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Validation Study of QSAR/DNN Models Using the
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Abstract: Since the QSAR/DNN model showed predominant
predictive performance over other conventional methods in
the Kaggle QSAR competition, many artificial neural net-
work (ANN) methods have been applied to drug and
material discovery. Appearance of artificial intelligence (AI),
which is combined various general purpose ANN platforms
with large-scale open access chemical databases, has
attracting great interest and expectation in a wide range of
molecular sciences. In this study, we investigate various
DNN settings in order to reach a high-level of predictive
performance comparable to the champion team of the
competition, even with a general purpose ANN platform,
and introduce the Meister setting for constructing a good

QSAR/DNNs model.
Here, we have used the most commonly available DNN
model and constructed many QSAR/DNN models trained
with various DNN settings by using the 15 datasets
employed in the competition. As a result, it was confirmed
that we can constructed the QSAR/DNN model that shows
the same level of R2 performance as the champion team.
The difference from the DNN setting recommended by the
champion team was to reduce the mini-batch size. We have
also explained that the R2 performance of each target
depends on the molecular activity type, which is related to
the complexity of biological mechanisms and chemical
processes observed in molecular activity measurements.
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1 Introduction

The usefulness of deep leaning techniques in computer-
assisted drug discovery and design is highly expected for its
potential to dramatically improve the prediction accuracy of
the qualitative structure-activity relationship (QSAR) meth-
odology.[1] In fact, deep neural networks (DNN) approaches
in the Kaggle “Merck Molecular Activity Challenge (MMAC)”
competition held in 2012 [2] and the post analysis [3, 4]
showed better predictive performance than the conven-
tional methods like random forest (RF) and support vector
machine (SVM). The success of the QSAR/DNN approaches
was a significant impact on many researchers in chemistry
and pharmaceutical fields, and created a major trend that
followed to apply many recent artificial neural network
(ANN) techniques to drug and material discovery, such as
Recurrent Neural Network (RNN) with long short-term
memory cells (LSTM) and Convolutional Neural Network
(CNN) [5–8].

Traditional QSAR, multiple regression methods using a
relatively small candidate dataset for one target, has been
evolving to contribute to the final refinement of more
effective drug and material candidate compounds by
introducing physicochemical properties, quantum chemical
parameters, and 3D-stracture descriptors, with strong
support of ligand docking approaches and theoretical
molecular simulations [9–12]. On the other hand, the QSAR/
DNN, which must rely on using large and diverse dataset, is
expected as the latest tools to be able to contribute to the
initial mining of exploring the lead candidates, even for

non-experts of drug and material discovery. Especially as a
recent movement, database sites containing a huge amount
of molecular data and activity-property information, such as
ChEMBL [13,14] and PubChem,[15] have appeared on the
Internet. In addition, there are openly available general-
purpose artificial neural network (ANN) platforms and the
related libraries, such as TensorFlow, [16] Microsoft Cogni-
tive Toolkit (CNTK), [17] Therano, [18] Chainer [19], Keras
[20]. In this situation, even non-experts of informatics or
molecular science might expect to generate QSAR/DNN
models with reasonable predictive performance by using
them. In fact, our first QSAR/DNN attempt, which was used
a general purpose ANN platform with the same datasets
employed in the QSAR competition, was able to achieve
enough predictive performance closed to that of the
competition champion team [21].

Our attempt [21] prompted us some questions. Partic-
ularly, the following two:
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1) There may be other DNN settings that can dramatically
improve predictive performance.

2) It remains unclear the reasons why only one target
achieved significant good predictive performance for
test set, but many others showed only moderate
performance and some were poor predictions.
After our report on the attempt, [21] we have examined

further challenges to improve the predictive performance
of the QSAR/DNN model. In this paper, we focus on the two
questions mentioned above and analyze some of the results
of our ongoing studies. Especially, we report here our
investigations to find the Meister setting that can achieve a
good predictive performance comparable to that of the
champion team in the competition even when a common
practice DNN model implemented in a general purpose
ANN platform is used. Here, according to the protocol in
the competition, each of the QSAR/DNN models for 15
targets is optimized by using the training set of each
dataset, and its predicted performance is evaluated based
on the R2 value of the test set. In addition, the DNN settings
that give the best predictive performance for each target
are also investigated, and the relationship between the limit
of predictive performance and the ability of molecular
descriptors are discussed in terms of the complexity of
molecular activity measurements.

2 Methods

2.1 Data Sets

In this study, the datasets of 15 targets provided as the
Supporting Information (SI) for the paper on the post-
analysis of the MMAC QSAR competition [3] are used. Each
target dataset is divided into training and test sets along
observed time series [22], and each set is given as a matrix
composed of a fingerprint vector (molecular descriptors)
and an activity value for each molecule. Table 1 shows the
number of molecules in training and test sets of each target
dataset, and the number of elements of each molecular
fingerprint vector (size of the vector). We have confirmed
that the numbers of molecules in training and test sets are
exactly identical with the SI (but does not match to values
in Table 1 of the post-analysis paper) [3]. The only align-
ment we did is to unify the number of elements of the
molecular fingerprint vectors between training and test sets
for each target. By unifying the size of fingerprint vectors of
each target, we can quickly evaluate the R2 performance of
the test set for each epoch in iterations of QSAR/DNN
optimization using the training set.

2.2 Molecular Descriptors

A molecule in a dataset is described as a vector, called
molecular fingerprint (MFP), whose elements are natural
numbers including zero, composed of counts of the unique

Table 1. Summary of Datasets.

Target Description and unit of activity value number of moleculesc number of
descriptors
merged

Training set Test set

3A4 CYP P450 3A4 inhibition, pIC50
a 37,241 12,338 9,491

CB1 binding to cannabinoid receptor 1, pIC50
a 8,716 2,907 5,877

DPP4 inhibition of dipeptidyl peptidase 4, pIC50
a 6,148 2,045 5,203

HIVINT inhibition of HIV integrase in a cell based
assay, pIC50

a
1,815 598 4,306

HIVPROT inhibition of HIV protease, pIC50
a 3,212 1,072 6,274

LOGD logD measured by HPLC method 37,388 12,406 8,921
METAB percent remaining after 30 min

microsomal incubation
1,569 523 4,505

NK1 inhibition of neurokinin1 (substance P)
receptor binding, pIC50

a
9,965 3,335 5,803

OX1 inhibition of orexin 1 receptor, pKib 5,351 1769 4,730
OX2 inhibition of orexin 2 receptor, pKib 11,151 3704 5,790
PGP transport by p-glycoprotein, log(BA/AB) 6,399 2093 5,135
PPB human plasma protein binding,

log(bound/unbound)
8,651 2,899 5,470

RAT_F log(rat bioavailability) at 2 mg/kg 6,105 1,707 5,698
TDI time dependent 3A4 inhibitions,

log(IC50 without NADPH/IC50
with NADPH)

4,165 1382 5,945

THROMBIN human thrombin inhibition, pIC50
a 5,059 1,698 5,552

a pIC50 = � log(IC50) M b pKi= � log(Ki) M c The number of molecules are included in the supporting information of the post-analysis paper [3].
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substructures of a molecule. MFP, which was employed in
the QSAR competition, is generated by simply unifying two
vectors made from two kinds of molecular descriptors,
Atom Pair (AP) [23] and Binding Property Pair (BP) [17]. Both
descriptors first assign atom types to all atoms except for
hydrogen, and classify into the one-dimensional substruc-
tures according to the combination of the atom types for
two atoms and the number of bonds connecting those
atoms via minimal path:

Atom type ið Þ � Distance in bonds < nð Þ � Atom type jð Þ

where the atom type of AP method is classified by the
element, valence bonding number except for hydrogen,
and number of π electrons. BP method is also called a
donor-acceptor pair (DP) approach [24], and BP atom type
is classified into seven categories: cation, anion, neutral
donor, neutral acceptor, polar, hydrophobic, and other.

Each element of the descriptors is the number of
appearances of each one-dimensional substructure in a
molecule, or zero if not. However, in the 15 datasets
provided by the SI of the post-analysis paper, [3] some zero
elements are omitted in advance, because the correspond-
ing substructure does not appear in any molecule in each
training set and test set. For this reason, the size of
fingerprint vector differs between the training set and the
test set in each target’s dataset. In this paper, by adding
zero elements corresponding to the missing substructures,
the size of fingerprint vector in the training set and the test
set in each target is aligned to the same size, as mentioned
above.

2.3 Molecular Activity

Activity data provided from the SI of the post-analysis paper
[3] should be noted. Activity data of 15 targets can be
roughly classified into six or seven types, which are pIC50,
pKi, log D, remaining percentage, logarithmic value of ratio
between comparable biochemical processes (transporting
both directions and receptor bound/unbound), and loga-
rithmic value of bioavailability, as shown in Table 1. Ranges
of these values are, roughly saying, within 4 to 10 for pIC50
and pKi, 0 to 5 for log D, 0 to 3 and � 0.5 to 1.5 for PPB and
PGP, respectively, and 0 to 2 for bioavailability. And the
remaining incubation rate (%) in METAB is naturally in the
range of 0–100. Because these range differences may affect
the results in machine learning, in a practical sense, they
are sometimes normalized in advance. However, these
activity values themselves are numerical values that were
already subject to logarithmic transformation in the deriva-
tion process, so further normalization of activity values are
not performed in this study.

It should also be noted that these activity values may
not be quantitatively correct due to the limited concen-
tration range considered in the activity measurement. For

example, according to explanation by the providers of the
activity data, [3, 22] all concentrations above a certain level
are given as constants (e.g. IC50=30 μM or -log (IC50)=
4.5). This seems to usually have undesirable influence on
machine learning, because DNN model may misunderstand
that different molecules (different fingerprint vectors) have
the same activity value. However, according to a post-
analysis of the champion team, the R2 performance for test
sets tends to improve even if including a lot of molecules
having the same activity value [3]. We set this aside to focus
on constructing the QSAR/DNN models in our environment
with reference to the champion team recommendations,
and not discuss it in this paper.

2.4 Metrics

In this study, the QSAR/DNN model is optimized using the
training set of a target dataset, and its prediction perform-
ance is evaluated by the squared Pearson correlation
coefficient R2 between observed and predicted activities for
the test set:

R2 ¼

PN
i¼1ðxi � �xÞðyi � �yÞ

� �2

PN
i¼1 xi � �xð Þ2

PN
i¼1 ðyi � �yÞ2

(1)

where xi is the observed activity value of molecule i, yi is
the corresponding predicted activity value, and N is the
number of molecules in the test set. For each target, the
optimization of QSAR/DNN model is performed five times
using each DNN setting, and the average of five R2 values is
used as the metric for the predictive performance of the
QSAR/DNN model. This metric of “R2 performance“ is the
same as that of two post-analysis papers by Ma et al. [3]
and Xu et al. [4], and was also employed in the Kaggle
QSAR competition.

On the other hand, MSE is the mean square error of
observed and predicted activity values (Eq. (2)) and adopted
to optimize QSAR/DNN model by using training set:

MSE ¼
PN

i¼1 xi � yið Þ2

N
(2)

where N is the number of molecules in the training set.
MSE is not suitable for comparison among datasets, but

can represent the quantitative correlation between ob-
served and predicted activity values. Therefore, in this
study, QSAR/DNN model optimized for the training set is
evaluated exclusively by the R2 performance of the test set,
while MSE for the training set is used as the target value
(loss function) in optimization. Evaluation using both R2
and MSE or RMSE is very important, but it needs more
detailed analyzes and leads to more complicated discussion,
so, we discuss QSAR/DNN models based on R2 performance
in this paper.

Full Paper www.molinf.com

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA Mol. Inf. 2020, 39, 1900154 (3 of 10) 1900154

www.molinf.com


2.5 DNN sSttings for QSAR/DDN Model

In this study, we perform a single-task optimization of a
fully connected feedforward network with one or more
hidden layers, which is implemented in a publicly available
ANN framework, “Chainer”, that we have employed here
(Figure 1). In order to apply this general purpose ANN to

QSAR model optimization, it is necessary to investigate
extensively the user controllable parameters of DNN
settings that is typically called hyperparameters. Fortu-
nately, the MMAC Champion Team has suggested their
recommended DNN setting, mainly based on the results of
the multitask DNN model [3,4]. To make our suitable single-
task QSAR/DNN model, we examine various DNN settings

with reference to the recommendation by the champion
team. Table 2 shows the items of DNN settings examined in
this study: the number of hidden layers, mini-batch size,
and logarithmic transformation of input data (molecular
descriptors). Other items different from the champion
team‘s recommendation are in that the number of epochs
has increased up to 1000 cycles and Adam [25] has been
adopted as a backpropagation learning (optimization)
algorithm. All settings were tried at least 5 times for all
target datasets.

The standard DNN setting in this study is “HL4” as
follows:
* DNN model should have four hidden layers, each with

4000, 2000, 1000, and 1000 neurons.
* The dropout rate is 0% for the input layer and 25, 25, 25,

and 10% for the hidden layer, respectively.
* The activation function is the rectified liner unit (ReLU).
* DNN model must be initialized with random numbers

without unsupervised pre-training.
The range of DNN settings we investigate in this study is

as follows (see also Table 2):
* “HL4”, “HL3”, “HL2”, “HL1”: the total number of neurons is

keep to 8000, and the number of the hidden layers is
changed.

* “HL1”, “HL1/2”, “HL1/4”, “HL1/8”: the number of the
neurons in simple NN with the single hidden layer is
changed.

* “HL4”, “HL4//2”, “HL4//4”: in training DNN with the four
hidden layer, the mini-batch size is changed.

* “LOG HL4”, “LOG HL4//2”, “LOG HL4//4”: the mini-batch
size for DNN training with the input logarithm trans-
formation is changed.
The setting closest to the recommendation of the

champion team is “LOG HL4”. In order to confirm the effect
of the original descriptor, we have tried many settings
without logarithmic transformation, here.

Figure 1. Illustration of a single-task optimization of a fully con-
nected feedforward network with one or more hidden layers.

Table 2. List of DNN settings.a

DNN setting Number of
Hidden Layers

Number of Neurons
in each Layer

Dropout (%)
in each Layer

Minibatch size Log Transform

HL4 4 4000, 2000, 1000, 1000 25, 25, 25, 10 100 no
HL3 3 4000, 2500, 1500 25, 25, 10 100 no
HL2 2 6000, 2000 25, 10 100 no
HL1 1 8000 10 100 no
HL1/2 1 4000 10 100 no
HL1/4 1 2000 10 100 no
HL1/8 1 1000 10 100 no
HL1/16 1 500 10 100 no
HL4//2 4 4000, 2000, 1000, 1000 25, 25, 25, 10 50 no
HL4//4 4 4000, 2000, 1000, 1000 25, 25, 25, 10 25 no
LOG HL4 4 4000, 2000, 1000, 1000 25, 25, 25, 10 100 yes
LOG HL4//2 4 4000, 2000, 1000, 1000 25, 25, 25, 10 50 yes
LOG HL4//4 4 4000, 2000, 1000, 1000 25, 25, 25, 10 25 yes
a HLn differs in the number of hidden layers, where n is the number of hidden layers. HL1/m means that the number of nodes in single
hidden layer is equal to (1/m)x8000. HL4//k indicates that the mini-batch size is changed to 100/k.

Full Paper www.molinf.com

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA Mol. Inf. 2020, 39, 1900154 (4 of 10) 1900154

www.molinf.com


In this study, the R2 value of the test set can be quickly
calculated for each training repetition, “epoch”, because of
aligning the size of fingerprint vectors for the training and
test set of each dataset. We therefore optimize our QSAR/
DNN model using a DNN setting up to 1000 epochs,
calculate the R2 value of the test set based on the instant
DNN model of each epoch, and after optimization, record
the best R2 value in 1000 epochs. The DNN optimization is
repeated five times by using randomly initialized DNN
parameters, and then, the average of their highest R2
values is evaluated as the R2 performance of the DNN
setting. Although test set evaluation is usually not appli-
cable to blind tests or practical applications, we use the R2
performance for evaluation of DNN settings in order to
avoid the overfitting problem that require more compli-
cated discussions.

3 Results

3.1 The best R2 Performances

Figure 3 shows a comparison of R2 performances of five
QSAR/DNN models from multi-task of Ma et al., [3] single-
and multi-tasks of Xu et al. [4], and two single-tasks of us. In
this figure, one of our results is the R2 performances of the
QSAR/DNN models using the “HL4//4” setting, which
showed the best value, 0.469, in the average R2 perform-
ance for overall 15 targets. Another one is a collection of
the best R2 performance of each target when using various
DNN settings, and the overall mean, 0.479, is obviously
better than that of the “HL4//4” setting. In terms of the
predictive performance of single-task QSAR/DNN models,
our result was better than that of Xu et al. [4] and was also
close to that of multi-tasks models of Ma et al. [3]. It should
be noted that these performances were results of adopting
different platforms and optimization algorithms, and addi-
tionally, our results have been shown as the average of 5
runs as mentioned above, while their results were pre-

sented as the median of more 20 runs. Therefore, what is
important here is not that our results were better than
those of the champion teams or worse, but that we were
able to reproduce the trend of R2 performances similar to
theirs, as well as our previous attempt. [21] In other words,
we confirmed that both QSAR/DNN models optimized by
using different ANN platforms and optimization methods
were essentially equivalent.

3.2 R2 Performances for Each DNN Settings

We explain our results in a little more detail. Table 3 shows
R2 performances of 15 targets when using various DNN
settings. The overall average R2 performance of all targets
for each setting and the standard deviation of R2 perform-
ances of each target for all settings are shown in the last
column and row, respectively.

From the average R2 performances, it is clear that the
DNN settings including four hidden layers, that are “HL4”,
“HL4//2”, “HL4//4”, “LOG HL4”, “LOG HL4//2”, “LOG HL4//4”,
were totally effective. The best performance setting was
“HL4//4” as mentioned above, and its overall average R2
performance reached 0.469. “LOG HL4” that is closest to the
setting recommended by the champion team, was the
average R2 of 0.465, which was almost equivalent to the
“HL4//4” setting.

The most important difference between these settings is
from the mini-batch size, that is used to divided into small
groups of molecules in the training set. One training
process for updating the QSAR/DNN model by backpropa-
gation optimization (i. e. using Adam algorithm in this
study) using all molecules in each mini-batch is once
completed when finishing about all mini-batches. This is
called “epoch”. Therefore, the number of DNN updates per
epoch is inversely proportional to the minibatch size:

ðNumber of DNN updates per epochÞ ¼

ðNumber of molecules in training setÞ=ðMini-batch sizeÞ

Our results suggest that reducing the mini-batch size
improves R2 performances of QSAR/DNN models, at least,
in our ANN environment. This trend was also observed in
the DNN settings with logarithmic transformations of input
molecular descriptors, such as “LOG HL4”, “LOG HL4//2” and
“LOG HL4//4”. However, any improvement effect by usage
of the logarithmic transformation itself was not observed in
those average R2 performances.

It may also be important to notice that when using
some typical neural network settings with single hidden
layer, the overall average R2 performances were relatively
poor. This can be usually understood as a natural behaviour
of artificial neural networks, or as to expect for deep
learning. However, with regard to the target LOGD, there
was almost no decrease in R2 performances due to single
hidden layer. This is explained in the next subsection.

Figure 2. Workflow of optimization and evaluation for our QSAR/
DNN model.
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Figure 3. Comparison of R2 performances of QSAR/DNN models. There are five entries comparing the median R2 values from the multi-task
DNNs of Ma et al. [3], the single- and the multi-tasks of Xu et al. [4], the average R2 values from the single-task of the best setting on overall
average, the best R2 collections of this work for each of 15 targets datasets, and also their averages.

Table 3. R2 performances of QSAR/DN models when using various DNN settings.a

Parameter Setting 3A4 CB1 DPP4 HIVINT HIV
PROT

LOGD METAB NK1 OX1 OX2 PGP PPB RAT_F TDI THROM
BIN

Averageb

HL4 0.4877 0.3486 0.2677 0.2778 0.5589 0.8195 0.6362 0.4229 0.5898 0.5796 0.5959 0.5218 0.1041 0.3604 0.3643 0.4624
HL3 0.4715 0.3529 0.2547 0.2784 0.5592 0.8215 0.6344 0.4193 0.5807 0.5709 0.5935 0.5153 0.0929 0.3626 0.3660 0.4583
HL2 0.4654 0.3417 0.2538 0.2970 0.5674 0.8189 0.6327 0.3965 0.5787 0.5800 0.6000 0.5143 0.0979 0.3641 0.3648 0.4582
HL1 0.4569 0.3481 0.2552 0.2523 0.5557 0.8196 0.6232 0.4044 0.5755 0.5693 0.5773 0.4978 0.0867 0.3027 0.3366 0.4441
HL1/2 0.4638 0.3408 0.2467 0.2446 0.5500 0.8202 0.6227 0.4064 0.5732 0.5700 0.5752 0.5006 0.0869 0.3192 0.3441 0.4443
HL1/4 0.4535 0.3473 0.2479 0.2318 0.5546 0.8179 0.6226 0.4093 0.5772 0.5631 0.5756 0.5017 0.0893 0.3295 0.3370 0.4439
HL1/8 0.4626 0.3352 0.2448 0.2208 0.5575 0.8160 0.6210 0.4025 0.5735 0.5727 0.5709 0.5020 0.0940 0.3300 0.3496 0.4435
HL1/16 0.4556 0.3498 0.2498 0.2299 0.5550 0.8158 0.6200 0.4053 0.5753 0.5643 0.5662 0.4935 0.0738 0.3263 0.3464 0.4418
HL4//2 0.4912 0.3598 0.2666 0.2997 0.5475 0.8181 0.6330 0.4206 0.5921 0.5989 0.5923 0.5298 0.1022 0.3570 0.3686 0.4652
HL4//4 0.4930 0.3412 0.2771 0.3317 0.5694 0.8183 0.6341 0.4218 0.5916 0.5877 0.5984 0.5304 0.1088 0.3549 0.3690 0.4685
LOG HL4 0.4830 0.3453 0.2720 0.3175 0.6333 0.8111 0.6194 0.4130 0.5816 0.6008 0.5896 0.5136 0.0955 0.3560 0.3211 0.4635
LOG HL4//2 0.4827 0.3392 0.2929 0.3231 0.6074 0.8107 0.6255 0.4193 0.5869 0.6027 0.5863 0.5236 0.0877 0.3549 0.3336 0.4651
LOG HL4//4 0.4875 0.3448 0.2934 0.3455 0.5963 0.8101 0.6285 0.4278 0.5800 0.6073 0.5881 0.5259 0.1001 0.3511 0.3384 0.4683
Std. Dev.c 0.0145 0.0064 0.0167 0.0421 0.0260 0.0038 0.0062 0.0096 0.0068 0.0156 0.0111 0.0128 0.0092 0.0197 0.0158 0.0107
a Mean R2 value is calculated as the average for the maximum R2 values of five optimizations using each target’s training set. Number
underlined is the best mean R2 value for each target when using various DNN parameter settings. Numbers in bold are the mean R2 values
and the overall average when using the “HL4//4” setting that showed the best average of the mean R2 values for overall targets. b Overall
average of the mean R2 values for 15 targets. c Standard deviation of the mean R2 values for all DNN parameter settings.

Full Paper www.molinf.com

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA Mol. Inf. 2020, 39, 1900154 (6 of 10) 1900154

www.molinf.com


3.3 R2 Performances of Each Target

The R2 performances of each target when using various
DNN settings is investigated here. The most obvious
observation from Figure 1 and Table 3 is that R2 perform-
ances of LOGD always showed the highest values >0.81 for
overall targets, even with any DNN setting. Interestingly,
the standard deviation of R2 performances of LOGD is less
than 0.004, which means their performances are almost
insensitive to DNN settings. More surprisingly, the DNN
settings of “HL1” series, corresponding to a typical single
hidden layered NN model showed better R2 performances
than the logarithmic pre-processed DNN settings of “LOG
HL4” series. For example, even “HL1/16” with only 500
neurons in the single hidden layer showed a better R2 of
0.816, and that of “LOG HL4” was 0.811. The similar trend is
also observed in METAB, which showed the second best R2
performance of all targets. In fact, the standard deviation of
R2 performances of METAB was small, less than 0.01. The R2
performances of “HL1/16” and “LOG HL4” settings were
0.620 and 0.619, respectively., and there was almost no
difference. From these observations, at least for LOGD and
possibly also for METAB, it can be seen that the QSAR/DNN
model may necessarily require neither multiple hidden
layers nor a lot of neurons in a hidden layer to reproduce
the output activity from the input molecular descriptors.

On the other hand, RAT_F showed the worst R2
performance for all targets. In particular, the reduction of
the number of hidden layers and the number of neurons
decreased the R2 performances. However, even if their
numbers were increased, no significant improvement could
be expected, and the best R2 performance was only 0.109
of “HL4//4”. Using any DNN setting we investigated in this
work, it was impossible to predict the activity of RAT_F.

We can observe interesting trends in R2 performance for
the other targets as well. For example, targets that predict
the activity of pIC50 or pKi, which are closely related to
each other, showed R2 performances of around 0.5. Looking
more closely, the targets OX1 and OX2 with the activity of
pKi were over 0.5 in R2 performance, while the targets with
pIC50, except for HIVPROT, were less than 0.5 using any
DNN setting. In the cases of PGP and PPB, the R2 perform-
ances showed 0.5 or higher. Here it can be found that the
former required at least 5000 neurons and the latter needed
at least four hidden layers.

From these observations, we noticed that the good R2
performance of the QSAR/DNN model in each target related
to the type of the activity. At first, we thought that this
dependency might be caused by the value range of the
activity. However, we found that this was not the reason
because both LOGD within the range of 0–5 and METAB of
0–100 showed higher R2 performance. Further analysis
reveals that this problem is related to the complexity of the
biological mechanisms and chemical processes involved in
activity measurements. In the next section, we are going to

consider R2 performance due to differences in activity
types.

4 Discussion

What does it mean that R2 performance related to the
molecular activity type?

QSAR/DNN models constructed in this study can
generate predicted molecular activity values as higher-order
features from molecular fingerprints composed of molec-
ular descriptors as primitive features. In other words, the
QSAR/DNN model for each activity type is thought to
implicitly include intermediate features related to the bio-
logical and/or chemical phenomenon leading to molecular
activity. Unfortunately, for now, these intermediate features
cannot be presented in human understandable format. If
the R2 performance does not improve any more in the
range of DNN settings investigated here, two factors must
be considered for the question. If R2 performance does not
improve any more in the range set in this study, there are
two possible causes. One is that the output molecule
activity is too complex for the input molecule fingerprint,
and the other is that the input molecule fingerprint is too
simple for the output molecular activity, so it may be not
possible to construct some appropriate intermediate fea-
tures. In this section, we will consider the relationship
between R2 performance and molecular activity type in
these two perspectives.

4.1 Limit of QSAR/DNN Models in this Work

Molecular activity types are generally designed so that only
the biological or chemical effect of the molecule can be
evaluated by determining the ratio of two biological
mechanisms or chemical processes that are related but
different or in equilibrium. For example, the active types of
LOGD and RAT_F, which showed the best and the worst R2
performance, respectively, are going to be compared here.
The activity type of LOGD is the log D, that is typically
determined as an n-octanol/water distribution coefficient
and represents the hydrophobicity of the ionizable mole-
cule. [26,27] On the other hand, the activity type of RAT_F is
the bioavailability based on in vivo experiments, that is the
ratio of the AUC (Area Under the blood concentration-time
curve) when the molecule is administered non-intrave-
nously and intravenously. However, log D is one of the
molecular properties in terms of chemical processes in
solubility for n-octanol and water, whereas bioavailability
evaluates the pharmacokinetics of non-intravenously ad-
ministered molecules, where many biological mechanisms
in vivo are involved. That is, the former is a difference
between simple chemical processes, and the latter is an
activity measurement via the most complex phenomena in
all active types in this study. Therefore, it is reasonable to
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think that the complexity (or simplicity) strongly affected
on the differences in R2 performance. In order to improve
R2 performance of RAT_F, it may be necessary to use more
complex DNN model than our models adopted in this
paper.

Furthermore, we are going to focus on the molecular
activity types, pIC50 and pKi, that showed intermediate
range in R2 performance. IC50 and Ki are measured by
in vitro experiments, and both are evaluated on the premise
of a competitive inhibition mechanism between the sub-
strate and the inhibitor ligand molecule at the active site of
the target enzyme reaction. IC50 is the concentration of
molecule producing 50% inhibition for the activity of the
substrate against the target enzyme, and that depends on
the concentration of the target enzyme, inhibitor molecule,
and the substrate molecule along with other experimental
conditions. On the other hand, Ki is the dissociation
constant of the enzyme-inhibitor complex, and is usually
the quantitative feature of the inhibitor molecule called the
inhibition constant. These two types of activity can be
related by the following Cheng-Prusoff equation, that is, in
the case of a single-substrate enzyme reaction that follows
a simple biological mechanism [28,29]:

IC50 ¼ Ki 1þ S½ �=Kmð Þ

where [S] is the concentration of the substrate molecule
and Km is the Michaelis constant of the substrate, that is
corresponding to, the substrate concentration at 1/2
maximum enzyme reaction rate. From this equation, we can
understand that IC50 depends on the concentration of the
substrate molecule. [30] In this study, the experimental
conditions and measurement environment for the activity
values of the dataset are unknown, so it cannot be stated
clearly. However, if IC50 values in the dataset include such
enzyme and substrate concentration dependency, it is
understandable that R2 performance of pIC50 type may be
inferior to that of Ki. Therefore, the predictive performances
of 3 A4 and HIVPROT with pIC50 type were relatively better
(R2�0.5), which may had included a large number of the
activity values measured under established experimental
conditions.

Detailed descriptions of the other activity types are
omitted here. However, at least from the analysis of the
activity types of log D, bioavailability, pIC50 and pKi, it can
be understood that their R2 performances depend on the
biological mechanisms or chemical processes involved in
the activity measurements. In fact, the activity type of the
simple relative solubility showed the highest R2 perform-
ance in the simplest NN model with a single hidden layer.
The R2 performances within the middle range were shown
in the activity type of enzyme reaction constants measured
in vitro, and the worst performance was the bioavailability
type by in vivo experiment. In other words, the R2 perform-
ance peaks in the latter two active types may suggest that

the QSAR/DNN models attempted in this study have
reached a certain limit.

One way to break the limit and to improve the perform-
ance would be to deepen the DNN model by increasing the
number of hidden layers and neurons in proportion to the
complexity of the activity type. However, to perform this
improvement practically, it is necessary to increase the
number of activity data and computing power. Therefore, if
the amount of data that can be used for machine learning
is not sufficient, the depth and complexity of the network
that can be employed are limited. Nonetheless, the
performance improvement seems to be very small in our
experience.

4.2 Limit of Descriptors

One-dimensional substructure descriptors adopted in the
competition and also in this study were able to reproduce
property based on relatively simple chemical processes
such as log D (R2>0.8), but not enough to represent
molecular activities of in vitro type involving some complex
biological mechanisms (R2~0.5). Although one reason is
that, as mentioned above, the QSAR/DNN model has
reached its limit, the other limit of what can be represented
by the descriptors should have also influenced the
predictive performance. It is reasonable to think that the
one-dimensional substructure descriptors only provides
structural information of the ligand molecule to the QSAR/
DNN model, and that is insufficient contribution to predict
the activity values measured as a result of complex
mechanisms involving the target enzyme and its substrate.

In order to overcome the limit of the substructure
descriptors and then improve prediction performance, it is
effective to exchange the one-dimensional descriptors to
higher-order features. For example, log D, which is one of
the target activity types in this study, and log P for non-
ionized molecules, have often been employed as one of the
physicochemical descriptors in traditional QSAR research.
There are also many descriptors worth trying, such as
quantum chemical descriptors and 3D descriptors [31,32].
Unfortunately, the datasets used in this study were given as
numerical information that has employed in competitions,
so it is difficult to identify the molecules. If those descriptors
could be replaced with the other descriptors, we could
have quantitatively analyzed the efficiency of descriptors
for the activity type.

Attempting the latest DNN techniques such as RNN with
LSTM and CNN [5–8] may be possible to dramatically
improve predictive performance. In particular, we focus on
the graph convolutional neural networks. Neural Fingerprint
[33], Gated Graph Sequence Neural Networks [34], Weave-
Net [35], SchNet [36,37] are introduced in the Chainer
Chemistry library related to the ANN platform Chainer we
adopted in this study. Now, we are applying them for our
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own QSPR study and will publish their results as soon as
possible [38].

5 Conclusions

In order to develop an effective QSAR/DNN model using a
general purpose ANN platform, we investigated DNN
settings that could achieve the best predictive performance
comparable to the champion teams by using the same
datasets with the Kaggle QSAR competition. The Meister
setting that showed overall better R2 performance for all 15
datasets was to use four hidden layers in the QSAR/DNN
model, similar to the recommended setting of the cham-
pion team, but using smaller mini-batch size was an
important difference from the recommendation. The main
reason seems that the Adam algorithm was adopted as the
backpropagation optimization method implemented on the
platform we used.

In our results, as with the champion team, the R2
performance of each target seems to be related to the
active type. In fact, the log D activity type based on a
comparison of two simple chemical processes showed the
R2 predictive performance of over 0.8, even with a single
hidden layer. The in vitro activity type based on a biological
mechanism was roughly around 0.5 in R2 values, and
almost targets of this type required at least four hidden
layers. And bioavailability via multiple biological mecha-
nisms showed the worst prediction accuracy. Thus, it can be
said that the predictive performances of activity types
except IC50 correlates qualitatively with the complexity of
biological mechanisms or chemical processes in the molec-
ular activity measurements. We presumed that the R2
performance of IC50 type may be dependent on the
number of activity data measured under established
experimental conditions, because IC50 is dependent on the
concentration of the target enzyme and its substrate.

If the qualitative correlation between R2 performance
and activity type is due to the complexity of biological
mechanisms or chemical processes observed in activity
measurements, it results in the limits of the molecular
descriptors and the DNN models adopted here. If R2
performance has reached a limit where further efforts will
not improve it, hence, we consider it to be at the limits of
the molecular descriptors and the DNN models. In order to
improve it, it may be possible to make DNN model more
complicated by increasing the number of hidden layers and
neurons, or to replace descriptors with higher-order
features. Unfortunately, in this study, such attempts could
not be performed due to some circumstances mentioned
above.

Now we are analyzing the results of further repeated
optimizations with different random seeds for DNN initiali-
zation, and some inexplicit issues in this paper are
becoming clear. In addition, we have prepared a large
amount of molecular information and its activity data for

other targets obtained from a public available database
site, and are investigating some GCNN models. Details will
be published elsewhere as soon as possible [38].
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