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ata from GWAS and eQTL
studies identified novel risk genes for coronary
artery disease
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Abstract
Several genetic loci have been reported to be significantly associated with coronary artery disease (CAD) by multiple genome-wide
association studies (GWAS). Nevertheless, the biological and functional effects of these genetic variants on CAD remain largely
equivocal. In the current study, we performed an integrative genomics analysis by integrating large-scale GWAS data (N=459,534)
and 2 independent expression quantitative trait loci (eQTL) datasets (N=1890) to determine whether CAD-associated risk single
nucleotide polymorphisms (SNPs) exert regulatory effects on gene expression. By using Sherlock Bayesian, MAGMA gene-based,
multidimensional scaling (MDS), functional enrichment, and in silico permutation analyses for independent technical and biological
replications, we highlighted 4 susceptible genes (CHCHD1, TUBG1, LY6G6C, andMRPS17) associated with CAD risk. Based on the
protein–protein interaction (PPI) network analysis, these 4 genes were found to interact with each other. We detected a remarkably
altered co-expression pattern among these 4 genes between CAD patients and controls. In addition, 3 genes of CHCHD1
(P= .0013), TUBG1 (P= .004), and LY6G6C (P= .038) showed significantly different expressions between CAD patients and
controls. Together, we provide evidence to support that these identified genes such asCHCHD1 and TUBG1 are indicative factors of
CAD.

Abbreviations: CAD = coronary artery disease, DGE = differential gene expression, eQTL = expression quantitative trait loci,
eSNP = expression single nucleotide polymorphism, GO = gene ontology, GWAS = genome-wide association study, LD = linkage
disequilibrium, MAGMA = multimarker analysis of genomic annotation, MDS = multidimensional scaling, PPI = protein–protein
interaction.
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1. Introduction

Coronary artery disease (CAD) is one of the leading causes of
mortality and morbidity worldwide.[1,2] Despite the advanced
developments in prevention and treatment, the healthcare and
economic burden of CAD remains high. CAD is highly influenced
by both genetic and environmental determinants.[3,4] The
narrow-sense heritability of CAD has been estimated to be
approximately 50%.[5,6] Thus, identifying the genetic determi-
nants with critical roles in the pathogenesis of CAD is critical for
proposing novel therapeutic targets.
In the past decade, CAD has been a focus of genetics-based or

genomics-based studies. Among these, genome-wide association
study (GWAS) has been extensively applied to discover CAD-
associated genetic loci. To date, more than 160 loci have been
reported to be associated with CAD.[7] This rapid advance has
been largely attributable to the release of genome-wide
genotyping data of the UK Biobank study together with existing
GWAS from the CARDIoGRAMplusC4D consortium. For
example, the chromosome region of 9p21 was reported to be
the highest risk region associated with CAD.[8–10] Furthermore,
numerous GWASs based on a large number of samples have
documented single nucleotide polymorphisms (SNPs) to be
associated with a group of CAD-related risk factors, including
low-density lipoprotein cholesterol,[11] high-density lipoprotein
cholesterol,[11] diastolic blood pressure,[12] systolic blood
pressure,[12] triglycerides,[11] type II diabetes,[13] waist-to-hip
ratio,[14] and bodymass index.[15] Recently, a study reported[16] a
significant genetic correlation between CAD and other lipid
metabolism-related traits (P value <1�10�16), and 13 genes
(e.g., LPA, APOE, APOC1, and SLC22A3) were identified as
common risk factors between CAD and plasma lipid levels.
However, despite GWAS studies, the biological effects of
significant genetic variants on CAD remain largely unknown.
Moreover, the GWASmethod employed the stringent genome-

wide significance threshold to avoid false discoveries due to
simultaneous testing of the associations of millions of SNPs; also,
to a large number of SNPs might have weak genetic associations,
and hence, not identified in the current sample sizes. Furthermore,
evidence from previous GWASs have shown that the vast
majority of identified SNPs are mapped into non-coding genomic
regions.[17] Thus, it can be speculated that these SNPs affect the
expression level of specific gene rather than the function of its
protein. Genetic variants can influence the expression level of
RNA via cis- or trans-regulatory mechanisms or both.[18]

Accumulating evidence also supported that the dysfunctional
expression of susceptible genes play a vital role in the etiology of
complex diseases.[19–21] Therefore, additional studies are re-
quired to discover the underlying regulatory functions of these
SNPs with small-to-moderate effects on CAD, which potentially
contribute to understanding the missing heritability of CAD.
Previous studies have focused on the integration of GWAS

summary statistics with expression quantitative trait loci (eQTL)
data to reveal susceptible genes associated with a complex array
of diseases due to pleiotropy.[22–24] For example, Zhu et al[25]

utilized GWAS summary data (N=339,224) and eQTL data
(N=5311) obtained by summary data-based Mendelian ran-
domization (SMR) method and prioritized 126 susceptible genes,
of which 25 were newly identified; for example, NMRAL1 and
SNX19 for schizophrenia and ANKRD55 and TRAF1 for
rheumatoid arthritis. Furthermore, He et al[22] proposed a
Bayesian-based inference method (also called Sherlock) to
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systematically discover the cis- and trans-regulatory effects of
SNPs on the expression levels of disease-risk genes by
incorporating GWAS summary and eQTL datasets. By conduct-
ing an integrative genomics analysis based on GWAS, eQTL, and
mQTL data, our group[26] have reported 34 important genes with
numerious candidate SNPs conffering risk to the comorbidity of
schizophrenia and smoking behaviors. By combining different
layers of evidence, many novel genes, which were hard to be
identified by a GWAS alone, were identified for complex diseases,
including gout disease,[27] schizophrenia,[28] and major depres-
sive disorders.[29,30]

In the current study, we conducted a comprehensive genomics
analysis using the Sherlock Bayesian method to integrate a large-
scale GWAS summary dataset (N=459,534) with 2 independent
eQTL datasets (N=1890). The primary goal of the current study
was to determine whether risk SNPs influenced the expression
levels of genes and identify CAD-associated susceptible genes.
Furthermore, we performed several bioinformatics analyses using
multi-omics data to highlight the CAD-risk genes.
2. Materials and methods

2.1. Summary on design of current study

In the current comprehensive genomics study, we designed a
three-stage in silico analysis framework (see Fig. 1). In the first
discovery stage, we used the Sherlock tool to integrate a large-
scale GWAS summary statistics dataset on CAD with a large
eQTL dataset for identifying CAD-associated risk genes. In the
second validation stage, we reperformed the Sherlock Bayesian
analysis using an independent eQTL dataset to replicate these
identified genes in the discovery stage. Meanwhile, we also used
the MAGMA tool to perform a genome-wide gene-based
association analysis as an independent method to validate the
Sherlock-identified genes. To avoid random events, we further
simulated a null trait as a negative control. In the third
prioritization stage, we conducted a series of bioinformatics
analyses, including pathway/GO-term enrichment analysis,
multiple dimension scaling analysis, drug-based enrichment
analysis, disease-based enrichment analysis, in silico permutation
analysis, network-based analysis, differential gene expression
analysis, and gene co-expression analysis, to prioritize the
important risk genes implicated in CAD.

2.2. Dataset #1 for GWAS summary data on CAD

To identify candidate causal genes for CAD using an integrative
genomics analysis, we downloaded the GWAS meta-analysis
summary data (N=459,534) on CAD[31] from the CARDIo-
GRAMplusC4D Consortium website. This sample set contains
120,419 CAD patients and 339,115 matched controls. All
subjects provided written consent for participating in the GWAS
study that was approved by the local research ethics committee or
institutional review board. Basic clinical information on CAD
patients and controls were reported in the original study.[31]
2.3. Dataset #2 for GWAS summary data on random
phenotype (fake CAD)

To avoid the confusion of random events, as refer to the method
of a previous study,[32] we constructed a fake CAD-based GWAS
summary dataset based on a published GWAS on lung cancer



Figure 1. Schematic of current genomics analysis.
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with 3960 samples, as reported by Landi et al.[33] For these
individuals, the disease status was randomly defined using the
function of RANDBETWEEN (“CAD,” “CONTROL”) in
Microsoft Excel. We used “CAD” to represent CAD patients,
and “CONTROL” to represent non-CAD controls. The
randomly distributed CAD phenotype was defined as null
phenotype. The logistic regression model, using PLINK (version
3

1.07), was employed to analyze the GWAS dataset on null
phenotype.[34]
2.4. Dataset #3 for eQTL data as the discovery dataset

This eQTL dataset, reported by Zeller et al[35] provides in-
depth insights into the overall variability of gene expression. A

http://www.md-journal.com
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total of 1490 unrelated participants were enrolled from a
single-center Gutenberg Heart Study. The RNA and DNA
samples were isolated from circulating monocytes in these
participants. After rigorous quality control, a total of 675,359
SNPs and 12,808 genes were included in the eQTL analysis. In
the current study, we first integrated this eQTL dataset as a
discovery dataset with GWAS on CAD for Sherlock analysis to
identify the common candidate genes with expression-associat-
ed SNPs. For more detailed clinical information, please refer to
the original study.[35]
2.5. Dataset #4 for eQTL data as the replication dataset

This eQTL dataset reported byDixon et al[36] was considered as a
replication dataset for subsequent integrative genomics analysis.
A total of 400 participants with isolated DNA and RNA samples
from Epstein-Barr virus-transformed lymphoblastoid cell lines
were utilized in this study. All the subjects provided written
consent, and the UK Multicentre Research Ethics Committee
approved this study. For this dataset, 408,273 genotyped SNPs
and 20,599 genes were incorporated to generate an eQTL
resource, which is a global map of the effects of genetic variants
on the expression levels of genes. It was used for the mapping of
complex disease susceptibility loci.[36]
2.6. Sherlock Bayesian analysis method

Based on the assumption that altered the expression level of a
specific gene might be ascribed as a risk factor of CAD, we used
the Sherlock Bayesian statistical analysis (http://sherlock.ucsf.
edu/) proposed by He et al[22] to match the “signature” of genes
from 2 chosen eQTL datasets with patterns of associations in
GWAS on CAD. Extracting from the GWAS summary dataset on
CAD, SNP rs IDs and P values were adopted as a submitted list
for Sherlock analysis. The parameters a and b, which were used
to specify the prior probabilities of a SNP being associated with a
phenotypic trait and an expression separately, were set: a=1.0�
10�3 (cis) and 5.0�10�5 (trans), b=1.0�10�3. The statistical
inference procedures of the Sherlock algorithm are as follows: the
Sherlock algorithm first utilizes the information from eQTL data
to discover expression-associated SNPs (called as eSNPs). Then,
the algorithm evaluates the association of eSNPs with CAD using
the genome-wide association signals of SNPs from GWAS
summary data. On the basis of the association significance of an
eSNP with CAD, the algorithm calculates the score of the eSNP.
There exist 3 scenarios:
1.
 If the association between eSNP and CAD is significant, the
algorithm assigns a positive score to the eSNP.
2.
 If there is non-significant association between eSNP and CAD,
the algorithm assigns a negative score to the eSNP.
3.
 If there is no eSNP but only the SNP significantly associated
with CAD, no score is assigned.

For each gene, the Sherlock Bayesian algorithm is used to
examine whether altered gene expression has any effect on the
risk of CAD by using the incorporated information of the
putative one or more eSNPs of this gene. Based on integrated
evidence from eQTL and GWAS, the algorithm infers CAD-
associated risk genes via calibrating the logarithm of Bayes factor
of each gene. The logarithm of Bayes factor is a pivotal indicator
for predicting promising genes associated with CAD risk.
Simulation analysis was used in current Sherlock analysis to
4

assess the significance of each gene. Simulated P value �.05
should be of significant.
2.7. MAGMA gene level analysis

The Multi-marker Analysis of GenoMic Annotation (MAG-
MA)[37] was applied to conduct gene-based enrichment analysis
based on the genome-wide SNPs information from GWAS
summary dataset. The SNP IDs and relevant P values of the
GWAS summary dataset were submitted as input for the
MAGMA tool. For the method of MAGMA, multiple regression
analysis was adopted with incorporating the information of
linkage disequilibrium (LD) between SNPs within a defined
genomic region to uncover multi-variant convergent effects. A
SNP mapped to a gene depends on whether the location of the
SNP mapped in the gene body or within a genomic region
extended +/�20kb downstream or upstream of the gene.[38] The
1000 Genome European reference panel was adopted to calibrate
SNP-SNP LD scores. The Human Genome Build 37 was used to
indicate the location of SNPs. MAGMA’s built in empirical
multiple testing corrections were used to correct raw P values
with 10,000 times of permutations.
2.8. Functional enrichment analysis based on pathway
and GO-term resources

To identify the biological functions of these prioritized genes
associated with CAD risk, we used the tool of ClueGO, a plug-in
tool of Cytoscape platform,[39] to perform enrichment analyses
based on organized Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways,[40] Reactome pathways,[41] Wiki path-
ways,[42] or gene ontology (GO) terms.[43] Strikingly, 4 well-
applied categories of GO terms, including biological process,
molecular function, cellular component, and immune system,
were used in the present study. To avoid the redundancies of
enriched GO terms, the function of “GO term fusion” was
employed. The hypergeometric test is employed for all enrich-
ment analyses to compute the significance.
2.9. Multidimensional scaling analysis for clustering
enriched pathways

In order to cluster significantly enriched KEGG pathways by
identified CAD-associated genes, we performed a MDS analysis.
First, we organized a pathway.txt file that contains all the
significant enriched KEGG pathways. Then, we used the Jaccard
distance method to calculate pathway-pathway distance scores
according to overlapped genes. By using these Jaccard distance
scores, we did the MDS analysis to obtain MDS1 and MDS2
values. Final, by plotting a bubble diagram, we visualized the
clusters of enriched KEGG pathways via MDS1 and MDS2
values. The most significant pathway (i.e., has the lowest P value)
was used to represent each cluster.
2.10. Functional enrichment analysis based on multiple
disease- and drug-based databases

The web-access tool of WebGestalt (http://www.webgestalt.org/
)[44] was utilized for disease- and drug-based functional
enrichment analysis based on 2 commonly used databases, that
is, DisGeNET[45] and GLAD4U.[46] Herein, we performed an
overrepresentation analysis to analyze the gene list identified

http://sherlock.ucsf.edu/
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from Sherlock Bayesian analysis in the discovery stage while
searching for significantly enriched gene sets related to diseases or
targeted drugs. All functional enrichment analyses were based on
the protein-coding genes. The gene size of each gene set ranged
from 5 to 2000. The Benjamini–Hochberg false discovery rate
was adopted for multiple corrections.
2.11. Protein–protein interaction (PPI)-based sub-network
analysis

Accumulating evidence demonstrated that susceptible genes
showed biological connections and had joint functions in the
etiology of complex diseases.[21,47,48] Consequently, we per-
formed the PPI network analysis using the GeneMANIA
software[49] to discover the interaction patterns among the
identified susceptible genes. For GeneMANIA, these identified
genes were analyzed to construct a PPI-based sub-network based
on published genomics and proteomics data. The network was
dependent on multiple layers of evidence, that is, physical
interactions, co-expression, predicted links, co-localization,
pathway links, and shared protein domains.
2.12. Computer-based permutation analysis

In the current study, we identified a group of genes (Geneset #1:
N=634) from the Sherlock integrative analysis in the discovery
stage and 2 gene sets from the Sherlock integrative analysis
(Geneset #2: N=658) in the replication stage. To determine
whether these identified gene sets were highly overlapped than
random events, we carried out a permutation analysis of 100,000
times.[50] At the first step, we counted the number of overlapped
gene (N observation) between discovery stage (Geneset #1) and
replication stage (Geneset #2). At the second step, we calculated
the total number of background genes for the Sherlock analysis of
Dataset #4 (N total=13,152). Then, through randomly selecting
the same number as the identified significant genes (Geneset #2)
from background genes for 100,000 trials, we counted the
number of randomly selected genes overlapped with genes of
Geneset #1 (N random). Finally, we calculated the number of times
(Ncount) that Nrandom� Nobservation among 100,000 trials. The
proportion of Ncount divided by 100,000 was used to assess
empirical P values, and a P value �.05 is considered to be
significant.
2.13. Comparative analysis for MAGMA of GWAS on CAD
and null trait

To further evaluate whether these CAD-risk gene were due to
genetic determinants rather than random chance, we also carried
out aMAGMA gene-based association analysis of GWAS on null
trait (Dataset #2). There were 805 genes identified to be
significantly associated with null trait (Geneset #4). Based on the
MAGMA gene-based association analysis, there were 2276 genes
identified to be associated with CAD (Geneset #3). For
comparative analysis, we first used the different P values of
0.05, 0.01, and 0.001 as 3 comparative points to extract
subgroup genes from Genesets #1 and #2, respectively. At each
comparative point, we used these subgroup genes of Genesets #1
and #2 to overlap with Genesets #3 and #4, respectively. Then,
we compared the overlapped gene rates between Sherlock
analysis and MAGMA analysis on CAD with that between
Sherlock analysis and MAGMA analysis on null trait at 3
5

different comparative points.We used theMicrosoft Excel tool to
visualize the results of the comparative analysis. Paired Student t
test was used to assess the significance.
2.14. RNA expression dataset on CAD from gene
expression omnibus (GEO) database

We downloaded an RNA expression dataset on CAD from the
GEO database (Accession number GSE120774) to explore
whether the expression patterns of identified genes were altered
between cases and controls. With regard to this dataset,[51] adult
patients with preoperative coronary angiography were enrolled
in the present study. Control patients underwent elective valve
surgery and had no significant CAD (any single lesion>50%) on
preoperative coronary angiograms. The case patients were
referred for coronary artery bypass surgery due to significant
CAD. All samples provided informed consent, and the University
of Massachusetts Medical Institutional Review Board (docket H-
14436) approved the present study. All samples (N=19) used in
the current investigation were based on epicardial adipose tissues
obtained from a site adjacent to the right coronary artery in
patients with CAD (N=9) and matched controls (N=10). The
Affymetrix Human Gene 1.0 ST microarray (Platform:
GPL6244) was utilized to measure the expression levels of the
target genes.
2.15. Statistical analysis

For the RNA expression dataset of GSE120774, we conducted a
differential gene expression (DGE) analysis of identified genes
between CAD patients and controls. Student t test was applied to
assess the statistical significance, and a P value �.05 is of
significance. We used the boxplot in R platform to visualize the
differential expression level of identified genes between CAD
patients and controls. To examine whether the co-expression
links among these genes changed between CAD patients and
matched controls based on the GSE120774 dataset, the Pearson
correlation analysis was applied to calculate co-expression levels
among these identified genes in CAD patients and controls
separately. The Corrplot package from R platform was used to
visualize co-expression patterns.
3. Results

3.1. Integrated genomics analysis in the discovery stage

By incorporating the large-scale GWAS summary data (N=
459,534) with 2 eQTL datasets (N=1890), respectively, as well
as multiple independent bioinformatics techniques, we attempted
to identify susceptible genes with risk SNPs and abnormal
expression implicated in the pathogenesis of CAD. All steps of the
current investigation are shown in Figure 1. In the discovery
stage, the Sherlock Bayesian analysis identified 634 genes to be
significantly associated with CAD (Geneset #1, simulated P< .05;
Supplemental Table S1, http://links.lww.com/MD/F683); for
example, GSDML (simulated P value=1.43�10�4), PAN3
(simulated P value=1.43�10�4), PSMC2 (simulated P value=
2.22�10�4), FUBP3 (simulated P value=3.80�10�4), and
SCML2 (simulated P value=4.58�10�4). Among these, 15
genes were reported to be associated with CAD in the source of
the GWAS Catalog database (Supplementary Table S1, http://
links.lww.com/MD/F683).

http://links.lww.com/MD/F683
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Figure 2. Functional enrichment analysis of CAD-risk genes. (a) KEGG pathway enrichment analysis of identified genes with 29 enriched pathways. (b)
Multidimensional scaling plot of 29 KEGG enriched pathways for CAD. Circular ring size represents the number of genes in each enriched pathway. Color
represents the significant level of each enriched pathway (red represents the most significant pathway with the lowest P value). Number in the plot represents the ID
of each enriched pathway, as shown in the Supplemental Table S2, http://links.lww.com/MD/F684. (c) GO terms of biological process enrichment analysis of
identified genes. (d) GO terms of cellular component enrichment analysis of identified genes. (e) GO terms of molecular function enrichment analysis of identified
genes. (f) GO terms of immune system enrichment analysis of identified genes.
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3.2. Functional enrichment analysis of the CAD-risk genes

By performing a pathway-based enrichment analysis, we
identified significant pathways enriched by these CAD-related
genes using the 3 commonly used pathway resources: KEGG,
Wiki, and Reactome. For KEGG, we identified 29 significantly
enriched pathways (Fig. 2a and Supplementary Table S2, http://
links.lww.com/MD/F684). Next, these pathways were clustered
into 5 clusters using the MDS analysis (see Methods, Fig. 2b):
autophagy (Cluster #1), longevity regulating pathway (Cluster
#2), N-Glycan biosynthesis (Cluster #3), spliceosome (Cluster
#4), and mRNA surveillance pathway (Cluster #5). A total of 16
and 205 significantly enriched Wiki pathways and Reactome
6

pathways were detected, respectively (Supplementary Tables S3-
S4, http://links.lww.com/MD/F685, http://links.lww.com/MD/
F686); for example, brain-derived neurotrophic factor (BDNF)
signaling pathway (P=6.26�10�4), H19 action Rb-E2F1
signaling and CDK-catenin activity (P=1.59�10�3), and factor
I cleaved iC3b (P=4.51�10�5).
With regard to theGOenrichment analysis,we identified297, 48,

22, and10 significantly enriched terms for biological process (Fig. 2c
and Supplementary Table S5, http://links.lww.com/MD/F687),
cellular component (Fig. 2d and Supplementary Table S6, http://
links.lww.com/MD/F688), molecular function (Fig. 2e and Supple-
mentary Table S7, http://links.lww.com/MD/F689), and immune
system (Fig. 2f and Supplementary Table S8, http://links.lww.com/
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Figure 3. Identification of 4 susceptible genes associated with CAD risk based on independent datasets. (a) Venn diagram shows the overlapped genes among 3
gene sets identified from independent analyses: Sherlock-identified genes from Zeller eQTL data (Geneset #1), Sherlock-identified genes from Dixon eQTL data
(Geneset #2), and MAGMA-identified genes fromGWAS summary statistics on CAD (Geneset #3). (b) PPI network analysis of four identified CAD-risk genes. These
4 identified risk genes are marked in red, and the predicted connection genes are marked in green. The predicted attributes are based on the documented evidence
of physical interaction, pathway links, predicted links, co-expression, shared protein domains, and co-localization. (c) Consistent evidence supports that these four
genes indicate susceptibility to CAD.

Zhong et al. Medicine (2021) 100:11 www.md-journal.com
MD/F690), respectively. For example, themRNAmetabolic process
(P=2.94�10�6), protein domain specific binding (P=1.32�
10�3), and megakaryocyte differentiation (P=9.66�10�4). Fur-
thermore, we performed disease- and drug-based enrichment
analysis using 2 widely-used databases of Disgenet and GLAD4U.
For disease-based enrichment analysis, we identified top-ranked 20
significantly enriched gene sets relevant to the disease (Supplemental
Figs. S1-S2, http://links.lww.com/MD/F700, http://links.lww.com/
MD/F701 and Supplemental Tables S9-S10, http://links.lww.com/
MD/F691, http://links.lww.com/MD/F692); for example, hyperten-
sive encephalopathy (P=5.56�10�3). Furthermore,wedetected10
top-enriched gene sets relevant to drug targets using the drug-
focused enrichment analysis (Supplemental Fig. S3, http://links.lww.
com/MD/F702 and Supplemental Table S11, http://links.lww.com/
MD/F693).
3.3. Biological and technical validation of these identified
risk genes

Next, we conducted a gene-level analysis using the widely-
adopted tool of MAGMA as an independent technique to
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replicate these identified CAD-risk genes. We found 72
MAGMA-based significant genes were overlapped with genes
identified from the Sherlock analysis in the discovery stage
(Fig. 3a and Supplementary Table S12, http://links.lww.com/
MD/F694). Among these, 9 genes have been documented to be
significantly associated with CAD, as reported previously
(Supplementary Tables S12, http://links.lww.com/MD/F694
and S14, http://links.lww.com/MD/F696). Subsequently, we
reperformed Sherlock Bayesian analysis with the same param-
eters using an independent eQTL dataset as biological replication
and identified 29 significantly replicated genes to be overlapped
with genes identified in the discovery stage (Fig. 3a and
Supplementary Tables S13, http://links.lww.com/MD/F695 and
S14, http://links.lww.com/MD/F696). To intersect 3 identified
gene sets (i.e., Genesets #1, #2, and #3), there were 4 common
genes implicated in CAD risk (Fig. 3a and Fig. 3b), that is,
CHCHD1, TUBG1, MRPS17, and LY6G6C.
To determine whether these 4 genes have functionally

connections, we carried out a PPI network enrichment analysis
using the GeneMANIA software based on public available
genomics and proteomics data. Figure 3c shows that these 4
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Figure 4. In silico permutation analysis and comparative analysis. (a) In silico permutation analysis to assess the significance of the overlapped genes between
Zeller eQTL dataset (Dataset #3) and Dixon eQTL dataset (Dataset #4). (b) Sherlock-identified genes from Zeller eQTL data (Dataset #3) were remarkably
overlapped with genes from MAGMA analysis on CAD-related GWAS (Dataset #1) than those from MAGMA analysis on null-related GWAS (Dataset #2). (c)
Sherlock-identified genes from Dixon eQTL data (Dataset #4) were remarkably overlapped with genes from MAGMA analysis on CAD-related GWAS (Dataset #1)
than those from MAGMA analysis on null-related GWAS (Dataset #2).
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CAD-associated genes are highly connected with each other,
indicating there exists a convergent effect of these genes on the
etiology of CAD. Notably, each of the 4 common genes had
several eSNPs, which were significantly associated with CAD and
regulated the expression level of the specific gene simultaneously
(Fig. 3b and Supplemental Table S15, http://links.lww.com/MD/
F697); for example, a trans-eSNP of rs84314 was significantly
associated with the expression of CHCHD1 gene (P=7.09�
10�6) and CAD risk (P= .0082).
3.4. Computer-based permutation analysis supporting
these identified genes associated with CAD

In order to ensure the reliability and specificity of the current
analysis, we carried out a comparative analysis between real
and null data. First, we performed a computer-based
permutation analysis with a total of 100,000 random tests.
8

The number of overlapped genes between Geneset #1
(discovery stage) and Geneset #2 (replication stage) were
significantly higher than those overlapped between Geneset #1
and ten thousands of random selections (Fig. 4a). Furthermore,
by using 3 different P values of .05, 0.01, and .001 as 3
comparative points, we performed a comparative analysis (see
Method) to compare significant genes from Sherlock analysis
and MAGMA analysis on CAD with MAGMA analysis on null
trait. For all the 3 comparative points, we found that the
overlapped gene rates of comparisons (Zeller eQTL vs
MAGMA on CAD; Dixon eQTL vs MAGMA on CAD) were
significantly higher than that from null-based comparisons
(Zeller eQTL vs MAGMA on null trait; Dixon eQTL vs
MAGMA on null trait) (P= .005, Fig. 4b-c). Together, these
findings provide supportive evidence that these identified genes
associated with CAD risk are likely to be attributed to genetic
determinants.
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Figure 5. Significant differences in the expression signatures of four identified genes between CADs and controls. (a) Co-expression patterns of four identified
genes in the control group based on Pearson correlation analysis. (b) Co-expression patterns of four identified genes in CAD group based on Pearson correlation
analysis. (c-e) Boxplots show the significantly differential expression patterns of 3 identified genes between CAD and control groups. (c) CHCHD1, (d) TUBG1, and
(e) LY6G6C.
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3.5. Differential expression patterns of these 4 identified
genes between CAD patients and controls

By using the Pearson correlation analysis, we found remarkable
altered co-expression patterns among these 4 genes between CAD
patients and controls (Figure 5a and 5b, Supplementary
Tables S16, http://links.lww.com/MD/F698 and S17, http://
links.lww.com/MD/F699). For example, the negative correlation
coefficient between CHCHD1 and LY6G6C was �0.39 in
controls, which increased to �0.76 in CAD patients. Similarly,
the negative correlation coefficient between TUBG1 and
MRPS17 was increased from �0.01 in controls to �0.35 in
CADs. Conversely, the positive correlation coefficient between
CHCHD1 and TUBG1 was decreased from 0.66 in controls to
0.46 in CADs, while that between CHCHD1 and MRPS17 was
changed from 0.17 in controls to �0.09 in CADs.
In addition, by performing a DGE analysis, we found 3 of the 4

genes to show significantly differential expression between CAD
9

patients and controls. Two genes of CHCHD1 (P= .0013) and
TUBG1 (P= .04) were highly expressed in CAD patients than in
controls (Figure 5c and 5d). The LY6G6C gene showed
significantly lower expression among CAD patients as compared
to that in controls (P= .038; Figure 5e). MRPS17 yielded a
suggestively differential expression between CAD patients and
controls (P= .16; Supplemental Fig. S4, http://links.lww.com/
MD/F703).
4. Discussion

In the past decade, GWAS has been the main approach for an
unbiased evaluation of the genetic determinants of CAD.
Hitherto, more than 160 CAD-associated genetic loci have been
identified.[7,50] Nevertheless, the underlying functional effects of
these identified genetic loci on CAD risk remain largely unclear.
Similar to the reported SNPs associated with other complex
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diseases,[17] a large number of identified CAD-associated SNPs
were mapped into the noncoding regions, suggesting that these
noncoding SNPs might affect RNA expression by cis- or trans-
regulatory mechanisms in the etiology of CAD. In the present
study, we conducted a systematically integrative genomics
analysis based on multiomics datasets, including Sherlock
Bayesian inference analysis, MAGMA gene-level analysis,
MDS analysis, pathway-based enrichment analysis, in silico
permutation analysis, PPI network enrichment analysis, co-
expression analysis, and DGE analysis, to prioritize the genes
associated with the risk of CAD.
GWAS is an effective method for the identification of risk

genetic loci associated with specific complex diseases.[52]

Subsequently, numerous genetic variants have been reported to
show significant associations with complex diseases.[53,54] These
GWAS-identified variants are useful for guiding researchers to
perform functional genomic experiments and testing drug
targets.[55–57] However, the strict multiple testing correction of
genome-wide SNPs at 1 GWAS was adopted, which led to a
prominent reduction of the statistical power of GWAS. These
SNPs, which did not gain a genome-wide significance but had
vital roles in the pathogenesis of complex diseases, were largely
and easily ignored under the GWASmethod. Although numerous
genetic loci were identified as hotspots to be associated with CAD
risk, the immediate functional and biological effects of these
variants are yet to be elucidated. Analyzing the correlations
between genetic variants and RNA expression alterations are
worthy of incorporating variation at the DNA sequence level to
that at the RNA level. Thus, the Sherlock Bayesian inference
analysis used in the current investigation is an effective way to
reveal cis- and trans-regulatory effects of CAD-risk SNPs on
RNA expression, as well as highlight susceptible genes, which
cannot be discovered easily by any single GWAS.
In the present study, by incorporating a large-scale GWAS

dataset with an eQTL dataset as discovery stage, we conducted
the Sherlock Bayesian analysis and found 634 genes to be
associated with CAD at a simulated level of significance.
Some of these genes, such as HERPUD1,[58]CCDC97,[58]-

MAD2L1,[31]RNF4,[59] and ZEB2,[31,58,60] have been docu-
mented to be associated with CAD in previous GWAS studies.
Furthermore, based on these significant genes, we performed a
pathway enrichment analysis and identified numerous significant
pathways with 5 clusters: autophagy, longevity regulating
pathway, N-Glycan biosynthesis, spliceosome, and mRNA
surveillance pathway, which have been implicated in the etiology
of CAD,[18,61–63] myocardial infarction,[64,65] and heart dis-
ease.[66,67] Very recently, Khera and coworkers has reviewed a
group of risk genes and bilogical pathways implicated in the
etiology of CAD.[68] In line with Khera results, 41 of reported
CAD-associated genes were significantly identified in our current
investigation, including ZEB2, RASD1, SNF8, PHACTR1, and
ADAMTS7. Additionally, these identified genes were significant-
ly overrepresented in numerous gene sets related to drug targets,
suggesting that our identified genes might be therapeutic
molecular targets for the treatment of CAD.
To replicate these identified risk genes in the discovery stage,

we also leveraged an independent technique replication using the
MAGMA gene-level analysis. Consequently, 72 identified genes
were validated. Of these, 9 have been reported to be associated
with CAD in earlier GWAS studies.[31,58,69] Moreover, we
utilized the Sherlock Bayesian analysis with the same parameters
based on an independent eQTL dataset for biological validation
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of the findings from the discovery stage. A total of 29 genes were
replicated, and 1 gene ofHMOX1 appeared to be a potential risk
determinant of CAD.[70] Consistently, no matter which compar-
ing with results from 100,000 times of random selections or
MAGMA analysis of null GWAS, the overlapped rates of genes
between the discovery stage and replication stage were higher.
Together, through using the two-stage design genomics analysis
as used in earlier reported studies,[13,28,31,60] we provide multiple
lines of evidence support Sherlock-identified genes have potent
roles in CAD risk.
Based on the independent biological and technical replications,

4 genes, CHCHD1, TUBG1, LY6G6C, and MRPS17, were
identified to be potentially implicated in the etiology of CAD. The
gene of CHCHD1, which is a ribosomal protein, has been
discovered to be indispensable for mitochondrial translation.[71]

Sequence variants inCHCHD1 gene has been reported to involve
in combined oxidative phosphorylation system deficiencies.[72]

For the LY6G6C gene, which belongs to a cluster of leukocyte
antigen-6 (LY6) genes in the major histocompatibility complex
(MHC) region. Most LY6 proteins have been documented to be
attached to the cell surface by a glycosylphosphatidylinositol
(GPI) anchor, which is directly involved in signal transduction.[73]

As for TUBG1 gene, it encodes a member of the tubulin
superfamily. Mutations in TUBG1 cause malformations of
cortical development and microcephaly.[74] The protein encoded
by MRPS17 gene is moderately conserved between human
mitochondrial proteins, which help in the synthesis of protein
within the mitochondrion.
Furthermore, 2 hub genes ofMRPS17 and CHCHD1 were co-

expressed.[75] The hub gene MRPS17 physically interacted with
ECSIT,[76] while TUBG1 showed physical interactions with
NINL,KRT19,RPS11, andNEDD1. The hub gene ofCHCHD1
also showed physical interaction with NEDD1.[77] Our PPI
network analysis showed a large proportion of co-expression
interactions among these four highlighted genes as well as other
predicted genes. Consistently, we revealed remarkable changes in
the co-expression interactions among these 4 genes between CAD
patients and controls, indicating that these 4 genes may have joint
functions in the pathogenesis of CAD. The main assumption of
Sherlock Bayesian method[22] is that the abnormal expression of
risk genes contribute susceptibility to the diseases of interest. In
agreementwith this assumption,we conducted aDGEanalysis and
observed that 3 genes of TUBG1, LY6G6C, and CHCHD1 were
significantly expressed between CAD patients and controls.
Together, we prioritized 4 genes as important candidates for
CAD susceptibility.
In view of the influence of LD between SNPs, GWAS-reported

genetic loci often have a number of highly LD SNPs with
significant P values, which enhance the difficulty of searching
authentic risk SNPs and relevant genes. For example, the MHC
region on chromosome 6 contains many SNPs with complicated
LD structures, which is hard to reveal genuine risk genes in this
region by a single GWAS dataset. The method of Sherlock
analysis used in our current analysis is designed to prioritize risk
genes by integrating GWAS summary data with eQTL data. An
eSNP for a specific risk gene should be significantly associated
with CAD and expression level of this gene simultaneously. For
example, the LY6G6C gene is mapped in a cluster of leukocyte
antigen-6 (LY6) genes in the MHC region. We found 4 eSNPs of
rs12049288, rs16990865, rs973716, rs1805105, which are not
mapped in the MHC region, having trans-regulatory effects on
LY6G6C expression and also associated with CAD, indicating
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that we could highlight CAD-risk genes which was not reported
by the original GWAS by using the Sherlock integrative genomics
method based on multiple omics datasets.
Some limitations of current study should be cautious. Because

of there existed heterogeneities among omics datasets and
bioinformatics tools used in our current study, we used different
methods for multiple testing correction for each dataset and
analysis. Such as, simulated P values were used in the Sherlock
analysis, empirical P values were used in the in silico permutation
analysis and MAGMA gene-based analysis. Moreover, the
association signals of current integrative genomics analysis were
based on European population. More studies based on other
ethnicities are warranted. Based on the Sherlock Bayesian
algorithm, these GWAS and eQTL datasets used in current
integrative genomics analysis was derived from different
populations. There existed heterogeneity across datasets. Further
studies with GWAS and eQTL data from the same population are
warranted. Although we prioritized 4 important genes associated
with CAD, we did not explore the causal relationships between
risk genes and CAD. Further studies are needed to uncover the
molecular mechanisms of 4 genes such asCHCHD1 and TUBG1
for CAD risk.
5. Conclusions

In summary, the current investigation was based on a
comprehensive in silico genomics analysis that revealed CAD-
associated susceptible eSNPs, genes, and pathways. The GWAS
data combined with eQTL information were used to elucidate the
regulatory effects of SNPs on CAD. The topology data of
protein–protein regulatory correlations 4 highlighted genes with
vital roles in CAD risk. However, additional in vitro and in vivo
studies are essential for the identification of the molecular
functions and biological mechanisms of these prioritized genes
implicated in the pathogenesis of CAD.
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