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Maximal oxygen consumption (VO2max) reflects aerobic capacity and is crucial for

assessing cardiorespiratory fitness and physical activity level. The purpose of this

study was to classify and predict the population-based cardiorespiratory fitness based

on anthropometric parameters, workload, and steady-state heart rate (HR) of the

submaximal exercise test. Five hundred and seventeen participants were recruited

into this study. This study initially classified aerobic capacity followed by VO2max

predicted using an ordinary least squares regression model with measured VO2max

from a submaximal cycle test as ground truth. Furthermore, we predicted VO2max

in the age ranges 21–40 and above 40. For the support vector classification model,

the test accuracy was 75%. The ordinary least squares regression model showed the

coefficient of determination (R2) between measured and predicted VO2max was 0.83,

mean absolute error (MAE) and root mean square error (RMSE) were 3.12 and 4.24

ml/kg/min, respectively. R2 in the age 21–40 and above 40 groups were 0.85 and

0.75, respectively. In conclusion, this study provides a practical protocol for estimating

cardiorespiratory fitness of an individual in large populations. An applicable submaximal

test for population-based cohorts could evaluate physical activity levels and provide

exercise recommendations.

Keywords: physical activity, aerobic capacity, cardiorespiratory fitness, maximal oxygen consumption (VO2max),

machine learning, support vector machine (SVM)

INTRODUCTION

The WHO identified physical inactivity as the fourth leading risk factor for non-communicable
diseases accounting for high-mortality rates every year (1). Physical inactivity may cause heart
disease, stroke, colon cancer, breast cancer, depression, and anxiety (2). Furthermore, low
cardiorespiratory fitness has been associated with all causes of mortality and is an independent
predictor of cardiovascular diseases (3).

The WHO recommends adults aged 18–64 years should attend regular moderate-intensity
(≥150–300min) or vigorous-intensity (≥75–150min) aerobic physical activity per week (4).
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According to the Lancet Physical Activity Series Working Group
(5), around 30% of adults worldwide are physically inactive, and
inactivity rises with age. Males and females also occupy different
proportions, and physical inactivity appears more in women than
men (5). Apart from a range of chronic diseases and early deaths
associated with the pandemic of physical inactivity, it also causes
a substantial economic burden (6, 7). According to a study by
Ding et al. (8), physical inactivity cost more than 50 billion
dollars in the healthcare system in 2013 globally. Evaluating
cardiorespiratory fitness levels is crucial in preventing physical
inactivity, and it can be achieved by measuring or predicting the
maximal oxygen consumption (VO2max).

Aerobic capacity is a quantifiable indicator of physical
fitness level (9). VO2max reflects the aerobic capacity and
maximal cardiorespiratory function, and it is critical for assessing
cardiorespiratory fitness and physical activity level. Matsuo et al.
(10) found that physical activity levels of the workers (age: 30–
60 years) are significantly correlated with VO2max. People (age:
48.5 ± 14.4 years) meeting the physical activity criteria of 150
min/week of the daily moderate-intensity exercise demonstrated
approximately 10% higher VO2max than their counterparts (11).
Better cardiorespiratory fitness is associated with a lower risk of
all-cause mortality (12, 13). A 34-year follow-up study found life-
long physical activity may reduce the risk of breast cancer among
female teachers aged ≥ 25 years (14). Low levels of physical
activity and low cardiorespiratory fitness are the indices of the
development of metabolic syndrome in both male and female
adolescence (15).

It is crucial to estimate VO2max utilizing a simple, valid, and
reliable method for epidemiologic studies of physical activity
(16). VO2max can be measured by direct gas analysis and
submaximal cycle ergometry. Direct measurement of VO2max
from gas analysis using a progressive exercise test demands a
maximal effort from the subject restricted to a well-equipped
laboratory environment and technical expertise (17). Hence,
maximal exercise tests on a treadmill or cycle ergometer are
unappealing to some individuals, and some elderly or physically
inactive individuals may endure a high risk to undertake the test.
Astrand-Rhyming is one of the most administered submaximal
cycle ergometry tests. It calculates VO2max by evaluating the
steady-state heart rate (HR) during a 6-min submaximal test.
The test protocol and results also exhibited good validity and
reliability in healthy populations (17, 18). Hoehn et al. (18)
showed that the difference between the estimated VO2max from
the Astrand-Rhyming cycle ergometer test and VO2max from
the maximal cycle ergometer test was <1 ml/kg/min. Test-retest
reliability analysis over 1 week also showed no mean difference
(17). Huerta et al. (9) evaluated physical fitness among Israeli
soldiers using the Astrand-Rhyming 6-min cycle ergometer test
and found a sex-specific difference of the estimated VO2max.

Machine learning is the study of computer algorithms that
improve automatically through experience and by the use of
data (19). Machine learning has been widely utilized in health
informatics and physical fitness investigation in the recent
years (20, 21). Machine and deep learning techniques have
accelerated human experiments and tests conducted from the
laboratory to the real world in the past decades (22–25). Inertial

wearable sensors combined with machine learning algorithms
could predict and evaluate biomechanics performances and
energy expenditure (26–28). Human activity, such as walking,
running, sitting, and cycling, could be accurately detected and
classified using supervised learning methods (29–31). Therefore,
sedentary behavior and physical activity level can be estimated by
wearable technology (27). AI-Mallah et al. (32) demonstrated that
cardiorespiratory fitness data could predict all-cause mortality by
classifying the data into predetermined categories using the K-
Nearest Neighbor (KNN) algorithm. Sakr et al. (33) found that
the cardiorespiratory fitness data could be used to predict the
prevalence rate of hypertension.

Predicting VO2max by machine learning approaches is
emerging recently. Anthropometric parameters, time of exercise,
workload, and HR self-reported rating of perceived exertion
(RPE) are commonly used variables or predictors (34–36).
Beltrame et al. (35) revealed that machine learning algorithms
successfully predicted VO2max of forty-five health participants
during the early stages of the test at maximal cardiopulmonary
exercise testing. Machine learning methods can also predict
VO2max based on a 20m shuttle run test with root mean square
error (RMSE) < 5.5 ml/kg/min with a sample size of 308 (37).
Artificial neural networks (ANNs) could predict VO2max based
on a single-stage submaximal exercise test of 126 healthy adults
(34). Support Vector Machine (SVM) estimated VO2max of 100
healthy participants also achieved high accuracy (36, 38).

However, the previous studies were conducted from
relatively small sample sizes and predicted VO2max based
on general healthy participants. Furthermore, no study
validates the prediction accuracy of cardiorespiratory fitness
between age-based populations. Therefore, this study aimed to
classify and predict the population-based (university teachers)
cardiorespiratory fitness based on anthropometric parameters,
workload, and steady-state HR of the submaximal exercise
test. It was hypothesized that: (1) VO2max is correlated with
physical fitness levels and could be predicted and classified
by physical fitness tests; (2) increased age contributed to the
decreased cardiorespiratory fitness in age-based groups and it
can be predicted.

MATERIALS AND METHODS

Participants
This study evaluated cardiorespiratory fitness among a large
population and aged-based sample. Five hundred and seventeen
(255 males and 262 females, age: 40.75 ± 9.16 years; height:
165.40 ± 7.70 cm; weight: 63.49 ± 11.33 kg; BMI: 23.09 ± 3.04
kg/m2) university teachers from a university in the southeast of
China were recruited into our study. Anthropometric parameters
contain height, weight, and BMI. Maximal HR was calculated
based on the age-predicted maximal HR: max HR = 220–age.
All participants were healthy and free of any medical condition
that may potentially affect VO2max and exercise activities. All
subjects were informed of the purpose, requirements, and details
of this study, and written consent was obtained from each
participant before the test. The study was approved by the ethics
committee in Ningbo University (RAGH20190825).
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Experimental Setting and Test Protocol
All cardiopulmonary aerobic tests were conducted from April
2020 to July 2020. Monark ergometer (928E, Varberg, Sweden)
was utilized for the Astrand-Rhyming 6min cycle ergometer
test. The approach estimates aerobic capacity based on HR and
power during the sub-max intensity test on the cycle ergometer.
Each participant was given 5min to warm up and familiarize
the test environment. Participants were introduced to adjust the
heights of the cycle ergometer seat and handlebar before the
test. Borg’s rating of perceived exertion (RPE) scale was adopted
to monitor fatigue. The speed of the cycle ergometer was set
at 50 r/min before the test. The whole test lasted 6min, and
during the first 3 mins, the workload was adjustable to obtain
the stable HR between 125 and 175 beats/min (approximately
75% max HR). HR was monitored during the tests by a Polar
Electro (H10, Kempele, Finland). Test workload was recorded
and accepted HR was evaluated for each participant. VO2max
was estimated using the Astrand-Rhyming nomogram based on
cardiac response to 6min of constant submaximal cycle work (9).
Each participant’s cardiorespiratory fitness was further divided
into poor, average, good, and excellent classes based on measured
VO2max in Monark 1.0.15.0 (Vansbro, Sweden).

Machine Learning Approaches
This study initially classified the aerobic capacity followed by
VO2max predicted using an ordinary least squares regression
model with measured VO2max from submaximal cycle test as
ground-truth. Furthermore, we predicted VO2max in the age 21–
40 years and above 40 years groups. All predictors were z score
normalized with a mean value of 0 and a standard deviation of 1
(39). XGBoost, KNN, logistic regression, decision tree, random
forest, Naïve Bayes, and SVM algorithm were considered for
this classification task. KNN assigned ten neighbors and used
the standard Euclidean metric. The logistic regression algorithm
employed the penalty algorithm of L1 and the LibLinear
algorithm as the solver. We chose the kernel and C in the SVM
as linear and 10, respectively. Gaussian naïve Bayes was picked in
this study. The entropy criterion was selected for the decision tree
and random forest algorithms, with maximum tree depth and the
number of trees as 10 and 100, respectively. The number of trees,
maximum tree depth, and learning rate were set as 10, 100, and
0.1, respectively, in the XGBoost model. SVM with linear kernel
was selected as it performed the best prediction accuracy of the
10-fold cross-validation model. Based on the performance of the
cycle ergometer test, cardiorespiratory fitness was classified into
the following four categories: poor, average, good, and excellent.

Data were split into 60, 20, and 20% for training, validation,
and testing, respectively. Twenty percent of the raw dataset
was initially selected for testing. The remained 80% of the data
was used for training and validation. Then, we further divided
training and validation into the ratio of 75 and 25%. The
SVM algorithm constructs hyperplanes between categories by
maximizing the margin using support vectors. The soft margin
parameter of C balances the trade-off between margin width and
misclassification rate (40). To achieve a good trade-off between
training and test accuracies and avoid underfitting and overfitting

problems, we performed hyperparameter tuning based on four-
fold grid search cross-validation (GridSearchCV) on the training
dataset to determine the best C parameter of support vector
classification (SVC) model from range 0.01, 0.1, 1, 10–100 [37].
Finally, C = 10 was selected as the best parameter and adopted
for the test dataset.

The ordinary least squares regression was employed to predict
VO2max of each participant. For classification and regression,
gender, age, height, weight, bodymass index (BMI), maximal HR,
test workload, and accepted HR were adopted as predictors. The
SVM classification model was evaluated by accuracy, precision,
recall, F1-score, and Matthews correlation coefficient. The linear
regression model was estimated by Pearson product-moment
correlation coefficients (R2), the mean absolute error (MAE), and
RMSE. The coefficient of each predictor was extracted to rank the
feature importance of the regression model.

Statistical Analysis
Participants were divided into four groups, age 21–30, 31–
40, 41–50, and above 50. The accepted HR, test workload,
and aerobic capacity between groups were compared utilizing
ANOVA analysis in R (version 4.0.5, R Foundation for Statistical
Computing, Vienna, Austria). Tukey’s honest significance
differences (HSD) post hoc analysis was used to conduct statistical
analysis of VO2max between groups with the significance
level p < 0.01.

RESULTS

The Anthropometric and Submaximal Test
Information
The anthropometric and cycle ergometer test information is
presented inTable 1. The acceptedHR during tests was decreased
with the increase of age (from 137.6 ± 11.6 bpm in the age
21–30 group decreased to 133.8 ± 11.5 bmp in the age > 50
group), but no statistical significance (F = 2.6, p > 0.05). The
test workload was gradually decreased with increased age in 21–
30, 31–40, and 41–50 age groups (646.6 ± 198.8, 609.8 ± 190.3,
and 568.4 ± 172.8 kpm/min, respectively). Also, there was no
significant difference presented (F = 1.7, p > 0.05).

VO2max in the Different Age Groups
The ANOVA analysis of VO2max shows the statistical difference
with F = 16.6 and p < 0.01. Tukey’s HSD post-hoc analysis with
99% CI was demonstrated in Figure 1. Compared with the age
21–30 group, VO2max in the age 41–50 and >50 groups were
significantly decreased (both p < 0.01, mean difference: −7.9
and −9.9, 99% CI: −14.4 to −1.5 and −16.4 to −3.4). VO2max
was also significantly different in the age 41–50 (p < 0.01, mean
difference −4.7, 99% CI: −8.1 to −1.3) and above 50 groups
(p < 0.01, mean difference −6.7, 99% CI: −10.2 to −3.1) when
comparing to the age 31–40 group.

The Performance of the Classifier
The four-fold cross-validation accuracy was 76%, and the
accuracy in the test dataset was 75%. The precision, recall, F1-
score, and Matthews correlation coefficient are presented in
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TABLE 1 | The anthropometric and cardiopulmonary aerobic test information in different age groups (data was shown in mean ± SD).

Age (years) Height (cm) Weight (kg) BMI (kg/cm2) Test workload (kpm/min) Accepted HR (bpm) VO2max (ml/kg/min)

21–30 (n = 29) 27.5 ± 1.5 168.6 ± 7.4 63.9 ± 11.1 22.4 ± 2.7 646.6 ± 198.8 137.6 ± 11.6 46.7 ± 11.5

31–40 (n = 192) 35.0 ± 2.7 166.4 ± 8.1 63.1 ± 12.3 22.6 ± 3.2 609.8 ± 190.3 136.2 ± 10.9 43.5 ± 11.3

41–50 (n = 159) 44.6 ± 2.9 164.6 ± 7.0 62.9 ± 10.7 23.1 ± 3.0 568.4 ± 172.8 135.8 ± 11.0 38.8 ± 9.3

>50 (n = 137) 54.9 ± 3.2 164.3 ± 7.7 64.6 ± 10.7 23.8 ± 2.8 583.6 ± 155.9 133.8 ± 11.5 36.8 ± 9.2

HR, heart rate; VO2max, maximal oxygen consumption.

FIGURE 1 | Tukey’s honest significance differences test of maximal oxygen consumption (VO2max) between age groups.

Table 2. The accuracies of VO2max of the classifying participants
into poor, average, good, and excellent categories were shown
in the confusion matrix (Figure 2). The X-axis showed the
actual level of VO2max, while the Y-axis depicted the predicted
VO2max utilizing an SVM classifier, and values were normalized
to present the percentage of each class. The average level of
VO2max demonstrated the highest accuracy followed by the
excellent level with 85 and 78%. The accuracies in the good and
poor performances were relatively lower with 65 and 65%.

The Linear Regression Model
Gender, BMI, and height were the three most crucial input
variables that contribute to performance of the model, followed
by accepted HR, weight, age, maximal HR, and test workload.

The ordinary least squares regression model showed the
coefficient of determination (R2) between actual and predicted
VO2max in the validation dataset was 0.81 and 0.83 in the
test dataset (Figure 3A). MAE and RMSE were 3.37 and 4.45
ml/kg/min in the validation dataset, and 3.12 and 4.24 ml/kg/min
in the test dataset. Figure 3B demonstrated the residuals plot
of predicted VO2max compared with the true VO2max. The
Bland-Altman plot exhibited the mean difference and 95% limits
of agreement between the observed and predicted VO2max
(Figure 4). The mean difference was very close to 0, which is
−0.31, and most of the points are scattered in the ±1.96 SD
(above−8.59 ml/kg/min and below 7.97 mm/kg/min).

The coefficient of determination between the true and
predicted VO2max in the validation and test datasets (Figure 5A)
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TABLE 2 | The classification report of linear SVC classifier.

Physical performance Number of

observations

Cross-

Validation

accuracy

Accuracy Precision Recall F1-Score Matthews

correlation

coefficient

Validation dataset Poor 59 0.76 0.74 0.73 0.74

Average 121 0.72 0.74 0.73 0.66

Good 117 0.70 0.67 0.68

Excellent 116 0.83 0.87 0.85

Test dataset Poor 20 0.75 0.81 0.65 0.72 0.66

Average 34 0.69 0.85 0.76

Good 23 0.68 0.65 0.67

Excellent 27 0.88 0.78 0.82

FIGURE 2 | Confusion matrix of the SVM classification model based on VO2max differences.

of the age 21–40 group was R2 = 0.8 and 0.85, respectively. MAE
and RMSE in the test dataset were 2.72 and 4.02 ml/kg/min,
respectively. Figure 5B presented R2 = 0.75 of the ordinary least

squares regressionmodel in the age≥ 40 group of the test dataset,
with MAE = 3.2 ml/kg/min and RMSE = 4.26 ml/kg/min in the
test dataset.
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FIGURE 3 | Regression plot (A) and residuals plot (B) of the linear regression model.

FIGURE 4 | Bland-Altman plot of true and predicted maximal oxygen uptake.
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FIGURE 5 | Regression plot of the linear regression model of age 21–40 group (A) and age above 40 group (B).

DISCUSSION

VO2max is an essential part of health and physical fitness.
This study predicted the VO2max based on anthropometric
parameters and the cycle ergometer test utilizing machine
learning. Furthermore, we estimated that the ordinary least
squares regression model in younger and older groups. It
was found the SVC algorithm could successfully classify the
cardiorespiratory fitness level into four classes (i.e., poor, average,
good, and excellent). The linear regression model can predict
VO2max with gender, age, height, weight, BMI, maximal HR,
test workload, and accepted HR as predictors. The ordinary least
squares regression performance is better in the younger group
(21–40 years old, R2 = 0.85) than the group with age above 40
years (R2 = 0.75).

Previous studies assessed and predicted VO2max using
different predictors and test protocols (34–38), but no
study classifies the aerobic capacity into subcategories in
the previous work. SVM exhibited outstanding performance in
the classification tasks (36, 38, 40, 41). This study adopted it as
the classifier to separate the aerobic capacity. According to the
findings of this study, the VO2max level is predictive. It can be
classified based on the anthropometric parameters and workload
and steady-state HR of the submaximal exercise test.

This study identified the anthropometric measurements that
can be directly employed to evaluate cardiorespiratory fitness.
The accuracy would be further improved by incorporating
exercise parameters of an individual (i.e., HR during exercise
and workload). Therefore, it provides a practical protocol for
estimating cardiorespiratory fitness of an individual in large
populations. By monitoring VO2max in the different age groups,
people will better understand their health condition and improve
cardiovascular endurance. On the other hand, people can be
guided specifically to promote health.

Our aging population presents a significant health challenge
globally (42–44). The medical and healthcare system is under

increased pressure with an increased economic burden (8).
Estimating and predicting physical activity may play a crucial
role nowadays in lessening the burden on the healthcare system.
Monitoring and evaluating physical activity or cardiorespiratory
fitness levels among populations, especially for the elderly, would
help guide policies to increase activity levels of the populations
and reduce the burden of non-communicable diseases in the
public health system (5).

Przednowek et al. (37) predicted VO2max based on a 20m
shuttle run test using ordinary least squares regression, ridge
regression, Lasso regression, and ANNs. The results showed that
the models for females generated less error than males, but
only young participants (mean age: 20.6) were included in the
study. Akay et al. (34) estimated VO2max of 126 participants
utilizing ANNs (R2 = 0.94) with anthropometric parameters,
steady-state HR of jogging, and jogging speed as predictors. The
age range of the subjects, however, was from 17 to 40 years.
VO2max of Children and adolescents can be predicted in a
submaximal run test using multiple linear regression and ANNs
models (45). Huerta et al. (9) employed the cycle ergometry
evaluating VO2max among a large population-based sample of
Israeli men and women with age ranging from 18 to 25 years.
The submaximal cycle ergometry test has been developed as a
valuable tool to estimate cardiorespiratory fitness and VO2max
due to its lower cost, lower test risk of complications, and being
applicable for the elderly (34). However, previous studies only
estimated or predicted physical fitness of young adults. The
ordinary least squares regression model in this study showed
that VO2max is also predictable for the older population and
predicted decreased cardiorespiratory fitness level with increased
age, which is consistent with the previous study that physical
inactivity raises with age (5).

It also showed that the predicted performance of the cycle
ergometer test method is affected by age. Due to physiological
changes, the elderly might potentially take less physical exercise
or physical activity, and aerobic capacity is decreased with age
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(5). The cycle ergometer test exhibited relatively poor ability to
predict VO2max. Using this approach to predict the VO2max
in the younger population may be better than in the older age
group. It is recommended to explore the replaceable method to
estimate and predict the VO2max among the elderly population
in the future. This study also found the cardiovascular endurance
is significantly decreased for people aged more than 40 years.
Physical inactivity in this period may contribute to decreased
VO2max. Physical activity recommendations or exercise protocol
should consider providing specific guidelines for this age group in
the future.

Some limitations should be noted, despite the promising
findings in this study. Although we predicted the
cardiorespiratory fitness between the younger and older
populations, the sample size of cohorts in the age 21–30 and
age above 60 groups is relatively small. Thereby, future studies
should add more elderly participants to investigate their physical
activity and cardiorespiratory fitness level. As physiological
mechanisms differ between males and females, sex difference
should also be taken into consideration. On the other hand, due
to directly measuring individuals age above 40 years has the
higher medical risk, VO2max was measured from a submaximal
test rather than maximal exertion test in this study. Furthermore,
the ordinary least squares regression model was employed in
this study. Other non-linear regression models may improve the
performance of the model and decrease errors. Future studies
should also attempt to predict VO2max from larger sample sizes
or consider including synthetic data.

CONCLUSION

In conclusion, this study investigated population and age-
based cardiorespiratory fitness levels and classified and predicted
VO2max using classification and linear regression approaches.
The findings showed that VO2max level is predictive and can be
classified based on the anthropometric parameters and workload
and steady-state HR of a submaximal exercise test. Physical
activity or exercise recommendations could be given to the
university teachers by conducting an applicable submaximal test.
Although the regression model exhibited reasonable accuracy in

predicting the aerobic capacity among population above age 40
years, it is worth exploring a more comprehensive model or test

protocol to estimate the cardiorespiratory fitness of an elderly
more accurately.
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