yazdani et al.,

2016d): In total, nine out of 122 metabolites in the study

were identified with a direct effect on triglyceride levels

(Figure 7A). Some of the novel findings of this study were

against common beliefs, such as the positive and the largest

effect of arachidonate on triglycerides, which was later

validated clinically (Yazdani et al., 2018) (Figure 7B).

Revealing the underlying relationships facilitated efficient

experimental/clinical designs. For example, in Figure 7B,

we see that four metabolites exert an effect on

arachidonate, and the latter has the largest effect on

triglycerides. Another example is the effect of choline on

triglycerides that is through glycine therefore, no need to

know about the levels of choline if we know about glycine

levels.

The other utility of causal networks is improving biological

understanding of the GWAS pathways leading to disease

(Ainsworth et al., 2017). The gene/protein KIAA1755 with an

unknown function is identified with a strong relationship with

metabolite eicosapentaenoate which affects essential hypertension

with no known cause (Yazdani et al., 2019). Mapping the GWAS

finding on the metabolomic-causal network revealed that this

metabolite was among four metabolites with a high impact on

arachidonic acid with the greatest positive impact on triglyceride

levels. This finding has been clinically validated (Yazdani et al.,

2018). The relationship between triglycerides and essential

hypertension has also been validated in a clinical study (Turak

et al., 2016; Catanzaro et al., 2021). These findings may reveal new

avenues into gene functional annotation and the understanding of

the disease etiology.

The last utility of causal networks that we will review here is

assessing GWAS findings hypothesized with pleiotropy. Causal

networks reveal the underlying relationships, therefore,

providing an opportunity to satisfy the assumptions of

structural equation modeling and assess if a GWAS finding

affects two entities independently or if it is just an indirect

effect (Yazdani et al., 2019).

FIGURE 7
Systematic integration of genetics, metabolomics, and triglycerides. (A). The focus is on the nine metabolites with direct effects on triglycerides
as well as some of the indirect effects. For example, no need to know about the levels of choline if we know about glycine levels since the effect of
choline on triglycerides is only through glycine. (B). We see that the effect of four metabolites on triglycerides is through arachidonate with the
largest effect on triglycerides (Yazdani et al., 2016d).
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Discussions

A key challenge for elucidating disease mechanisms in the

21st Century is understanding the topology and dynamics of

molecules (Kim et al., 2010). Systematic integration of multi-

omic data enables us to illuminate the underlying molecular

networks. Despite this potential, the dominant approach is

studying individual components one at a time. Complex

mechanisms that use multiple omics cannot be understood by

finding one causal factor. While finding one causal relationship is

one step further in association studies and we achieve some

understanding in this way, progress is limited because it does not

provide a complete context to interpret the findings (Zhu et al.,

2012). Developing systems approaches are required to bridge

data analysis to the mechanistic understanding of diseases.

Identification of causal networks, as a systematic analysis of

data, is established in the recognition of the hierarchical structure

of the biological systems and reflects the underlying patterns

(Barabási and Oltvai, 2004). The application of causal networks

provides a path to uncover the role of each entity in a system, as

well as providing global insights that give us a deep understanding

for discovery. By mining causal networks, we can identify the role

of each entity and distinguish intervention targets from prediction

(Pearl, 2011). In addition, using causal networks, we can uncover

groups of entities that work together to perform a certain function.

MR techniques can be modulated for systematic analysis of

large-scale omics and identification of molecular networks. Some

recent discussions toward this goal can be found in (Ainsworth

et al., 2017; Howey et al., 2020). Opposite to classical MR

approaches that are hypothesis-based, causal networks are

discovery-based which makes them suitable for omic data

integration where we face a large set of entities and have little

knowledge about underlying relationships. Extracting

information from genetic variants to generate polygenic

factors and utilize them as IVs facilitates the identification of

causal networks on large scale. Although there is an increasing

number of applications of causal networks, more innovative

approaches are required to modulate MR for integrating

omics systematically, such as the identification of causal

networks based on summary statistics. In addition, the

research on the identification of causal networks can be

extended to the integration of multiple intermediate omics.
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