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High-throughput phenotyping has become the frontier to accelerate breeding through linking genetics to crop growth estimation,
which requires accurate estimation of leaf area index (LAI). This study developed a hybrid method to train the random forest
regression (RFR) models with synthetic datasets generated by a radiative transfer model to estimate LAI from UAV-based
multispectral images. The RFR models were evaluated on both (i) subsets from the synthetic datasets and (ii) observed data
from two field experiments (i.e., Exp16, Exp19). Given the parameter ranges and soil reflectance are well calibrated in synthetic
training data, RFR models can accurately predict LAI from canopy reflectance captured in field conditions, with systematic
overestimation for LAI<2 due to background effect, which can be addressed by applying background correction on original
reflectance map based on vegetation-background classification. Overall, RFR models achieved accurate LAI prediction from
background-corrected reflectance for Exp16 (correlation coefficient (r) of 0.95, determination coefficient (R*) of 0.90~0.91, root
mean squared error (RMSE) of 0.36~0.40 m?m>, relative root mean squared error (RRMSE) of 25~28%) and less accurate for
Expl9 (r=0.80~0.83, R?=0.63~0.69, RMSE of 0.84~0.86m”>m™, RRMSE of 30~31%). Additionally, RFR models correctly
captured spatiotemporal variation of observed LAI as well as identified variations for different growing stages and treatments
in terms of genotypes and management practices (i.e., planting density, irrigation, and fertilization) for two experiments. The
developed hybrid method allows rapid, accurate, nondestructive phenotyping of the dynamics of LAI during vegetative growth
to facilitate assessments of growth rate including in breeding program assessments.

1. Introduction

Leaf area index (LAI) is defined as one-sided leaf area per unit
surface area for field crops with flat leaves [1]. For most
applications, LAT refers to the green leaf area contributing to
photosynthesis and transpiration, although in remote
sensing, the term GAI (Green Area Index) also considers other
chlorophyll-containing plant parts such as stems and ears/
heads/spikes/flowers [2, 3]. LAI is an important trait for
genotype selection and adaptation assessment since it can
indicate crop health conditions under biotic and abiotic
stresses and contribute to crop growth rate, biomass, and grain
yield formulation [4-6]. Precise measurements of LAI can aid

in informing the status of the main photosynthesis organs and
potential crop growth rate through the season.

Direct measurement of LAI consists of manually
harvesting samples in the field, separating leaves off plants,
and finally measuring their area with instruments to calculate
LAI [7, 8]. Direct measurement is time-consuming, labour-
intensive, and expensive for a large number of plots [4]. Being
destructive, repeated samples make this method impractical
for small breeding plots [9]. In this context, it is necessary to
develop faster and more feasible indirect methods for rapid
phenotyping as required in modern breeding [10, 11]. Direct
measurements are theoretically regarded as more accurate
than indirect measurements, given samples are representative
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to account for the main architecture of the entire canopy [12].
However, an advantage of indirect measurement is that it is
possible to measure the entire plot rather than a small sample
harvest area. Indirect methods are of two types—under and
above the canopy, with the former utilizing approximations
and models of light penetration and canopy architecture.
However, these under-canopy methods are limited in their
ability to sample plots efficiently as they are slow so cannot
easily sample entire plots. We focus on above-canopy
estimation in this work.

Remote sensing technology has been widely used and
become a practical way to retrieve crop LAI from satellite
multispectral or hyperspectral data [13-15]. The remote-
sensing methods provide a rapid, economic, and
nondestructive way to capture crop canopy information at a
large scale, which to a large extent has addressed bottlenecks
associated with direct measurements [16, 17]. However,
currently most satellite data have insufficient temporal and
spatial resolution to be utilized in field plot trials. Precise
positioning and unmanned aerial vehicle (UAV) technologies
facilitate high-throughput phenotyping in agriculture and
breeding programs [18-20]. Compared with satellite data,
the use of UAV platforms in breeding programs has several
advantages. It provides very high spatial resolution data (-
centimetre to sub-centimetre), which is particularly suitable
for small-plot breeding trials [21, 22]. Missions can be sched-
uled at various heights to balance flight time against ground-
scale precision [23]. It is feasible to schedule flights at a
required time interval (e.g., daily, weekly) or specific growth
stages and to determine the best flight time according to
weather (sunny calm conditions) to produce high-quality
UAYV data [24, 25].

Retrieval methods for extracting crop traits (e.g., LAI) from
UAV data are similar to retrieving from satellite data in princi-
ples, and their advantages and limitations have been discussed
in several reviews [26-29]. Retrieving crop traits from spectral
data depends on the established relationship between target
trait and raw band reflectance or/and derived vegetation indi-
ces (VIs). Based on the source of relationship, retrieval methods
can be divided into three categories: (i) empirical method,
establishing a relationship based on real experimental data
[22, 30]; (ii) physical method, directly using the established
cause-effect relationship expressed in radiative transfer models
(RTMs) [31-33]; (iii) hybrid method, establishing a relation-
ship from synthetic data generated by RTMs [7, 14, 34]. Com-
pared with empirical methods and physical methods, hybrid
methods can balance both general applicability (suitable for
application in a wide range of conditions) and computational
efficiency [29, 35].

This paper aims to apply a hybrid method to develop a pre-
dictive model to rapidly estimate wheat LAI from canopy
reflectance collected with proximal (UAV-borne) multispectral
cameras (visible to near-infrared range) under varying condi-
tions. To meet breeding needs, the model should be able to dis-
tinguish genetic variations and to identify the effects of
management treatments on considered genotypes. Here, ran-
dom forest regression (RFR) models were trained on synthetic
datasets generated by a RTM (i.e, PROSAIL model [36]) to
predict LAIL These RFR models were then validated against
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measurements of LAI and UAV-based multispectral data from
two trials with different genotypes and management practices
in terms of plant density, irrigation, and fertilization. For such
a hybrid method, the extent to which the RFR model can accu-
rately predict LAI from experimental data largely depends on
the similarity between synthetic multispectral data and
observed multispectral data. In response to increasing the data
similarity, three potential solutions (i.e., calibration of parame-
ter range, soil reflectance, and image soil background) were
implemented to evaluate their effects on improving model pre-
diction accuracy.

2. Materials and Methods

2.1. Overview. The research flow map of this study is pre-
sented in Figure 1, consisting of the following steps. Three
defined parameter sets were combined with specific soil
reflectance to run PROSAIL to simulate canopy reflectance,
resulting in several synthetic datasets. These synthetic data-
sets were used to train random forest regression (RFR)
models to predict LAI from canopy reflectance. According
to research objectives, these RFR models were firstly vali-
dated in subsets of synthetic data to investigate the effects
of parameter range and soil background in theory. Subse-
quently, two proposed RFR model-based methods (“RFR
method” and “RFR+LCB method”) (“LCB” is the abbrevia-
tion for “Locally Calibrated Background”) were validated
on practical data from two field experiments and then com-
pared with a baseline method (“fIPAR method”) based on
Beer-Lambert Law.

2.2. Field Experiments. Two wheat experiments were con-
ducted at Gatton, Queensland (27.55°S, 152.33°E) in 2016
(Exp16) and 2019 (Exp19) and UAV-based phenotyping was
undertaken along with field measurements (Figure 2).
Different genotypes, plant densities, irrigation, and fertiliza-
tion regimes created contrasting canopy structures in trials
over an area of ~230m by 50m. Each experiment had four
treatment blocks (with fillers to maintain physical isolation
between blocks): irrigated and high nitrogen (IHN), irrigated
and low nitrogen (ILN), rainfed and high nitrogen (RHN),
rainfed and low nitrogen (RLN). Each block was split into
small plots of ~14m” (2x7m), each with 7 rows and a
25 cm row spacing. Weighed packets of seed adjusted for seed
size and germination rate to achieve target plant density were
sown by cone-seeder on May 21, 2016 and May 15", 2019,
respectively. Fertilizer (50/205kgha™ and 32.5/110kgha’
for LN/HN in 2016 and 2019, respectively) was applied at
sowing after measuring the preplanting soil nitrogen; irriga-
tion was applied at sowing for all treatments for germination
and was only applied after sowing for irrigated treatments
when needed. Effective field practices were carried out to
control weeds and diseases during the growing season. Plant
emergence of all cultivars occurred approximately 10 days
after sowing in 2016 and 5 days after sowing in 2019.

2.2.1. Biophysical ~Measurements. Quadrat harvests
comprised 0.5m length of 4 inner rows (~0.5m?). A
subsample (25~33% of total biomass) was taken from the
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FIGURE 1: Research flow map. PROSAIL is a radiative transfer model, coupling a leaf optical property model (PROSPECT-D) and a canopy
bidirectional reflectance model (4SAIL). The input parameter sets (p1, p2, p3) and reflectance of soils (s1, s2, s3) that are used by PROSAIL
are presented in Table 2 and Figure S4, respectively. Synthetic datasets are generated with PROSAIL and used to develop random forest
regression (RFR) models (Table S1). Three methods were tested, namely, (i) the “fTPAR method,” using Beer-Lambert Law to predict
LAI from the fraction of intercepted photosynthetically active radiation (fIPAR) with setting extinction coefficient (K) to a constant (K
=0.65 for wheat); (ii) the “RFR method,” using random forest regression models trained on synthetic dataset varying in parameter
ranges (pl, p2, or p3) and soils (s1, s2, or s3) to predict LAI with plot-scale LAI retrieved from band reflectance map; (iii) the “RFR
+LCB method” (“LCB” is the abbreviation for “Locally Calibrated Background”), using random forest regression models to predict LAI
with plot-scale LAI retrieved from background-corrected band reflectance map. The application of “RFR method” and “RFR+LCB
method” is illustrated in Figure 3.
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FIGURE 2: Phenotyping wheat trials with a UAV platform and key components for the UAV platform. The photo was taken at 11: 50 a.m. on
31% May 2019 (16 days after sowing).



quadrat sample and partitioned into green leaves and other
parts. Green leaves of the subsample were weighed (LFW g,
g) and then measured the leaf area (LA, cm?) with LI-
3100C Area Meter. Subsequently, each part of a quadrat sam-
ple was placed in an oven at 70°C for 3-4 days and weighed to
retrieve the oven-dry weight of green leaves of the subsample
(LDW, g), subsample (DW,, g), and quadrat sample
(DW ain> 8)- The LAI (m®m?), leaf water content (Cw, g
cm?), and leaf dry matter content (Cm, g cm?) were calcu-
lated according to LAI= (LAg, X DW,..,)/(QAXDW,),
Cw = (LFW,,, — LDW,, )/LA,;, and Cm=LDW, LA,
where QA (cm?) is the ground area of quadrat harvest. The
range of observed values of Cw, Cm, and LAI was used to limit
the ranges of input parameters in the PROSAIL model when
generating synthetic datasets (see details below). The light
interception above (I,) and below (I;) canopy was measured
with the AccuPAR LP-80 linear ceptometer (Decagon Devices,
Pullman, WA) around noon (11:00 to 13:00) for all measure-
ment dates to reduce the influence of solar zenith angle. The
fraction of intercepted photosynthetically active radiation
(fIPAR) was calculated according to fIPAR =1 —1L/I,. For
individual plots, the paired measurements of I, and I, were
repeated three times by moving the ceptometer along the
row direction to provide three instant measurements of fIPAR,
which were averaged to provide a mean measured fIPAR for
that plot. This mean fIPAR was used to estimate LAI based
on a variant of Beer-Lambert Law, i.e., LAI=-In (1 —fIPAR
)/K, where extinction coefficient (K) was set to 0.65 for wheat
according to a meta-analysis study about canopy light extinc-
tion coefficient [37]. This method was named as “fIPAR
method,” which provided a baseline accuracy for LAI
prediction.

Ground measurements were taken in 84 plots (including
7 genotypes, 1 density, 4 water-nitrogen treatments, 3 repli-
cates) for Expl6, and 72 plots (including 3 genotypes, 3
densities, 4 water-nitrogen treatments, 2 replicates) for
Expl9 (see green plots in Figure S3). Phenological
observations once or twice per week recorded growing
stages using a decimal code scale [38]. In Expl9, quadrat
sampling to estimate traits such as LAI was taken with two
harvests in all selected plots, and UAV phenotyping was
performed the same day or two days before the quadrat
harvest. In Expl16, quadrat harvest and UAV phenotyping
did not always occur close to each other. Missing LAI
measurements from quadrat harvest were interpolated with
a fitted piecewise function based on all measured LAI from
quadrat harvests across growth season (see Method SI;
Figure S1). Finally, each selected plot had one ground-
estimated LAI for each UAV-based estimate. This
corresponded to a total of 252 and 144 estimated LAI
values between plant emergence and flag leaf for Expl6
and Exp19, respectively (Table 1).

2.2.2. Multispectral Data Collection and Processing. The
multispectral data were captured from a UAV-based pheno-
typing platform from 10:00 to 14:00 at defined dates
(Table 1) following protocols developed by Chapman et al.
[24]. Five ground control points were evenly distributed in
the field and fixed through the growing season. A mission
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plan for autonomous flights was designed to ensure 75%
frontal overlap and 60% side overlap at least. The flight
height for the three phenotyping dates in 2016 and the first
date in 2019 was 20m (corresponding to a 1.3cm spatial
resolution) and was 40 m (corresponding to a 2.7 cm spatial
resolution) for the second flight in 2019. The multispectral
camera used in this study was a MicaSense RedEdge camera
(Figure 2; https://www.micasense.com) with 5 bands in the
visible near-infrared range, i.e., Blue (475nm centre
wavelength, 20nm bandwidth), Green (560nm, 20nm),
Red (668nm, 10nm), Near-infrared (NIR) (840nm,
40nm), and Red edge (717nm, 10nm). Images of the
calibrated reference panel from MicaSense were manually
taken before and after each flight and then used for calibra-
tion in the later data processing. The UAV flights in two tri-
als were finished within 30 minutes during which
illumination was assumed to be stable in clear days without
strong wind effects.

After data acquisition, these raw images were processed
(including geometric and radiometric correction) in Pix4D-
mapper software (https://www.pix4d.com) to generate the
ortho-image of calibrated reflectance of each band for the
whole field. Two reflectance bands (NIR and Red) are used
to calculate the NDVI which is used to generate the
vegetation-background binary map based on threshold
classification. The threshold was empirically set as 0.5 (tiller-
ing stage), 0.65 (stem elongation stage), and 0.75 (flag leaf
stage). These threshold values can effectively classify soil
pixels as background and avoid classifying green leaves as
background, especially when plants are small. Using the
binary map as a mask, the value of background pixels in
the original reflectance map was replaced with the band
value of corresponding soil reflectance used in the specific
synthetic dataset, resulting in a new reflectance map named
“background-corrected reflectance map.” Further details
about this classification method and background correction
are provided in the supplementary materials (Method S2).
The entire field extent was segmented into individual plots
according to the experimental design. Individual plots were
trimmed by a percentage of 10% along four sides to exclude
marginal areas from adjacent plots and plot gaps. The har-
vested areas were also clipped from the plot images. The
pixel-scale reflectance from the reflectance map was
averaged by trimmed plots to generate the plot-scale reflec-
tance that were used in RFR models to predict LAI There
are two RFR model-based methods—“RFR method” and
“RFR+LCB method” (“LCB” is abbreviation for “Locally
Calibrated Background”). They use the same RFR model
trained over synthetic dataset to predict LAI The difference
is that “RFR method” predicts LAI from the plot-level reflec-
tance aggregated from the original reflectance map, while the
plot-level reflectance was aggregated from the background-
corrected reflectance map in “RFR+LCB method.” The flow
of processing reflectance map to generate plot-scale
reflectance for LAI prediction in two methods is illustrated
in Figure 3 with a few plots as example.

2.3. Simulating Synthetic Datasets with the PROSAIL Model.
The PROSAIL model couples a leaf optical property model
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TaBLE 1: Crop characteristics when phenotyping occurred between plant emergence and flag leaf stage. Development stage and leaf area
index (LAI) are given for dates when unmanned aerial vehicle (UAV) phenotyping occurred. In Exp19, LAI values correspond to
measurements from quadrate harvests done at similar dates for the UAV phenotyping. In Exp16, LAI values were interpolated based on
quadrate measurements from the whole growing season. The Min, Mean, and Max, respectively, represent the minimum, average, and
maximum value of LAI for all selected plots within an experiment at a specific stage.

Experiment UAV phenotyping date (DAS) Development stage Min LAII\SII;I:nm K Max
Expl6 18 Tillering 0.1 0.18 0.26
Expl6 40 Start of stem elongation 0.5 1.39 2.32
Expl6 59 Flag leaf 1.12 2.69 5.12
Exp19 36 Start of stem elongation 0.81 1.97 3.98
Expl9 62 Flag leaf 1.58 3.61 6.8

Note: DAS: days after sowing.
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F1GURE 3: Schematics of processing images to provide input of random forest regression (RFR) model to predict LAI Only information of
three plots for Expl6 (DAS =18) are chosen here to simplify the illustration. The purple rectangles represent the full extent of the plot, and
the red rectangles inside represent the extent of the trimmed plot. Two original reflectance maps (NIR and Red) are used to calculate the
NDVI which is used to generate the vegetation-background binary map based on threshold classification. Using the binary map as a
mask, the value of background pixels in the original reflectance map was replaced with the corresponding soil reflectance used in
synthetic data, resulting in a new reflectance map named “background-corrected reflectance map.” The pixel-scale reflectance from the
original reflectance map (“RFR method”) or the background-corrected reflectance map (“RFR+LCB method”) was averaged by trimmed
plots (i.e., red rectangles) to generate the plot-scale reflectance that were used in RFR models to predict LAL

(PROSPECT [39]) and a canopy bidirectional reflectance
model (SAIL [40]), which can be used to estimate canopy
variables such as LAI from canopy reflectance [36]. The cur-
rent version of PROSAIL, used to simulate canopy reflec-
tance in this study, is PROSAIL-D (PROSPECT-D coupled
with  SAIL)  (http://teledetection.ipgp.jussieu.fr/prosail/).
PROSAIL takes as input the soil reflectance (Figure S4) as
well as parameters related to the following (Table 2): (i)
leaf properties; (ii) canopy architecture; (iii) soil
adjustment factor; (iiii) solar-object-sensor observation
geometry. The fraction of diffuse illumination (skyl) was

adjusted based on solar zenith angle in the current version
of PROSAIL, though others have fixed it to a constant
value (e.g., skyl=0.1 in [8, 13], skly=0.2 in [41]). The
model outputs multiple canopy reflectance from 400 to
2500nm at lnm interval and here only bidirectional
reflectance was used for analysis, which was resampled into
band reflectance of the five bands based on spectral
response coefficient provided by MicaSense (see Method
S3; Figure S2).

In this study, three varying sets of PROSAIL input
parameter ranges were considered to generate synthetic
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TaBLE 2: Input parameter sets of the PROSAIL model for the simulations (p1, p2, p3). Input parameters were either fixed or followed a
uniform distribution from a range of values presented in the square brackets (minimum value on the left, and maximum value on the
right). Input parameters include Ns, Cab, Car, Cant, Cbrown, Cm, Cw, ALA, LAI hspot, psoil, SZA, VZA, and RAA. Compared with pl,
parameter inputs of p2 for Cm, Cw, and LAI were limited to narrower ranges based on observed values from field experimental data.
Compared with p2, the range of LAI values in p3 was further limited to LAI range of 0-5m?m™. Changes of parameter range in p1, p2,
and p3 were formatted in bold.

Parameters Set#1 (p1) Set#2 (p2) Set#3 (p3) Distribution
Leaf properties

Ns [1,2.5] [1,2.5] [1,2.5] Uniform
Cab [0,90] [0,90] [0,90] Uniform
Car [0,20] [0,20] [0,20] Uniform
Cant 0 0 0 Fixed
Cbrown 0 0 0 Fixed
Cm [0.001,0.02] [0.001,0.01] [0.001,0.01] Uniform
Cw [0.001,0.05] [0.001,0.03] [0.001,0.03] Uniform
Canopy architecture

ALA [20,70] [20,70] [20,70] Uniform
LAI [0,8] [0,7] [0,5] Uniform
hspot [0.01,0.5] [0.01,0.5] [0.01,0.5] Uniform
Soil adjustment factor

psoil 1 1 1 Fixed
Solar-object-sensor observation geometry

SZA [20,70] [20,70] [20,70] Uniform
VZA 0 0 0 Fixed
RAA [-90,90] [-90,90] [-90,90] Uniform

Notes: leaf mesophyll structure parameter (Ns, unitless), leaf chlorophyll content (Cab, ug cm™), leaf carotenoid content (Car, pg cm™), leaf anthocyanins
content (Cant, ug cm™?), leaf brown pigment (Cbrown, unitless), leaf water content or leaf equivalent water thickness (Cw, g cm™), leaf dry matter content
(Cm, g cm™), average leaf inclination angle (ALA, degree), leaf area index (LAI, m* m?), hot-spot parameter (hspot, m m™), soil adjustment factor (psoil,

unitless), solar zenith angle (SZA, degree), viewing zenith angle (VZA, degree), relative azimuth angle (RAA, degree).

datasets (Table 2). Set#1 represented a very broad range of
parameter values for leaf and canopy properties of wheat,
which were summarized in a review paper [42]. In Set#2,
parameter inputs for Cm, Cw, and LAI were limited to nar-
rower ranges based on observed values from Expl6 and
Exp19. Sensitivity analysis of PROSAIL indicated that can-
opy reflectance in NIR range can be affected by variation
of LAI or Cm alone but not Cw [8], but that interactions
among parameters can also alter canopy reflectance in NIR
range [43]. Calculating the difference of canopy reflectance
caused by changing Cm from 0.001 to 0.01 at specific levels
of Cw (ie., 0.01, 0.02, 0.03) by holding other parameters to
their average values, our results showed that the difference
of canopy reflectance in NIR range increased with increasing
Cw level and independent to soil background (Figure S5).
The range of LAI values in Set#3 was further limited to
LAI range of 0-5m”m™ as (i) LAI rarely exceeds 5 m* m™
in most situations in the Australian wheatbelt, and (ii) LAI
estimation based on reflectance are difficult for closed
canopies with high LAI in natural conditions or even in
simulations (Figure S6). Overall, observed LAI was less
than 5 m> m™ for over 90% of the samples in the two field
experiments (i.e., 99% in Expl6 and 93% in Expl9). VZA
was fixed to zero as the images were captured under nadir
view and camera distortion correction was applied in
image processing to obtain orthoimages. The ranges of SZ

A and RAA were determined based on practical UAV
phenotyping time (i.e., 10:00 to 14:00), day of year
throughout the potential wheat growth season (April to
December), and the range of latitudes across the Australian
wheatbelt. There are two additional considerations: (i) the
value of hspot defined here is only used when VZA is
equal to SZA in which condition the hspot effect occurs;
otherwise, hspot is reset to 0; (ii) the RAA is equal to SAA
when VZA =0 in which condition the changes of RAA will
not alter reflectance, and RAA can be directly set to a
constant value.

The reflectance of soil background is determined by the
local geology and the wetness of the soil. In this study, the
soil background was assumed to be a Lambert reflector (with
the same reflectance independent to viewing angles) as the
prediction of LAI would be made with the RFR model
trained over synthetic dataset generated from PROSAIL
(see details below). In PROSAIL, an adjustment parameter
(psoil), ranging from 0 to 1, is used to adjust the soil reflec-
tance based on soil wetness. PROSAIL provides a default soil
background, with standard soil reflectance under wet and
dry conditions. The soil reflectance for two field experiments
was measured with an ASD FieldSpec Spectroradiometer
(https://www.malvernpanalytical.com/asd) at sowing dates
before (dry condition) and after (wet condition) irrigation,
and spatial variations of soil background were assumed to
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be negligible based on inspection of variation in exposed soil
reflectance in alleyways and paths across the field. To sim-
plify the model parameterization, the psoil was fixed to 1
through all simulations as the soil surface was dry at actual
flight times. The reflectance of three soil types was used in
this study for generating synthetic datasets. Those were (i)
the default soil from PROSAIL and measured soil reflectance
for (ii) Exp16 and (iii) Exp19 (Figure S4).

To make our proposed LAI estimation method more
generic to potential soil types and independent to ASD data,
we investigated the possibility to retrieve soil characteristics
from bare soil pixels in the multispectral images. In addition
to the wetness factor (psoil) used to mix the wet and dry soil,
the possible variation of soil background reflectance can be
accounted for by a multiplicative brightness factor (asoil)
[42]. Thus, the reflectance of a particular soil (Rsoil) with
specific wetness and brightness relative to the default soil
provided in the PROSAIL model can be calculated as:

Rsoil = asoil x (psoil x Rsoil,, + (1 = psoil) x Rsoil,,, ), (1)

where Rsoil,, and Rsoil,, represent the reflectance of default

soil under dry and wet conditions, respectively. Based on this
hypothesis, we proposed an approach to estimate the psoil
and asoil by minimizing the objective function (f) below:

f=min {Z (asoil X (psoz’l X Rsoil g, ;)

(2)
+ (1 = psoil) x Rsoilwet(i)) - Rsoilobs(i)> },

where Rsoil ), Rsoil,,y(;), and Rsoil,, ;) represent the default

dry soil reflectance, the default wet soil reflectance, and the
observed soil reflectance of the i band of sensors and cam-
eras. With the proposed soil calibration approach, the simu-
lated soil reflectance (with 1-nm interval in 400-2500 nm) of
two experiments was provided by adjusting default soil reflec-
tance based on Eq. (1) with fitted values of asoil and psoil,
which were obtained by minimizing the objective function
Eq. (2) between resampled band reflectance of default soil
and observed band reflectance retrieved from bare soil pixels
of UAV multispectral images.

A subset consisting of 40000 combinations of PROSAIL
input parameters was randomly sampled from the defined
parameter spaces of Set#1, Set#2, and Set#3 (Table 2). These
input combinations were then combined with specific soil
reflectance to run PROSAIL to simulate canopy reflectance.
Nine datasets corresponding to the reflectance of five bands
were generated for the three parameter sets (pl, p2, and p3
for Set#1, Set#2, and Set#3, respectively) and the reflectance
of three types of soil (s1, s2, and s3 for the soils of the default,
Exp16, and Exp19, respectively). The nine datasets are named
as Dplsl, Dpls2, Dpls3, Dp2sl, Dp2s2, Dp2s3, Dp3sl,
Dp3s2, and Dp3s3. Distinguished with soil reflectance mea-
sured with ASD in two experiments (i.e., s2 for Exp16, s3 for
Exp19), the simulated soil reflectance retrieved with the pro-
posed soil calibration approach was named as s2 * for Exp16
and s3 = for Exp19, respectively. These two types of simulated
soil reflectance were then used to generate another six synthetic

datasets (i.e., Dpls2 %, Dpls3 *,Dp2s2 * , Dp2s3#,Dp3s2x,
Dp3s3 ) (used for training models) to verify this calibration
approach’s applicability in practical LAT estimation.

2.4. Estimations of LAI with Random Forest
Regression Models

2.4.1. Model Training. Random forest (RF) is an ensemble
machine learning method based on decision tree algorithms.
The final prediction is the average of predictions from mul-
tiple decision trees (base learners), trained on different sub-
sets of the same dataset with the aim of minimizing
overfitting by individual base learners [44]. Here, for the
model training, the predictive variables of a random forest
regression (RFR) model are the reflectance of five bands
and LAI is the response variable. Both reflectance and LAI
were normalized with the zero-mean normalization
approach to prevent any scaling issues. The mean squared
error (MSE) was used to evaluate the model performance
during training. Each dataset was randomly split into two
subsets: 75% (30,000 samples) as training set and 25%
(10,000 samples) as test set. For clarity, models were named
as the dataset used for training with, e.g., “Mp1sl” represent-
ing the model trained on “Dpls1” dataset (Table S1).

To increase the inter-individual differences between base
learners, bootstrap sampling was used to add sample distur-
bance and the maximum feature number was set to
“max_features = log 2(n_features)” to add attribute distur-
bance (here n_features =5, corresponding to the five band
reflectance). A set of values for (i) the number of base
learners (n_estimators of 5, 50, 100, 200, 300, 400, 500,
1000) and the minimum number of samples required to be
at a leaf node (min_samples_leaf of 1, 5, 10, 15) were tested
to find the optimal hyperparameter combination of RFR.
The hyperparameter tuning was only conducted on training
model “Mplsl” and the selected optimal hyperparameter
combination was used for all other 8 models in later analysis.
During the process of tuning hyperparameters, the training
set (“Dplsl”) was randomly divided into training and tun-
ing set and 3-fold cross-validation was conducted, which
indicated model performance reached stability when n_
estimators was up to 200, with min_samples_leaf = 1 result-
ing in the best accuracy (over the tuning set). The RFR
model was implemented with Python 3.7.2 using the scikit-
learn open-source machine learning library (V 0.24.2,
https://scikit-learn.org/stable/).

2.4.2. Model Evaluation. The RFR models trained on syn-
thetic datasets (as shown in Section 2.3.1) were used to make
predictions (i) for “out-of-sample” synthetic data (i.e., the
test sets) to evaluate the theoretical performance and (ii)
for experimental data to evaluate the practical performance
(Table S1).

A major aim of phenotyping in breeding is to capture the
changing pattern of the LAI curve over time as well as vari-
ations in LAT caused by varying genotypes and management
practices. Thus, correlation coefficient was used to evaluate
model performance, ie., Pearson’s correlation coefficient
(r) to evaluate the correlation between the observation
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FiGure 4: Known LAI against LAI predicted with RFR models trained on synthetic datasets for respective theoretical test datasets (n
=10,000) (Table S1). Each model was trained and tested on independent subsets of the synthetic dataset that was produced by PROSAIL
with a specific parameter range (p1, p2) and soil (s1, s2, s3). Known LAI corresponding to input LAI values used to run PROSAIL and

generate the synthetic datasets.

and its prediction, and Spearman’s rank correlation coeffi-
cient (r,) to evaluate the rank correlation. Pearson’s correla-
tion coefficient (r) indicates the degree to which the
movement of observed (or known) LAI is captured in pre-
dicted LAI, while the Spearman rank correlation coefficient
(r,) tells the rank correlation between them. The determina-
tion coefficient (R?) measures the ability of RFR model to
predict LAI indicating the proportion of the variance in
observed (or known) LAI can be explained by predicted
LAT in the linear regression setting. Both root mean squared
error (RMSE) and RRMSE (a ratio of RMSE divided by the
mean of observed (or known) LAI) measure the prediction
accuracy of RFR model, indicating the average absolute and
relative error between the known (or observed) LAI and its
prediction retrieved from RFR model, respectively. All met-
rics were calculated in R 3.6.0.

Each type of synthetic dataset (used to train RFR model)
was sampled from the entire parameter space multiple times,
resulting in varying subsets equivalent to “replicates” (each
with 40,000 samples). Only results from the first sampling
were presented below as models trained on different repli-
cates had very similar performances (data not shown).

3. Results

3.1. Model Theoretical Performance of LAI Estimation on
Synthetic Data. The theoretical performance of RFR models
trained on synthetic PROSAIL datasets was first evaluated
for the synthetic test set (i.e., out-of-sample set). Theoretical
performance of models trained on synthetic datasets with
varying soil reflectance (i.e., Mplsl, Mpls2, and Mpls3)
was very similar when evaluated for independent subsets of

the synthetic data they were trained for, with r of
0.84~0.86, R? of 0.71~0.74, RMSE of 1.18~1.22m’m™, and
RRMSE of 29~31% (Figures 4(a)-4(c)). Less accurate esti-
mations were found when testing models with test sets from
other soils, with additional overestimation for LAI <2
(Figures 4(d) and 4(h)) in which range it was less likely to
be overestimated if testing on the same soil (Figure 4(a)).
For instance, R? of “Mpls1” was reduced from 0.74 for the
same soil (Figure 4(a)) to 0.59~0.62 for other soils
(Figures 4(d) and 4(h)). This indicates that, theoretically,
RFR models can achieve good estimation accuracy of LAI
for different soil types. Narrowing parameter ranges (replac-
ing pl with p2) increased r from 0.84~0.86 to 0.91~0.92,
increased R* from 0.71~0.74 to 0.83~0.84, reduced RMSE
from 1.18~1.22m’*m? to 0.84~0.92m’m>, and reduced
RRMSE from 29~31% to 23~24% (Figures 4(e)-4(g)). All
models tended to overestimate LAI for 2 < LAI < 5 and
underestimate LAI for LAI > 5 irrespective of the parameter
set or soil used.

The model performance presented in Figure 4 was fur-
ther evaluated in more detail for three LAI levels: LAI < 2,
2 < LAI < 5, and LAI > 5 (Figure S7). As expected, the
RMSE increased with increasing values in LAI level, while
the RRMSE decreased with increasing values in LAI level.
The values of r and R* decreased when LAI changed from
“LAI > 2” to “2 < LAI < 5” and dropped to a low value (r
<0.2, R?<0.05) when LAI changed to “LAI > 5.” Hence, the
RFR model has a low probability to correctly predict LAI
for LAI > 5, even though the estimation error remained
relatively small.

An overestimation of LAI was observed for 2 < LAI < 5
(Figure 4). Such overestimation was likely due to that the
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FIGURE 5: Observed LAI against predicted LAI for Expl16 (a, b, ¢, d, ) and Exp19 (f, g, h, i, j) from “RFR” method. In (a, d, f, i), the two
models in the same subfigure were trained on synthetic datasets varying in parameter range: red symbols correspond to a wider range
(p1), while blue symbols correspond to a narrower range (p2). In (b, ¢, g, h), the two models in the same subfigure were trained on
synthetic datasets varying in soil characteristics: red symbols correspond to default soil from the PROSAIL model (s1), while blue
symbols correspond to soil measured during the experiments (s2, s3). In (e, j), the two models in the same subfigure were trained on
synthetic datasets varying in LAI range: red symbols correspond to PROSAIL input LAI values ranging from 0 to 7 m* m™ (p2), while
blue symbols correspond to PROSAIL input LAI range of 0-5m”m™ (p3). Exp16 had 252 data points (251 data points with LAI<5) and
Exp19 had 144 data points (130 data points with LAI<5). All statistical metrics are summarized in Table 3.

RFR model tried to compensate for the underestimation of
LAI for LAI > 5 to achieve a global optimization during
the training phase. To test this hypothesis, LAI values were
only considered up to 5 m* m> in models Mp3s1, Mp3s2,
and Mp3s3. These models were compared to the equivalent
models Mp2sl, Mp2s2, and Mp2s3 that considered input
LAI up to 7 m* m > Results indicated that Mp2s1 outper-
formed Mp3sl on the same test set (Dps3sl_test, 0 < LAI
< 5), with similar r, smaller RMSE and RRMSE, and more
samples close to the 1:1 line (Figure S8a, b). The overall
improvement for O<LAI<5 was mainly achieved by
improving LAI estimation in the range of 2-4, without no
apparent improvement for LAI<2, while the estimation of
LAI in the range of 4-5 changed from overestimation to
underestimation (Figure S8c, d). Similar results were found
for the other two tested soils (i.e., Mp2s2 vs Mp3s2; Mp2s3
vs Mp3s3) (Figure S8(e)-S8(i)).

3.2. Overall Estimation of LAI for Different Field
Experiments. The performance of the RFR models was also
tested against experimental data (Figure 1). Firstly, RFR models
trained on synthetic datasets generated with “default soil” (i.e.,
Mp1lsl, Mp2sl, and Mp3s1) were tested against data from both
experiments Expl6 and Expl9. Secondly, models trained on
synthetic datasets generated with Expl6 soil (ie., Mpls2,
Mp2s2, and Mp3s2) were tested against Expl6 data; and
thirdly, models trained on synthetic datasets generated with
Exp19 soil (i.e., Mp1s3, Mp2s3, and Mp3s3) were tested against
Exp19 data.

Practical performance of RFR models on experimental
data (with original reflectance), also referred as the “RFR
method,” is shown in Figure 5 and Table 3. Without correcting
soil reflectance (i.e., using the default soil s1), model Mplsl
could not systematically make a good estimation of LAI from
canopy reflectance captured in the field, with a good correla-
tion for Expl6 (r=0.79), a poor correlation for Expl9 (r
=0.43), and a systematic overestimation of LAI especially for
LAI<2 (Figures 5(a) and 5(f); Table 3). The estimation of
model accuracy could be improved by limiting ranges of some
key parameters (i.e., Cm, Cw, LAI) based on field measure-
ments when generating synthetic datasets: value of r for
Expl9 increased from 043 (Mplsl) to 0.64 (Mp2sl)
(Figure 5(f); Table 3). Replacing p1 with p2 could systemati-
cally reduce estimation error in LAI range of 0-7 (shifting
datapoints down closer to 1:1 line) but could not effectively
correct the overestimation for low LAT (LAI<2) (Figures 5(a)
and 5(f)). In contrast, correcting soil reflectance with local soil
characteristics appeared to be a valid means to improve
models’ performance, as this substantially increased r and
decreased RMSE for two both experiments (Table 3), espe-
cially during early development when crops only cover a small
part of the soil (Figures 5(b), 5(c), 5(g), and 5(h)). Given soil
reflectance in the synthetic dataset was corrected with local
soil data, the improvements via limiting parameter ranges
were limited (Figures 5(d) and 5(i); Table 3).

Analysis of synthetic data from Section 3.2 indicated
that narrowing LAI range to O<LAI<5 could effectively
improve LAI estimation in the range of 2-4 (Figure S8).
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TasLE 3: Estimation accuracy (r, R?, RMSE, RRMSE) of LAI predicted with three studied methods for two experiments (Exp16, Exp19) for
the full range of LAI or only LAI <=5. The three methods are “fIPAR method,” using Beer-Lambert to predict LAI from the fraction of
vegetation coverage with setting K to a constant (0.5); “RFR method,” using random forest regression models trained on synthetic
dataset varying in parameter range (pl, p2, p3) and soils (s1, s2, s3) to predict LAI from original reflectance; “RFR+LCB method,” using
the same models to predict LAI from background-corrected reflectance. “(LAI<5)” denotes only experimental data limited to 5 m* m™

were used.
Experimental data Method Model r R? RMSE (m’m™) RRMSE (%)
fIPAR / 0.95 091 043 30
RFR Mplsl 0.79 0.63 151 106
RFR+LCB Mplsl 0.90 0.81 0.60 Y
Expl6 RFR Mpls2 (Mpls2) 0.92 (0.92) 0.85 (0.85) 0.54 (0.56) 38 (39)
(n=252) RFR+LCB Mpls2 (Mpls2#) 0.94 (0.93) 0.89 (0.87) 0.45 (0.55) 31 (39)
RFR Mp2sl 0.75 0.56 147 104
RFR+LCB Mp2sl 0.90 0.80 0.60 4
RFR Mp2s2 (Mp2s2+) 0.94 (0.94) 0.89 (0.89) 0.46 (0.40) 33 (28)
RFR+LCB Mp2s2 (Mp2s2+) 0.95 (0.95) 0.91 (0.90) 0.36 (0.40) 25 (28)
fIPAR / 0.83 0.69 1.13 40
RFR Mplsl 0.43 0.18 1.58 57
RFR+LCB Mplsl 0.54 0.29 1.31 47
Eleli » RER Mpls3 (Mpls3+) 0.80 (0.81) 0.63 (0.65) 0.93 (1.04) 33 (37)
RFR+LCB Mpls3 (Mpls3s) 0.78 (0.80) 0.61 (0.64) 0.93 (1.05) 33 (38)
RFR Mp2sl 0.64 041 1.17 4
RFR+LCB Mp2sl 0.67 0.46 1.03 37
RFR Mp2s3 (Mp2s3+*) 0.80 (0.84) 0.64 (0.70) 0.84 (0.81) 30 (29)
RFR+LCB Mp2s3 (Mp2s3+*) 0.80 (0.83) 0.63 (0.69) 0.86 (0.84) 31 (30)
fIPAR / 0.96 091 0.42 30
f;‘EI;S%Ak:S) RFR Mp3s2 (Mp3s2+) 0.95 (0.95) 0.91 (0.91) 0.47 (0.41) 33 (29)
RFR+LCB Mp3s2 (Mp3s2+) 0.96 (0.96) 0.91 (0.91) 0.37 (0.41) 26 (29)
fIPAR / 0.78 0.60 1.05 43
?;Ellgo()mk:s) RFR Mp3s3 (Mp3s3+#) 0.80 (0.82) 0.64 (0.67) 0.61 (0.64) 25 (26)
RFR+LCB Mp3s3 (Mp3s3+) 0.79 (0.82) 0.62 (0.67) 0.64 (0.67) 26 (27)

Consistent with theoretical results, RFR models trained
with synthetic datasets with LAI in 0<LAI<5 rather than
0<LAI<7 could result in more accurate estimation for LAI
in the range of 2-4 for experimental data, without no
apparent improvements for estimation of LAI below 2,
but with underestimation for LAI above 4 (Figures 5(e)
and 5(j)). However, these improvements on experimental
data were less obvious than theoretical improvements on
synthetic data.

3.3. Comparing Estimation Accuracy of LAI Predicted with
Varying Methods. The values of LAI predicted with “RFR
method” were compared with corresponding values pre-
dicted with “/TPAR method” and “RFR+LCB method”
(Figure 6; Table 3). The “fIPAR method” was not able to sys-
tematically make accurate estimations of LAI for two field
experiments, with a large range of residual error ranging from
-3 to 4 m* m™* for Exp19 (Figure 6). In contrast, the “RFR”
method could more robustly achieve accurate estimation of
LAI up to 5 m* m™ (Figure 6), reducing residual error in the
range from -2 to 2 m” m” for both field experiments
(Table 3). Applying background correction on original reflec-

tance map, the “RFR+LCB method” further improved estima-
tion accuracy of LAI through improving estimation of LAI
below 2 m? m™ (Figure 6), reducing RMSE and RRMSE of
0.1 m*m™ and 8% for Expl6 (Table 3).

Overall, these findings indicated that a constant value of
extinction coeficient (K =0.65) was insufficient to accurately
predict LAI in field conditions, as K was site-specific and
sensitive to environmental changes (Figure S9). By
contrast, the “RFR method” could effectively predict LAI at
plot level under the field conditions of this study
(Figure S10), given RFR models were trained on synthetic
datasets with local soil background (s2 for Expl6, s3 for
Expl9) regardless of parameter sets (p1, p2, p3). However,
for sparse canopy with soil being obviously exposed (e.g.,
wheat canopy at tillering stage in which plants are small),
the background correction of reflectance map is needed to
achieve accurate LAI estimation as presented in “RFR+LCB
method” which requires accurate classification of
vegetation and background. The “RFR method” can
achieve accurate estimation for LAI up to 7 m®* m™> (r
=0.80, R’=0.64, RMSE=0.84m’m™, RRMSE=30%) for
Expl9, while the accurate estimation of LAI (r=0.95, R?
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FIGURE 6: Observed LAI against predicted LAI (a, b), and observed LAI against predicted residual (c, d). LAI was predicted with three
methods, i.e., Method “fIPAR,” using Beer-Lambert to predict LAI from the fraction of vegetation with setting K to a constant (here K
=0.65 for wheat); Method “RFR,” using random forest regression models trained on synthetic datasets to predict LAI from original
reflectance; Method “RFR+LCB,” the same RFR model to predict LAI from background-corrected reflectance. RFR models used in “RFR
method” and “RFR+LCB method” were Mp2s2 and Mp2s3 for Expl6 and Expl9, respectively. Residual error corresponds to the
difference of observed LAI subtracted from predicted LAI All statistical metrics are summarized in Table 3.

=0.91, RMSE=0.36 m*m, RRMSE=25%) for Expl6 was
achieved from “RFR+LCB method” (Table 3).

3.4. Mapping Spatiotemporal Variation of LAI for Different
Phenotyping Dates. The predicted LAI retrieved with “RFR
+LCB method” for each plot within the four blocks is shown
in Figure 7, which presents the spatiotemporal variation of
plot-scale LAI during different growing stage for two exper-
iments. Within each map, the four blocks correspond to the
four water-nitrogen treatments, i.e., IHN (top left), RHN

(top right), ILN (bottom left), and RLN (bottom right).
The predicted LAI accurately captures the increasing trend
of observed LAI along with time from tillering to flag leaf
stages for Expl6 (Figures 7(a)-7(c)) and from start elonga-
tion to flag leaf stages for Expl9 (Figures 7(d) and 7(e)).
Additionally, the predicted LAI clearly presents the differ-
ence in observed LAI under different treatments and how
this spatial pattern changes with time. At the tillering stage,
there is no obvious difference in LAI among four treatments
(Figure 7(a)). At the elongation stage, effects of different
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FIGURE 7: Predicted LAI retrieved with “RFR+LCB method” from UV A-based multispectral images on different dates for two experiments.
The RFR models used “RFR+LCB method” were Mp2s2 and Mp2s3 for Exp16 and Exp19, respectively. The number shown on the top of the
map indicates the observed LAI for the specific plot on the corresponding date. For each subfigure, only 84 (for Exp16) and 72 (for Exp19)
plots have observed LAI as biophysical measurements were only conducted in these plots (referring to Figure S3). Row and Column are used

to locate the position of the plot in the field.

water treatments can be captured in predicted LAI: values of
predicted LAI appear slightly higher under rainfed treatment
than under irrigated treatment for Exp16 as the high rainfall
in early season (Figure 7(b)) while LAI is lower under
rainfed treatment than under irrigated treatment for Exp19
(Figure 7(d)). At the flag leaf stage, effects of different nitro-
gen treatments as well as water treatments can be identified
simultaneously: values of predicted LAI under high-nitrogen
treatments are higher than those under low-nitrogen treat-
ments for both Expl6 (Figure 7(c)) and Exp19 (Figure 7(e)).
All comparisons were significant at 0.05 level. The statistical
metrics between predicted and observed LAI for different
experiments can be found in Table 3 and detailed analysis
for different treatments will be demonstrated in the following
sections.

3.5. Predicting LAI Differences within Growing Stages or
Treatments. In this section, model performance was
segmented by growing stages to identify (or predict) the
intra-factor difference for different growing stages
(Figures 8(a)-8(e)), ie., investigate LAI differences across
varying genotypes and treatments at specific growth stages.
Likewise, segmentation analyses were performed for factors
of genotype, density, and water-nitrogen treatments
(Figures 8(f)-8(z)). Only performance was evaluated for

“RFR+LCB method” with Mp3s2 (predicting on Expl6)
and Mp3s3 (predicting on Expl9), which theoretically
overcome the overestimation of LAI in 2<LAI<5. Correla-
tion coefficient (r) was used here for evaluation on using
over 90% samples from field experiments in order to eval-
uate if the movement of observed LAI was well captured
in predicted LAI retrieved from RFR models (results of
other metrics like R?>, RMSE, and RRMSE referring to
Table S2).

There was an increased r between observed and
predicted LAI from tillering (r=0.58, Figure 8(a)), stem
elongation (r=0.67, Figure 8(b)), to flag leaves (r=0.82,
Figure 8(c)) for Exp16, while the r was relatively stable from
stem elongation (r = 0.69, Figure 8(d)) to flag leaves (r=0.73,
Figure 8(e)) for Exp19. This indicated our method was not
sensitive enough to distinguish the relative difference in
LAI among different treatments (ie., genotype, density,
water-nitrogen application) at the very beginning of growth
development (e.g., tillering, LAI<0.5), as models’ prediction
error might be larger than the variation of observed LAI
caused by treatments. The higher planting density for
Expl9 resulted in more centralized distribution of LAI to
high values, which reduced the variation of observed LAI
caused by other factors, leading to a decreasing performance
of our method (with  reducing from 0.88 to 0.75 and 0.63
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when increasing density from 75 to 150 and 300)
(Figures 8(p)-8(r)). For Exp16, our method could correctly
predict the intra-factor difference for different genotypes
(Figures 8(f)-8(0)) or different water-nitrogen manage-
ments (Figures 8(s)-8(z)), with a high r above 0.93 between
observed and predicted LAI under all situations. However,
the intra-factor difference for Beaufort (Figure 8(m)) or
low nitrogen managements (Figures 8(w) and 8(x)) was
not well distinguished for Expl9. In addition, the RRMSE
achieved from segment analysis under all specific situations
was relatively stable, varying in 21~33% depending on
situations analyzed (Table S2).

3.6. Predicting LAI Differences among Growing Stages or
Treatments. Following segmentation analyses for intra-
factor difference, this section focused on evaluating the per-
formance of the same two models (i.e., Mp3s2 and Mp3s3)
for “RFR+LCB method” in predicting inter-individual differ-
ence for different growing stages (Figures 9(a) and 9(b)), i.e.,
investigate the rank of averaged LAI among varying growing
stages due to the cumulative effects of various treatments.
Likewise, rank correlation analyses were performed for vary-

ing levels of genotype, density, and water-nitrogen treat-
ments (Figures 9(c)-9(f)).

The rank of averaged predicted LAI for varying growing
stages for two experiments was the same as those of average
observed LAI (Figures 9(a) and 9(b)), indicating our method
could correctly detect dynamic changes of LAI at early stages
(i.e., from tillering to flag leaf) under cumulative effects of
various treatments. The ranks of averaged observed LAI
among varying density treatments in Expl9 were also pre-
dicted completely correctly (Figure 9(e)). However, our
method failed to predict the rank of averaged observed LAI
for some genotypes for Expl6 (Figure 9(c), between which
the average observed LAI was not significantly different at
0.05 significant level (Table S3). Our method could not
completely predict the rank of averaged observed LAI for
water-nitrogen treatments either (Figures 9(f) and 9(g)),
which was due to the insignificant difference of averaged
observed LAI between RHN and IHN for Exp16 (Figure 9(f
); Table S3) and due to the inconsistent prediction tendency
between ILN and RHN (i, overestimation for ILN
(Figure 8(x)) and underestimation for RHN (Figure 8(y)))
for Exp19 (Figure 9(g)). In other words, our method could
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«  »

Density =75) within each experiment. The “r,

represents the rank correlation coefficient between average observed LAI and average

predicted LAI for a specific group (e.g., DAS, Density) within an experiment.

correctly predict the rank of averaged LAI for varying group
levels of a specific group, given the average values of
observed LAI were significantly different and prediction
tendency was consistent among levels.

3.7. Application of Simulated Soil Characteristics Retrieved
from Multispectral Images. To demonstrate the simulation
accuracy of the proposed soil calibration approach, it was first
applied to simulate soil reflectance of two trials based on soil
band reflectance resampled from ASD data. The simulated
band reflectance fitted with the proposed soil calibration
approach was highly correlated with actual band reflectance
measured with ASD (Figure S11(a)), with a relative bias for
all bands within 5% except for the blue band (16%)
(Figure S11(b)). This indicated that this proposed approach
could provide a simulated soil reflectance approximated to
the actual soil reflectance of targeted bands. Subsequently,
this approach was used to simulate soil reflectance based on
soil band reflectance retrieved from bare soil pixels of UAV
multispectral images. Likewise, the simulated soil reflectance
for all bands was highly correlated with their observations
retrieved from UAV images (Figure S11(c)). In addition, the
simulated reflectance in 400-900 nm, based on fitted soil
factors (i.e., asoil and psoil) retrieved from UAV images, was
alike for the two trials and slightly lower than their
counterparts measured on the ground with ASD FieldSpec
(Figure S11(d)). The high similarity of the two simulated soil
reflectance was mainly due to their observations for five
bands being quite similar (especially from UAV images) and
partly resulted from the fitness errors.

Corresponding to soil reflectance measured with ASD
(s2 for Expl6, s3 for Exp19), the simulated soil reflectance
retrieved from UAV images with the proposed approach
was named as s2 * for Expl6 and s3 * for Expl9. The

estimation accuracy of LAI predicted with models trained
over synthetic datasets with simulated soil reflectance is pre-
sented in Figure S12 and Table 3. Compared with estimation
accuracy of LAI predicted with models using measured soil
reflectance, the models using simulated soil reflectance
achieved similarly high accuracy for LAI estimation
independent of the use of parameter sets (pl, p2, p3),
especially with “RFR+LCB method” (Table 3). In
particular, the models using simulated soil reflectance
resulted in even smaller errors for estimation of LAI under
2 m? m? in “RFR” method (Figure S12(a), S12(c), S12(e)).
This was likely due to the simulated soil reflectance being
more similar to that soil reflectance captured from UAYV,
as the simulated soil reflectance was calibrated with the
reflectance of soil pixels from UAV images while measured
soil reflectance was collected on the ground with ASD.

4. Discussion

4.1. A Method to Estimate LAI Using Canopy Reflectance.
Our study proposed a method, named here “RFR+LCB,”
which enables accurate estimation of LAI particularly in
the range from 1 to 5, from canopy reflectance in field
conditions. Three factors are mainly affecting the practical
performance of the method, ie., parameter ranges, soil
reflectance, and vegetation/background binary classification.
Narrowing parameter ranges (changing pl to p2)
theoretically allows parameter combinations changing in a
smaller subset of the original parameter space, which
reduced the problem complexity and then resulted in our
study in better model performance (Figure S7). In practice,
approximating ranges of parameters to their actual ranges
can increase the similarity of data distribution between
training synthetic data and experimental data. Thus,
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models trained on synthetic data presented were improved
when narrowing the parameter ranges according to the
studied experimental conditions: p2 models outperformed
pl models for estimation of LAI up to 7 m* m™, while p3
models outperformed p2 models for estimation of LAI up
to 5 m*> m? (Figure 5; Table 3). This conclusion was
confirmed in other hybrid methods in which LAI
estimation was improved from limiting parameter ranges
to field observations [31, 45, 46]. However, the effects of
parameter ranges on estimation accuracy were relatively
small compared to the other two factors (Table 3), as these
three parameter sets were within the general range of
corresponding traits of wheat (Table 2).

The setting of soil reflectance also affects the similarity
between training synthetic data and experimental data, since
simulated canopy reflectance is co-determined by leaf and soil
reflectance in PROSAIL and soil reflectance serves as the lower
boundary [36]. Soil reflectance contributes more to canopy
reflectance for sparse canopies than for dense canopies [43,
47], as shown also in our study, ie., replacing default soil
reflectance (s1) with measured soil reflectance (s2, s3) for syn-
thetic dataset generation resulted in larger improvement of
LAI estimation for LAI<2 than for LAI>2 in two field experi-
ments (Figure 5(b), 5(c), 5(g), and 5(h); Table 3). This finding
was consistent with an early theoretical study which also
reported sensitivity of canopy reflectance to soil background
was not ignorable for LAI<2 and but had small effects for
LAI>2 [41]. Although the importance of soil reflectance in
simulating canopy reflectance is well known, the soil reflec-
tance spectra used in PROSAIL were rarely mentioned in pre-
vious studies, which rarely considered LAI less than 2 m? m™
[32]. However, the LAI rarely exceeds 5 m? m? in most situa-
tions in the Australian wheatbelt in which the wheat canopy
has LAI<2 for at least one month (as in our study). In sandy
soils, the LAI may rarely exceed 2 m*> m™ during the whole
growing season under low rainfall rainfed conditions, e.g., at
Merredin in Western Australian. In this study, we thus
investigated the effects of soil reflectance both in theory and
in practice and were intended to raise more attention for
utilization of soil reflectance when applying PROSAIL to
retrieve LAL

The background correction of reflectance via vegetation
and background binary classification was to tackle the
difference between modelling and observation. The soil
reflectance used in PROSAIL assumes to be the reflectance
of bare soil background [36, 40]. In fact, the background
pixels might be a mixture of soil, plant residuals, and weeds
instead of pure soil, which resulted in predicted LAI away
from the expected value. A prior vegetation-background
classification was proposed to be used to eliminate back-
ground effects [28], which was used to aid background cor-
rection to improve LAI prediction in our study (Figure 6;
Figure S§10). For the same RFR model (e.g, Mp3s2 or
Mp3s3, the “RFR+LCB method” effectively corrected the
overestimation issues from the “RFR method” for
estimation of low LAI corresponding to sparse vegetation
coverage (Figure 6). The success of “RFR+LCB method”
somehow depends on the binary classification accuracy,
raising requirements for classification algorithm and image
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spatial resolution (Figure S10; Table 3). From this aspect,
the “RFR+LCB method” might be able to predict green
LAI at late stages in theory, given heads and senescence
leaves were correctly classified into background class.
Previous analysis indicated that the background correction
is needed for LAI prediction at early stage with sparse
canopy. In this study, the NDVI threshold classification
was chosen because the threshold of 0.5 was proved to
effectively distinguish green leaves and soil when plants are
small [4]. In theory, the mixed pixels will increase while
pure soil pixels will decrease as image spatial resolution
decreases, which hinders the accurate classification of
vegetation and background [23] and therefore reduce the
effectiveness of “RFR+LCB method.” This to some extent
presents the applicability of UAV-based phenotyping with
high spatial resolution in accurate prediction for low LAI

4.2. Potential of the Method for Breeding. LAI can potentially
aid genotype selection and adaptation assessment in
breeding programs, and many indirect methods predicting
LAI have been proposed [12, 28, 48]. One simple method
is to calculate LAI from the fraction of intercepted photo-
synthetically active radiation (fIPAR) using Beer-Lambert
Law with a constant extinction coefficient (K) estimated
based on experience and prior observations. However, our
study indicated that this method (ie., “fTPAR” method)
could not systematically achieve accurate estimation of LAI
across growing stages for varying genotypes under varying
treatments (Figure 6; Table 3). We observed a negative rela-
tionship between k and seasonal changes in LAL ie., k
decreased with increasing LAI (Figure S9), consistent with
previous findings summarized in a meta-analysis [37].
Using K estimates for each field experiment using the
entire datasets (K=0.81 for Expl6, K=0.70 for Expl9)
(assuming LAI was known) did improve LAI prediction
(Figure S9b), which indicated that K was situation-specific.
In fact, a more diverse K value was observed from our field
experiments, varying from treatment to treatment in the
range of 0.3~2.2 (Figure S9(c)).

Empirical models generally can achieve accurate LAI
estimation in field conditions [22, 49] but might be
unsuitable to make predictions in other conditions different
to experimental conditions from which training data were
collected [35]. For example, it was reported that for the same
field experiment, predictive models built from mono-
temporal VIs achieved accurate LAI estimation for wheat
from UAV multispectral images for each phenotyping date
(RRMSE=12~23%), but RRMSE increased to 20~40% and
17~35%, respectively, for models built from multi- and
full-temporal VIs [50]. In contrast, the “RFR+LCB”
synthetic-derived method robustly and accurately predicted
LAI of wheat across growing stages (RRMSE=21~29%) and
contrasting treatments (RRMSE=21~33%) (Table S2),
which is useful for investigating LAI dynamics in breeding
programs including a massive number of genotypes.

Both computationally intensive physical methods and
more efficient hybrid methods are essentially able to
accurately predict LAI under broad conditions [33, 34, 51].
However, these methods may fail to achieve accurate LAI
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estimation from spectral data due to rough spatial resolution
from satellite images [13, 31], insufficient utilization of reflec-
tance information related to VI selection [7], inappropriate
algorithms used for building predictive model [14], or back-
ground and saturation effect [32]. Additionally, our study
investigated an underestimation of LAI for LAI above 4 or
5 m*> m? depending on the condition analyzed (Figure 6,
Figure S10), which was also reported in previous studies
regardless of the methodologies used [32, 34]. This
underestimation problem was documented as a saturation
effect of reflectance and currently no effective methods have
solved it [28]. RFR can provide more robust predictions
and is less prone to overfitting due to its attributes (i.e.,
ensemble mechanism, sample, and attribute disturbance)
[44], which is the main reason for choosing RFR to develop
a predictive model in this hybrid method. In addition to
RFR, there are other machine learning approaches (e.g.,
support vector machine, Gaussian process regression,
neural network) that have been proposed to estimate LAI
[14, 31, 34, 51]. These methods should be able to achieve
competitive accuracy with RFR, given application of the
three solutions proposed in this study, i.e., calibration of
parameter range, soil reflectance, and image soil background.

The simulation of canopy reflectance with PROSAIL in
this study applied the ellipsoidal distribution [52] to describe
the leaf inclination distribution of canopy, so that it can be
parameterized with the average leaf inclination angle
(ALA). It assumes a uniform distribution in azimuth and
at a constant zenith angle ranging from 20° (more
planophile) to 70° (more erectophile), which covers most
situations of possible leaf inclination distribution. Mathe-
matical models in PROSAIL relate LAI and leaf inclination
angle based on gap fraction theory [36, 48]. For canopies
with leaves overlapping that do not simultaneously fulfil
the two conditions (i. no space between adjacent plants
along the same row; ii. no space between rows as seen from
viewing angle), the estimation of LAI based on gap fraction
will be underestimated [2]. For a sparse canopy with very
low LAI<0.3 at tillering stage (no leaves overlapping), the
leaf clumping should not affect LAI prediction. The leaves
start to clump in elongation stage (i.e., can see gaps between
rows but not between plants within rows) where the LAI
may be underestimated for the canopy with obvious gaps
between adjacent plants or rows. For fully extended canopy
which can be treated as randomly distributed in azimuth,
the underestimation of LAI is more due to the saturation
of spectral information. In general, the clumping effect has
larger influence for LAI estimation for canopies of forests
or row crops with large row spacing [2, 48]. The RTM model
(i.e., PROSAIL) used in this study does not consider the
clumping effect. A more detailed description of 3D
distribution of vegetation elements can better account for
the clumping effect on maize canopies, while wheat was
showing only marginal clumping effects [2, 53, 54].

In addition to accurate LAI estimations, the “RFR+LCB
method” showed potential to correctly rank the different
plots in regard to growing stages and treatments (genotypes,
densities, and water-nitrogen managements). This is
potentially useful in breeding programs where rapid but sen-
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sitive field phenotyping methods are needed to discriminate
the seasonal, genotypic, and environmental differences [55,
56]. For the RFR model used in “RFR method” or “RFR
+LCB method,” the only unknown factor (i.e., soil reflec-
tance) can be obtained in advance and ranges of other input
parameters could be determined based on prior knowledge,
which means the RFR model can be built ahead of time.
Even though the measured soil reflectance could not be
obtained due to the lack of related equipment like ASD,
our proposed soil calibration approach provided a generic
way to simulate underlying soil reflectance based on the
reflectance of bare soil pixels from UAV spectral images
and default soil reflectance available in PROSAIL model
(Figure S11). The simulated soil reflectance contributed to
a relatively high-quality synthetic dataset used for the
training of RFR models, which appeared to provide
similarly accurate LAI prediction like that trained over
synthetic ~datasets with measured soil reflectance
(Figure S12). The “RFR+LCB method” therefore shows
potentials to achieve in-season LAI estimation and to
simulate LAI dynamics at early stages before LAI reaches
its maximum (prior to head emergence).

5. Conclusions

This study evaluated the practical ability of predicting LAI
from canopy reflectance captured in field conditions of the
RFR models completely trained from synthetic data generated
by PROSAIL. In addition to the capability of RFR itself to deal
with prediction issues, the practical prediction accuracy of
RFR model largely depends on the similarity between syn-
thetic data (used for training model) and experimental data
(used to evaluate model performance). On the base of ensur-
ing that RFR model is suitable to predict LAI in broad condi-
tions varying in genotypes and treatments across multiple
growing stages, we investigated three solutions (i.e., calibration
of parameter range, soil reflectance, and image soil back-
ground) to improve the LAI prediction accuracy of RFR model
from the aspect of increasing data similarity. A wider variation
in LAI extends model’s application range, but it correspond-
ingly increases the difficulty to make accurate estimation.
The p2 range is suitable to be used to train models that are able
to predict LAI in broad situations with LAI<7, while p3 range
is recommended to be used in models that are designed to pre-
dict LAI under particular situations with LAI<5 (refer to
Table 2 for definition of p2 and p3 ranges). Compared to nar-
rowing parameter ranges, the utilization of local soil reflec-
tance in synthetic data is more effective to improve RFR
model’s prediction accuracy. Optimizing synthetic data via
calibration of parameter range and soil reflectance is a means
of adjusting simulation towards observation, while calibration
of image soil background is to try to adjust observation
towards simulation to increase the data similarity. At early
growing stage when plants are small and canopies are sparse
(LAI < 0.5), the application of background-corrected reflec-
tance map can effectively improve RFR model’s prediction
accuracy of LAL However, the overestimation of LAI for
LAI>5 due to the saturation of spectra information has not
been effectively addressed in our study. In addition, the
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clumping effect is not considered in our research method
framework, and our results did not show obvious underesti-
mation of LAI during this stage. Overall, based on radiative
transfer modelling and machine learning, we developed a pre-
diction model that is able to accurately predict LAI from a sin-
gle data source—UAB-based multispectral images—in field
conditions, given appropriate calibration of parameter range,
soil reflectance, and image soil background.
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