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Emulating Control Arms for Cancer Clinical 
Trials Using External Cohorts Created From 
Electronic Health Record-Derived Real-World 
Data
Katherine Tan1,*, Jonathan Bryan1, Brian Segal1, Lawrence Bellomo1 , Nate Nussbaum1, Melisa Tucker1, 
Aracelis Z. Torres1, Carrie Bennette1, William Capra2, Melissa Curtis1 and Rebecca A. Miksad1

Electronic health record (EHR)-derived real-world data (RWD) can be sourced to create external comparator cohorts 
to oncology clinical trials. This exploratory study assessed whether EHR-derived patient cohorts could emulate 
select clinical trial control arms across multiple tumor types. The impact of analytic decisions on emulation results 
was also evaluated. By digitizing Kaplan–Meier curves, we reconstructed published control arm results from 15 
trials that supported drug approvals from January 1, 2016, to April 30, 2018. RWD cohorts were constructed 
using a nationwide EHR-derived de-identified database by aligning eligibility criteria and weighting to trial baseline 
characteristics. Trial data and RWD cohorts were compared using Kaplan–Meier and Cox proportional hazards 
regression models for progression-free survival (PFS) and overall survival (OS; individual cohorts) and multitumor 
random effects models of hazard ratios (HRs) for median endpoint correlations (across cohorts). Post hoc, the 
impact of specific analytic decisions on endpoints was assessed using a case study. Comparing trial data and 
weighted RWD cohorts, PFS results were more similar (HR range = 0.63–1.18, pooled HR = 0.84, correlation of 
median = 0.91) compared to OS (HR range = 0.36–1.09, pooled HR = 0.76, correlation of median = 0.85). OS HRs 
were more variable and trended toward worse for RWD cohorts. The post hoc case study had OS HR ranging from 
0.67 (95% confidence interval (CI): 0.56–0.79) to 0.92 (95% CI: 0.78–1.09) depending on specific analytic decisions. 
EHR-derived RWD can emulate oncology clinical trial control arm results, although with variability. Visibility into 
clinical trial cohort characteristics may shape and refine analytic approaches.

Contextualizing drug efficacy data from single-arm and small 
randomized clinical trials (RCTs) using robust external data 
sources and analytical methodologies is critical, especially in the 

regulatory approval setting for treatment of diseases that are rare 
or have high unmet medical need.1–3 Trial-based historical exter-
nal comparators or summary trial data from the literature, whereas 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
 Electronic health record (EHR)-derived real-world data 
(RWD) has been evaluated as external comparator cohorts to 
complement clinical trials; however, prior studies focused on 
single tumor types and produced varying results.
WHAT QUESTION DID THIS STUDY ADDRESS?
 For different types of cancer, how do outcomes for patients 
receiving standard treatment (real-world patients) compare 
with patients treated with standard therapy in clinical trials 
(control-arm patients)?
 How do decisions about which real-world patients to in-
clude in the comparison with clinical-trial patients impact these 
results?

WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?
 This study suggests that EHR-derived RWD can emulate 
clinical trial control arms across tumor types, although there 
may be variability in how outcomes compare. Knowing details 
about the clinical-trial patients may be important to identify 
the most appropriate real-world patients for the comparison.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
 This study suggests that evaluations using EHR-derived 
RWD for external comparator cohorts may complement clini-
cal trial results; however, further work is needed to define the 
optimal approach.
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potentially nearly contemporaneous, can be biased due to rapidly 
changing standards of care or underlying patient population dif-
ferences.4 As an alternative, real-world external comparator co-
horts based on real-world data (RWD) have generated significant 
interest. However, much is unknown about optimal creation and 
performance of this approach.

In oncology, RWD have been used to generate evidence for im-
proving patient outcomes, patient safety, and value in cancer care 
delivery.5 Demand for increased trial and drug clinical develop-
ment efficiency (i.e., time and resources) has motivated the evo-
lution of the clinical evidence generation paradigm.6 High-quality 
longitudinal electronic health record (EHR)-derived databases 
from which clinically relevant real-world cohorts can be con-
structed, may provide robust comparisons for clinical trials with 
nonrandomized designs.7

Previous studies have investigated the similarities between re-
sults obtained from traditional RCTs and well-designed studies 
using high-quality EHR-derived RWD.5,8–10 However, such studies 
have focused on specific tumor types and may not be generalizable. 
Broader efforts across multiple tumor types may provide a valuable 
perspective about high throughput approaches and universal analytic 
features vs. disease-specific considerations and modifications. In addi-
tion, as differing analytic design choices have been shown to yield dif-
ferent results from the same data source in comparative effectiveness 
studies, we sought to evaluate the impact of specific analytic decisions 
when constructing real-world comparator cohorts.11

Indeed, confidence in using RWD to support clinical trials has 
been constrained by concerns about appropriate data and methods 
to be used for different contexts.12 For example, changing stan-
dards of care over time, bias due to differences in the underlying 
clinical trial and RWD patient populations, and endpoint choice, 
may impact the recency and relevance of RWD.13 Furthermore, 
inadequate (or infeasible) application of cohort eligibility criteria 
and insufficiently robust analytic methods could exacerbate known 
limitations of RWD.9 In order to apply RWD to construct com-
parator cohorts in support of clinical trials, the data, design, and 
analysis of RWD toward emulating the target trial need to be care-
fully considered.7,14

The objective of this exploratory study was to assess the de-
gree to which longitudinal data from a curated EHR-derived 
de-identified database of patients with cancer could emulate the 
endpoints (overall survival (OS) and progression-free survival 
(PFS)) observed in the control arms of selected oncology clinical 
trials supporting the US Food and Drug Administration (FDA)-
approvals across multiple tumor types. Post hoc, we also evaluated 
the impact of specific real-world cohort construction analytic deci-
sions on observed endpoints.

METHODS
Data sources
This study used EHR-derived data from the nationwide Flatiron Health 
database, a longitudinal, de-identified database containing patient-
level structured data and variables curated from unstructured data via 
technology-enabled abstraction involving trained human curators fol-
lowing standardized policies and procedures.15,16 At the time of this 
study, the de-identified data were derived from ~ 280 US cancer clinics 
(~ 800 sites of care). The majority of patients in the database originate 

from community oncology settings; relative community/academic pro-
portions may vary depending on study cohort (see details of site and pa-
tient characteristics in Ma et al.15).

Patients diagnosed with advanced non-small cell lung cancer (NSCLC), 
metastatic breast cancer, metastatic renal cell carcinoma, advanced urothe-
lial cancer, and multiple myeloma were included. The eligibility time-
period for each RWD cohort varied corresponding to clinical trial cohort 
entry dates; the data cutoff (i.e., the date ending RWD patient observation 
and retrospective data collection) for all RWD cohorts was July 31, 2019 
(Table 1). The RWD were drawn from the standard scaled data models 
for included tumor types; no additional trial-specific data abstraction was 
performed to supplement the existing “off-the-shelf ” EHR-derived data-
set. Institutional review board approval of the study protocol was obtained 
prior to study conduct, and included a waiver of informed consent.

In order to identify clinical trial control arms for potential emulation, 
drug approvals from January 1, 2016, to April 30, 2018, were searched to 
select trials with active control arms that were used to support an FDA 
approval.17 This time period for drug approvals was chosen as likely to 
be supported by trials with enrollment periods overlapping the available 
EHR-derived datasets. Forty-nine RCTs that supported FDA approvals 
of anticancer therapies from January 1, 2016, to April 30, 2018, were se-
lected. Drug labels and FDA announcements were reviewed to identify 
the trial(s) associated with each approval. We identified whether the ap-
provals were supported by the following: at least one RCT or all single-
arm studies; if randomized, whether the trial had an active or placebo (or 
“observation”) control; and whether the FDA approval was for a cancer 
type available within the Flatiron Health database. We excluded trials 
with only placebo or “observation” controls, as it was judged infeasible to 
include patients receiving comparable care in real-world settings and, for 
“observation only patients,” to assign an index date to the appropriate time 
point. From this refined list of 36 trials, we selected all trials in tumors 
that aligned with one of the existing disease-specific datasets available in 
the real-world database for analysis at the time of study initiation, leaving 
21 trials. Six of the remaining trials were not feasible to replicate due to 
insufficient patients in the real-world cohorts (i.e., an initial cohort size 
estimate of < 25). Small cohort sizes were mostly driven by the trial control 
arm therapy not aligning with treatment patterns observed in the EHR-
derived dataset or the use of specific biomarkers for trial eligibility not 
commonly tested in routine practice at that time (see the “Trial Data and 
RWD Cohort Construction” section below). A total of 15 trials were ul-
timately used for control arm replications.18–32 A summary of the clinical 
trial control arms that were feasible to replicate using RWD and corre-
sponding real-world cohort sample sizes is presented in Table 1.

Trial data and RWD cohort construction
Analyses were conducted according to a prespecified Statistical Analysis 
Plan unless otherwise noted, using a comprehensive and high-throughput 
approach. Trial data were reconstructed based on data presented in pri-
mary trial manuscripts by digitizing published survival curves33 to ob-
tain estimated patient-level endpoints and by using reported baseline 
characteristics as cohort-level patient covariates (henceforth named as 
“reconstructed trial data”). Real-world comparator cohorts were con-
structed from patient-level EHR-derived real-world databases and based 
on publicly available information or information on file in trial protocols 
and publications (henceforth named as “RWD cohort”).18–32,34

Each RWD cohort was constructed in a three-step process. First, we 
selected patients from the existing RWD who received therapy consis-
tent with the trial’s control arm (henceforth named as “broad cohort”). 
Next, we aligned cohorts according to trial eligibility (inclusion/ex-
clusion) criteria (henceforth named as “aligned cohort”). Two experi-
enced medical oncology physician-researchers independently conducted 
a qualitative review of eligibility criteria to assess (i) whether deriving 
variables from RWD was feasible (e.g., availability in the RWD database, 
ability to align RWD with the trial definition), and (ii) the fitness for use 
in our analysis (i.e., extent of data missingness). A third senior medical 

ARTICLE



VOLUME 111 NUMBER 1 | January 2022 | www.cpt-journal.com170

Ta
bl

e 
1

 S
um

m
ar

y 
of

 c
lin

ic
al

 t
ri

al
 c

on
tr

ol
 a

rm
s 

fe
as

ib
le

 t
o 

re
pl

ic
at

e 
us

in
g 

de
-id

en
ti

fie
d 

E
H

R
-d

er
iv

ed
 R

W
D

Tr
ia

l
C

lin
ic

al
 c

on
di

ti
on

C
on

tr
ol

 a
rm

 
th

er
ap

y

O
S
 a

nd
/

or
 P

FS
 

en
dp

oi
nt

(s
)

Tr
ia

l e
nr

ol
lm

en
t 

st
ar

ta
Tr

ia
l e

nr
ol

lm
en

t 
en

da

Tr
ia

l c
on

tr
ol

 
ar

m
 s

am
pl

e 
si

ze

C
oh

or
t 

A
: R

ea
l-

w
or

ld
 p

at
ie

nt
s 

re
ce

iv
in

g 
ca

re
 

co
ns

is
te

nt
 w

it
h 

co
nt

ro
l a

rm
, N

C
oh

or
t 

B
: R

ea
l-

w
or

ld
 c

oh
or

ts
 

af
te

r 
al

ig
ni

ng
 

w
it

h 
tr

ia
l’s

 e
lig

i-
bi

lit
y 

cr
it

er
ia

, N

C
oh

or
t 

C
: 

Ef
fe

ct
iv

e 
sa

m
pl

e 
si

ze
 

of
 r

ea
l-w

or
ld

 
co

ho
rt

s 
af

te
r 

w
ei

gh
ti

ng
, N

O
AK

Lo
ca

lly
 a

dv
an

ce
d 

or
 

m
et

as
ta

ti
c 

N
S

C
LC

 
af

te
r 

pl
at

in
um

-
co

nt
ai

ni
ng

 C
T 

fa
ilu

re

D
oc

et
ax

el
O

S
, 

PF
S

0
3
/1

1
/2

0
1
4

0
4
/2

9/
2

0
1

5
4
2
5

5
6

2
3

0
6

2
8

0
.7

8

PO
PL

AR
Lo

ca
lly

 a
dv

an
ce

d 
or

 
m

et
as

ta
ti
c 

N
S

C
LC

 
af

te
r 

pl
at

in
um

-
co

nt
ai

ni
ng

 C
T 

fa
ilu

re

D
oc

et
ax

el
O

S
, 

PF
S

0
8
/0

5/
2

0
1

3
0

3
/3

1
/2

0
1
4

1
4

3
3

2
9

1
5

6
1

3
5
.7

7

AL
E

X
Pr

ev
io

us
ly

 u
nt

re
at

ed
, 

ad
va

nc
ed

 A
LK

+
 N

S
C

LC
C

ri
zo

tin
ib

O
S

, 
PF

S
0

8
/1

8
/2

0
1
4

0
1

/2
0/

2
0
1
6

1
51

2
3

0
2

0
8

1
8

8
.6

AU
R

A
-3

T7
9

0
m

t  a
dv

an
ce

d 
N

S
C

LC
 w

it
h 

pr
og

re
ss

io
n 

af
te

r 
1

L 
EG

FR
-T

K
I t

he
ra

py

Pe
m

et
re

xe
d 

pl
us

 e
it
he

r 
ca

rb
op

la
tin

 o
r 

ci
sp

la
ti
n

PF
S

0
8
/1

5/
2

0
1
4

0
9/

2
0
1

5
b

1
4

0
N

Ac
N

Ac
N

Ac

K
E
YN

O
TE

-0
2
1

C
T-

na
iv

e 
ad

va
nc

ed
 

no
ns

qu
am

ou
s 

N
S

C
LC

 
w

it
ho

ut
 t

ar
ge

ta
bl

e 
EG

FR
 o

r 
AL

K
 g

en
et

ic
 

ab
er

ra
ti
on

s

C
ar

bo
pl

at
in

 a
nd

 
pe

m
et

re
xe

d
O

S
, 
PF

S
1

1
/2

5/
2

0
1
4

0
1

/2
5/

2
0
1
6

6
3

1
2
72

7
9

9
6
7
7.

6
1

M
E
TE

O
R

Ad
va

nc
ed

 o
r 

m
et

as
ta

ti
c 

cl
ea

r-
ce

ll 
R

C
C

 p
re

vi
ou

sl
y 

tr
ea

te
d 

w
it
h 

≥
 1

 V
EG

FR
 T

K
Is

Ev
er

ol
im

us
O

S
, 
PF

S
d

0
8
/0

8
/2

0
1

3
1

1
/2

4
/2

0
1
4

3
2

8
9

9
6
1

5
7.

07

C
AB

O
S

U
N

Pr
ev

io
us

ly
 u

nt
re

at
ed

 
m

et
as

ta
ti
c 

R
C

C
S

un
it
in

ib
O

S
, 
PF

S
d

07
/0

9/
2

0
1

3
0

4
/0

6/
2

0
1

5
7
8

5
9

6
2

6
0

1
8
1

.2
9

C
he

ck
M

at
e
-2

1
4

Pr
ev

io
us

ly
 u

nt
re

at
ed

 
ad

va
nc

ed
 o

r 
m

et
as

ta
ti
c 

R
C

C
, 

in
te

rm
ed

ia
te

 o
r 

po
or

 
pr

og
no

st
ic

 r
is

k

S
un

it
in

ib
O

S
, 
PF

S
d

1
0/

0
1

/2
0
1
4

0
2

/2
0
1
6

b
4
2

2
72

9
3
1
6

2
7
3

.7
5

N
C

T0
1

1
3

6
7
3

3
2

L 
tr

ea
tm

en
t 

fo
r 

m
et

as
ta

ti
c 

R
C

C
Ev

er
ol

im
us

O
S

, 
PF

S
d

0
3
/1

6/
2

0
1

2
0

6/
1

9/
2

0
1

3
5

0
4

9
2

9
2

6
.0

7

PO
LL

U
X

M
M

 a
ft

er
 ≥

 1
L 

of
 

th
er

ap
y

Le
na

lid
om

id
e 

an
d 

de
xa

m
et

ha
so

ne

O
S

, 
PF

S
0

6/
1
6/

2
0
1
4

07
/1

4
/2

0
1

5
2

8
3

5
4

4
2

N
Ac

 (
C

on
ti
nu

ed
)

ARTICLE



CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 111 NUMBER 1 | January 2022 171

Tr
ia

l
C

lin
ic

al
 c

on
di

ti
on

C
on

tr
ol

 a
rm

 
th

er
ap

y

O
S
 a

nd
/

or
 P

FS
 

en
dp

oi
nt

(s
)

Tr
ia

l e
nr

ol
lm

en
t 

st
ar

ta
Tr

ia
l e

nr
ol

lm
en

t 
en

da

Tr
ia

l c
on

tr
ol

 
ar

m
 s

am
pl

e 
si

ze

C
oh

or
t 

A
: R

ea
l-

w
or

ld
 p

at
ie

nt
s 

re
ce

iv
in

g 
ca

re
 

co
ns

is
te

nt
 w

it
h 

co
nt

ro
l a

rm
, N

C
oh

or
t 

B
: R

ea
l-

w
or

ld
 c

oh
or

ts
 

af
te

r 
al

ig
ni

ng
 

w
it

h 
tr

ia
l’s

 e
lig

i-
bi

lit
y 

cr
it

er
ia

, N

C
oh

or
t 

C
: 

Ef
fe

ct
iv

e 
sa

m
pl

e 
si

ze
 

of
 r

ea
l-w

or
ld

 
co

ho
rt

s 
af

te
r 

w
ei

gh
ti

ng
, N

C
AS

TO
R

M
M

 a
ft

er
 ≥

 1
L 

of
 

th
er

ap
y

B
or

te
zo

m
ib

 a
nd

 
de

xa
m

et
ha

so
ne

O
S

, 
PF

S
0

9/
0

4
/2

0
1
4

0
9/

2
4
/2

0
1

5
2
47

N
Ac

N
Ac

N
Ac

K
E
YN

O
TE

-0
4

5
Ad

va
nc

ed
 U

C
 t

ha
t 

re
cu

rr
ed

 o
r 

pr
og

re
ss

ed
 

af
te

r 
pl

at
in

um
-b

as
ed

 
C

T

In
ve

st
ig

at
or

’s
 

ch
oi

ce
 o

f 
ch

em
ot

he
ra

py
 

w
it
h 

pa
cl

it
ax

el
, 

or
 d

oc
et

ax
el

, 
or

 
vi

nf
lu

ni
ne

e

O
S

, 
PF

S
1

1
/0

5/
2

0
1
4

1
1

/1
3
/2

0
1

5
2
72

1
6

6
1

1
4

71
.5

9

PA
LO

M
A

-2
Po

st
m

en
op

au
sa

l 
w

om
en

 w
it
h 

ER
+,

 
H

ER
2

– 
ad

va
nc

ed
 B

C

Le
tr

oz
ol

e 
(p

lu
s 

pl
ac

eb
o)

PF
S

0
2

/2
8
/2

0
1

3
b

07
/2

0
1
4

b
2

2
2

4
2

9
3

0
4

1
8

6
.4

9

M
O

N
AL

EE
S

A
-2

Po
st

m
en

op
au

sa
l 

w
om

en
 w

it
h 

H
R

+,
 

H
ER

2
- r

ec
ur

re
nt

 o
r 

m
et

as
ta

ti
c 

B
C

Le
tr

oz
ol

e 
(p

lu
s 

pl
ac

eb
o)

PF
S

0
1

/2
4
/2

0
1
4

0
3
/2

4
/2

0
1

5
3

3
4

5
4
2

3
3

4
2
5
7.

1
2

M
O

N
AR

C
H

-3
Po

st
m

en
op

au
sa

l 
w

om
en

 w
it
h 

H
R

+,
 

H
ER

2
- a

dv
an

ce
d 

B
C

A
na

st
ro

zo
le

 o
r 

le
tr

oz
ol

e 
(p

lu
s 

pl
ac

eb
o)

PF
S

1
1

/1
8
/2

0
1
4

1
1

/1
1

/2
0
1

5
1
6

5
1
,3

2
4

9
2

6
5

6
1

.2
5

S
am

pl
e 

si
ze

s 
fo

r 
th

e 
co

rr
es

po
nd

in
g 

re
al

-w
or

ld
 c

oh
or

ts
: 

(A
) 

al
l p

at
ie

nt
s 

re
ce

iv
in

g 
co

nt
ro

l a
rm

 t
he

ra
py

 in
 r

ea
l-w

or
ld

 s
et

ti
ng

s,
 (

B
) 

af
te

r 
al

ig
ni

ng
 t

he
 r

ea
l-w

or
ld

 c
oh

or
t 

w
it

h 
th

e 
tr

ia
l’s

 e
lig

ib
ili

ty
 c

ri
te

ri
a,

 a
nd

 (
C

) 
af

te
r 

w
ei

gh
ti
ng

 t
he

 a
lig

ne
d 

re
al

-w
or

ld
 c

oh
or

t 
to

 b
al

an
ce

 d
if

fe
re

nc
es

 in
 k

ey
 p

ro
gn

os
ti
c 

fa
ct

or
s 

be
tw

ee
n 

th
e 

co
nt

ro
l a

rm
 a

nd
 r

ea
l-w

or
ld

 p
at

ie
nt

s.
1

L,
 f

ir
st

 li
ne

; 
2

L,
 s

ec
on

d 
lin

e;
 A

LK
, 

an
ap

la
st

ic
 ly

m
ph

om
a 

ki
na

se
; 

B
C

, 
br

ea
st

 c
an

ce
r;

 C
T,

 c
he

m
ot

he
ra

py
; 

EG
FR

, 
ep

id
er

m
al

 g
ro

w
th

 f
ac

to
r 

re
ce

pt
or

; 
EH

R
, 
el

ec
tr

on
ic

 h
ea

lt
h 

re
co

rd
; 
ER

, 
es

tr
og

en
 r

ec
ep

to
r;

 H
ER

, 
hu

m
an

 e
pi

de
rm

al
 g

ro
w

th
 f

ac
to

r 
re

ce
pt

or
; 

H
R

, 
ho

rm
on

e 
re

ce
pt

or
; 

M
M

, 
m

ul
ti
pl

e 
m

ye
lo

m
a;

 N
A
, 

no
t 

ap
pl

ic
ab

le
; 

N
S

C
LC

, 
no

n
-s

m
al

l c
el

l l
un

g 
ca

nc
er

; 
O

S
, 
ov

er
al

l s
ur

vi
va

l; 
PF

S
, 
pr

og
re

ss
io

n
-fr

ee
 s

ur
vi

va
l; 

R
C

C
, 
re

na
l c

el
l 

ca
rc

in
om

a;
 R

W
D

, 
re

al
-w

or
ld

 d
at

a;
 T

K
I, 

ty
ro

si
ne

 k
in

as
e 

in
hi

bi
to

r;
 U

C
, 

ur
ot

he
lia

l c
an

ce
r;

 V
EG

FR
, 

va
sc

ul
ar

 e
nd

ot
he

lia
l g

ro
w

th
 f

ac
to

r 
re

ce
pt

or
.

a A
s 

pu
bl

ic
ly

 r
ep

or
te

d.
 b E

xa
ct

 d
at

e 
no

t 
re

po
rt

ed
 (a

ss
um

ed
 e

nd
 o

f 
m

on
th

).
 c C

oh
or

ts
 w

it
h 

N
 <

 2
5

 w
er

e 
no

t 
in

cl
ud

ed
 d

ue
 t

o 
sm

al
l s

am
pl

e 
si

ze
s.

 d En
dp

oi
nt

 n
ot

 (
ye

t)
 a

va
ila

bl
e 

fr
om

 F
la

ti
ro

n 
H

ea
lt

h 
da

ta
 a

t 
sc

al
e.

 
e V

in
fl
un

in
e 

no
t 

m
ar

ke
te

d 
in

 t
he

 U
ni

te
d 

S
ta

te
s 

an
d 

th
er

ef
or

e 
no

t 
re

le
va

nt
 w

he
n 

se
le

ct
in

g 
U

S
-b

as
ed

 r
ea

l-w
or

ld
 c

oh
or

ts
.

Ta
bl

e 
1
 (

C
on

ti
nu

ed
)

ARTICLE



VOLUME 111 NUMBER 1 | January 2022 | www.cpt-journal.com172

oncologist was pre-identified as an adjudicator in case of disagreement 
that could not be resolved. Not all clinical trial criteria were relevant to or 
available as part of routine care; eligibility criteria relied on data (struc-
tured and unstructured) that were available in the existing EHR-derived 
RWD at the time of analysis. Eligibility criteria were documented as 
being implemented (yes/no) in the RWD cohort construction process 
and further categorized according to implementations status (Table S1). 
Finally, we reduced any observed imbalances in baseline characteris-
tics between trial and real-world cohorts through a covariate balancing 
method analogous to propensity score weighting (henceforth named as 
“weighted cohort”). For each trial, baseline characteristics for weighting 
were drawn from summary-level statistics in the primary trial publica-
tions: age, gender, race, smoking history, and histology (e.g., squamous 
vs. non-squamous NSCLC) as applicable, as well as tumor-specific vari-
ables (e.g., prior nephrectomy for patients with metastatic renal cell car-
cinoma or International Staging System stage for multiple myeloma) if 
deemed clinically relevant (Table S2). Then, inverse-odds weights were 
estimated for real-world patients using the generalized method of mo-
ments estimator on trial reported moments (i.e., means or proportions 
of variables) such that the weighted RWD cohorts and reconstructed 
trial data achieved cohort-level balance for each included baseline char-
acteristics marginally.35,36 The main analysis of the aligned and weighted 
RWD cohorts included all patients with missing Eastern Cooperative 
Oncology Group (ECOG) performance status or laboratory tests be-
cause real-world capture of this information is often incomplete, as well 
as patients who received the control arm therapy of interest prior to the 
start of trial enrollment date (i.e., “historical control therapies”) assum-
ing little change in standard of care therapies; sensitivity analyses investi-
gated the impact of excluding these patient groups.

Endpoints
As described above, each reconstructed trial dataset was associated with 
three corresponding RWD cohorts (“broad,” “aligned,” and “weighted”). 
Comparison for each trial-RWD pair (3 RWD cohorts for each of the 
15 trials) was based on the following endpoints: PFS and OS as reported 
in the primary publications for each trial, and real-world PFS (to the ex-
tent available in the existing RWD) and real-world OS (rwOS) for the 
RWD cohorts. The real-world PFS and rwOS endpoints were derived 
from real-world progression and mortality variables, described previously 
in the literature.37,38 PFS and OS were analyzed for all RWD-trial pair 
comparisons regardless of whether the clinical trial primary endpoint 
was OS, PFS, or another endpoint.

Analyses

Comparing endpoints in individual trials. To ensure that follow-up 
time between the trial-RWD pairs were comparable, we censored the 
RWD cohorts so that the maximum potential follow-up duration for 
real-world endpoint evaluation was equal to the maximum trial endpoint 
follow-up duration as reported in the primary trial publication. For tri-
als that censored PFS at the time of the start of a subsequent antican-
cer therapy, we applied analogous endpoint censoring procedures to the 
corresponding real-world cohorts, as feasible with RWD. For each trial-
RWD pair, we performed visual inspection on Kaplan–Meier curves and 
computed median times-to-event separately for the reconstructed trial 
data and the RWD cohort. Then, we computed relative time-to-event 
estimates comparing reconstructed trial data vs. RWD cohort using Cox 
proportional hazards regression models separately on the broad, aligned, 
and weighted RWD cohorts, as described above. For the Cox models, 
hazard ratios (HRs) = 1 indicated comparable endpoints, HRs < 1 indi-
cated hazard of outcomes (death or progression) was lower in the recon-
structed trial data compared to RWD cohorts, and HRs > 1 indicated 
that the hazard of outcomes (death or progression) was higher in the re-
constructed trial data compared to RWD cohorts.

Comparing endpoints across all trials. Endpoint comparisons 
were done for the trial-RWD pairs with weighted RWD cohorts only, 
separately for the OS and PFS endpoints. Specifically, we conducted 
meta-analyses across all trials to obtain pooled HR estimates using a mul-
titumor random effects model, and assessed heterogeneity using the I2 
statistic.39 In addition, post hoc correlation plots of median time-to-event 
endpoints (OS and PFS) for trial-RWD pairs were created.

Post hoc assessment on impact of specific analytic 
decisions
Post hoc, we assessed the impact of specific analytic decisions on endpoints 
and overall results using a case study. After initiation of study conduct, 
a patient-level analysis of multiple advanced NSCLC trials by Carrigan 
et al. reported detailed information on the replication approach for the 
OAK trial (an open-label, randomized phase III study of atezolizumab 
vs. docetaxel in adult patients with squamous or nonsquamous advanced 
NSCLC).8 Therefore, we modified the weighted RWD cohort construc-
tion for the OAK trial in our study by retrofitting analytic decisions that 
differed from those described in Carrigan et al.: (i) updated to the same 
RWD cutoff date, (ii) applied eligibility criteria using the same subset of 
laboratory tests, (iii) included RWD patients who received therapy after 
trial enrollment ended, and (iv) included time from initial diagnosis to 
therapy start (identified in the Carrigan et al. paper as an important fac-
tor through analysis of the trial patient-level data) as a weighing variable. 
Finally, we evaluated the OS HR of the resulting trial-RWD pairs.

RESULTS
Construction of real-world comparator cohorts
Details on the feasibility of implementing eligibility criteria for each 
included trial are presented in Table S1. A summary of clinical tri-
als not included in this study based on initial feasibility assessment 
is provided in Table S3. We observed a series of common eligibility 
criteria that could not be implemented across trials, such as process-
related activities (e.g., providing tumor tissue or signing consent 
forms), documented assessment of prior adverse events and their 
resolution before index/study treatment, and subjective criteria re-
garding patients’ expected prognoses or adherence to study-specific 
measures. Note that the proportion of trial criteria that could be 
implemented was variable, depending on factors such as disease and 
therapy types as well as trial-specific considerations. The majority 
of these types of criteria were determined as either not relevant for 
or not expected to be documented as a part of routine standard of 
care by authors with oncology clinical trial expertise; therefore, they 
were not included in the standard data model for this analysis.

Endpoint comparisons
An example of Kaplan–Meier curves for the reconstructed trial 
data and RWD cohort is shown for the OAK trial (Figure  1). 
OS and PFS HR comparisons between the trial-RWD pairs are 
presented in Table 2. Based on the weighted RWD cohorts, end-
points between the trial-RWD pairs appeared to be more similar 
for PFS compared to OS (HR range: OS = 0.36–1.09, PFS = 0.63–
1.18) and generally variable. Comparing the selected trials by dis-
ease subtypes, endpoints appear to be most similar for patients 
with a urothelial cancer (HR range: OS = 0.79–1.09, PFS = 0.73–
1.15) and most dissimilar for patients with advanced NSCLC, 
especially for OS (HR range: OS  =  0.36–0.68, PFS  =  0.65–
0.80). Endpoint dissimilarity was most pronounced for the trial-
RWD pair of KEYNOTE-021 (an open-label, phase II study of 
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immunotherapy for nonsquamous NSCLC without mutations 
that allowed cross-over at progression; HRs of OS = 0.36, PFS = 
0.65).

The correlation between trial-RWD pairs for median OS 
and median PFS was 0.85 and 0.91, respectively (Figure  2). 
The OS correlation excluded estimates from the ALEX and 
KEYNOTE-021 trial-RWD pairs in advanced NSCLC trials be-
cause the median OS was not reached in the reconstructed trial 
data (although it was reached in the corresponding RWD cohorts). 
Based on meta-analytic multitumor random effects models on all 
available trials, the combined HR was 0.76 for OS (I2 = 63%) and 
0.84 for PFS (I2 = 62%), suggesting overall poorer outcomes in 
the RWD cohorts compared with the reconstructed trial data and 
overall substantial heterogeneity across trials. Results from sensi-
tivity analyses of constructing aligned and weighted RWD cohorts 
(i.e., excluding patients with missing ECOG performance status, 

missing laboratory tests, and receiving historical control therapies) 
were largely consistent with the main analyses (Figures S1–S5).

Post hoc assessment on impact of specific analytic 
decisions
The post hoc assessment on the impact of specific analytic decisions 
on replication results was based on the OAK study. The original 
methodology deployed for all trial-RWD pairs had an OS HR 
of 0.67 (95% confidence interval: 0.56–0.79) comparing recon-
structed trial data to the weighted RWD cohort (Figure 1c). When 
weighted RWD cohorts were modified by retrofitting analytic de-
cisions similar to those described in Carrigan et al., the resulting 
OS more closely aligned with that of the OAK clinical trial (OS 
HR = 0.92; 95% confidence interval: 0.78–1.09; Figure 1d); step-
wise application of specific analytic decisions resulted in highly 
variable incremental changes in HRs (Figure 3). Updating to the 

Figure 1  Comparison of overall survival curves from control arm from OAK (re-constructed) vs. real-world patients. Notes: (a) Real-world 
patients receiving control arm therapy; (b) after aligning with the trial’s eligibility criteria; (c) after weighting the aligned real-world cohort to 
balance any remaining differences in key prognostic factors; (d) after reproducing analytic decisions from a publication using the same data 
source: Carrigan et al.8RWD, real-world data. [Colour figure can be viewed at wileyonlinelibrary.com]
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same data cutoff date for the RWD cohort (HR change = 0.03), 
applying the same eligibility criteria (HR change = 0.05), includ-
ing RWD patients who received therapy after trial enrollment 

ended (HR change = 0.06), and including time from initial diag-
nosis to therapy start as a weighing variable (HR change = 0.11).

DISCUSSION
In this study, we used a three-step process to retrospectively con-
struct RWD cohorts using “off-the-shelf ” datasets aligned to pub-
lished clinical trials that supported FDA approvals of anticancer 
therapies across multiple tumor types. We showed that endpoints 
of contemporaneous RWD cohorts are directionally similar to 
those of clinical trial control arms, as evidenced by the correla-
tions of median OS and PFS. Our findings suggest RWD cohorts’ 
endpoints appear to be variable and trend toward worse outcomes 
in the RWD cohorts. The post hoc case study investigated the im-
pact of applying different analytic decisions and suggested that the 
comparability of clinical trial control arms and RWD cohorts may 
be impacted by variability in data source, choice and availability of 
relevant prognostic factors for inclusion in the statistical analysis, 
and RWD cohort construction analytic decisions.

Our evaluation of EHR-derived real-world cohorts as compar-
ators for clinical trial control arms was conducted across multiple 
tumor types and analyzed in a meta-analytic fashion, adding to 
the existing body of evidence in oncology that is otherwise lim-
ited to studies of single tumor types (glioblastoma,40 ALK+ ad-
vanced NSCLC,10 metastatic breast cancer,41 and gastric cancer42). 
Although other efforts have examined the feasibility of claims-
derived RWD to replicate clinical trial results,9 and explored using 
historical clinical trial patient-level data to develop synthetic con-
trol arms and to replicate RCT endpoints,43 EHR-derived RWD 
is unique in its combination of depth, longitudinality, and contem-
poraneousness. Our results corroborate findings from existing lit-
erature that suggest using RWD for external controls may produce 
similar endpoints as observed in clinical trial control arms and also 
show that comparability between trial and RWD controls may be 
context-dependent. For example, the nuances of data capture of 
individual variables (which may differ among variables, sources, 
and databases that use different approaches to derive information 

Figure 2  Correlation plot of median time-to-events comparing 
patients in the original trial’s control arm vs. a weighted real-world 
cohort for (a) Overall Survival (OS) and (b) Progression Free Survival 
(PFS). Note: ALEX and KEYNOTE-021 (both advanced NSCLC) were 
excluded from the OS plot as median OS was not reached in the 
trials’ control arms. BC, breast cancer; UC, urothelial cancer; Corr, 
correlation; NSCLC, non-small cell lung cancer; OS, overall survival; 
PFS, progression-free survival; RWD, real-world data. [Colour figure 
can be viewed at wileyonlinelibrary.com]

Figure 3  Waterfall plot of increase in OS HR, comparing trial to real-world control cohorts, when incremental analytic decisions were applied to 
the real-world cohort. Notes: Incremental changes in analytic decisions were based on the description in: Carrigan et al.8 HR, hazard ratio; OS, 
overall survival; rwCA, real-world control arm. [Colour figure can be viewed at wileyonlinelibrary.com]
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from the same source) may dictate specific approaches in applying 
clinical trial eligibility criteria to RWD cohorts. Therefore, the 
transparent accounting and documentation of the clinical rationale 
behind these decisions is critical.

As demonstrated in our line-by-line assessment of individual 
trial eligibility criteria, the primary barriers to implementation 
of specific eligibility criteria were: (i) data elements that were not 
available in the specific EHR-derived RWD model available at the 
time of the study (e.g., baseline comorbidities and nuanced disease 
characteristics); (ii) data elements that have limited relevance or 
are not routinely captured in the clinical setting when using RWD 
in general (e.g., trial logistics and trial-specific assessments, such as 
sufficient life expectancy); (iii) differing testing patterns for spe-
cific tumor mutations in the real-world setting than were required 
as part of screening for a clinical trial; and (iv) knowledge of trials’ 
full eligibility criteria (as often only the major inclusion/exclusion 
criteria are stated in publication). The first barrier may be overcome 
with customized abstraction and curation of tailored data mod-
els, whereas the other barriers may not have a significant impact 
in some settings or are known limitations of RWD. Despite these 
hurdles, our approach produced high correlations of OS and PFS 
for trials in this study; the challenge is prospectively identifying the 
appropriate context for when to use this approach. Development 
of trial-specific RWD data models is likely an important step to-
ward more universal application of real-world external compara-
tors, especially for regulatory settings.

In the post hoc case study, we found that the degree of similar-
ity between trial and RWD cohorts can be sensitive to different 
analytic cohort construction decisions resulting from varying as-
sumptions and potential biases. For example, the case study illus-
trated that RWD cohort endpoints in retrospective comparison 
cohort construction may be impacted by (i) lack of visibility into 
full and relevant trial data, which may result in omission of im-
portant prognostic factors (in this case, variables related to disease 
aggressiveness), and (ii) inclusion of “futuristic” RWD controls, 
(i.e., real-world patients who started trial control therapy in the 

time window after trial enrollment ended). These “post enroll-
ment patients” may have had different subsequent treatment op-
tions compared with those who started therapy during or before 
trial enrollment. The poorer outcomes of RWD compared with 
RCT cohorts under certain analytic decisions could result in treat-
ment efficacy overestimation when replacing RCT with RWD 
controls. Thus, successful replication of clinical trial control arms 
using RWD cohorts requires selection of a comprehensive set of 
context-specific prognostic factors. Although we desired to explore 
the impact of the analytic decisions of Carrigan et al. applied to the 
other trials in our study, this was not feasible because specific vari-
ables were not publicly available. Although the reported approach 
in Carrigan et al. resulted in an OS endpoint treatment effect that 
closely matched that of corresponding clinical trials, their work was 
limited to NSCLC trials, although similar approaches could be ex-
tended to other disease contexts. Other potential methodologies 
include using the observed RWD to construct plausible Directed 
Acyclic Graphs to describe causal relationships (or lack thereof ) 
among potential prognostic factors in relation to the endpoints of 
interest.44,45 Ultimately, the range of observed differences between 
trial and RWD cohorts, through retrospective evaluations, such as 
this and other reports, may inform confidence levels for new RWD 
methodology and data sources used to support clinical trials. For 
example, these results may help prespecify reasonable bounds of 
the true differences in treatment effects in a threshold-crossing 
framework analysis46 or plausible outcome distributions for impu-
tation in a tipping point analysis.

This study is subject to several limitations. First, there are limits 
to the comparability of the EHR-derived clinical data in our study 
to the trial cohorts due to missing or unmeasured data, a common 
RWD limitation (e.g., events not documented or occurring out-
side of the source network).9 Such missing or incomplete data, if 
clinically prognostic for the endpoints of interest, could have im-
pacted results and interpretation due to unmeasured confound-
ing. Related, the EHR-derived data were drawn from nationwide, 
predominantly community, cancer clinics in the United States; 

Table 3  Summary of key study observations

Key observation

1. Factors such as variability in data source, alignment of RCT and RWD eligibility criteria and study design, choice of available prognostic 
factors for inclusion in the statistical analysis, and varying analytic assumptions can impact the comparability of clinical trial control arms 
and RWD cohorts.

2. Real-world external comparator cohorts may produce similar outcomes as observed in clinical trial control arms, however, comparability 
may be context-dependent.

3. Transparent accounting and documentation of the clinical rationale behind decisions to apply or not apply certain clinical trial eligibility 
criteria to real-world external comparators is essential.

4. Certain barriers to implementation of specific clinical trial eligibility criteria when constructing real-world external comparators may be 
overcome with customized abstraction and curation of tailored data models, while others remain as known limitations of RWD. Of note, 
some eligibility criteria may not be meaningful outside of a clinical trial setting (e.g., ability to sign consent).

5. Successful replication of clinical trial control arms using RWD requires careful selection of a comprehensive set of disease- and trial-
specific prognostic factors.

6. Access to clinical trial patient-level data is important to inform appropriate RWD study design and cohort construction.

7. Prospective applications of real-world external comparators for ongoing or future trials performed in collaboration with the study sponsor 
should take advantage of the opportunity to use patient-level data and proactively incorporate analytic considerations such as comprehen-
sive prognostic variable data capture.

RCT, randomized clinical trials; RWD, real world data.
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representativeness of other settings may differ, for example, from 
clinical trials that recruit from both US and non-US centers where 
care and insurance coverage may impact variability in clinical out-
comes. Second, we were not able to account for post-baseline char-
acteristics in this exploratory analysis due to lack of patient-level 
trial data. For example, subsequent treatment options available to 
real-world vs. trial-control arm patients may differ (particularly if 
crossover to experimental treatment is allowed in the trial), which 
may impact longer-term endpoints such as OS. Third, in this 
study, ascertainment of disease progression from RWD relied on a 
clinician-anchored abstraction approach (previously described35) 
that differs from the Response Evaluation Criteria in Solid Tumors 
(RECIST)-based measurements of disease progression commonly 
used in clinical trials.47 Potential differences in imaging assess-
ment cadence could have resulted in overestimation of PFS in 
the real-world cohort. Fourth, this study relied on trials’ primary 
publications for balancing on cohort-level baseline covariates and 
reconstruction of outcomes data. Although our summary-level 
inverse odds weighting approach achieved covariate balance mar-
ginally for each included variable, modeling on the aggregate level 
cannot capture nonlinear or additive covariate effects due to the 
ecological inference fallacy.48 Furthermore, it is possible that rwOS 
could be underestimated relative to trial OS, as some primary pub-
lications were based on PFS (and thus trial OS may be immature), 
or overestimated due to missing data in real-world mortality (al-
though we expect this effect to be minor due to the high accuracy 
of the real-world mortality variable used).37 Finally, although a 
wide range of cancer tumor types were included in this study, gen-
eralizability beyond these treatment settings and outside of the on-
cology setting may be limited.

In conclusion, EHR-derived RWD is a potential data source for 
emulating clinical trial control arm outcomes. Our findings, which 
are summarized in Table 3, suggest that visibility into clinical trial 
patient-level data is a key step to allow for appropriate RWD co-
hort construction analytic choices. Although our retrospective trial 
replications aimed to account for many of these factors in align-
ment and weighting, we were largely limited by only having access 
to metrics that were publicly available. Prospective applications of 
RWD as an external control arm for ongoing or future trials per-
formed in collaboration with the study sponsor should take advan-
tage of the opportunity to evaluate patient-level factors in the trial 
cohort and to proactively incorporate analytic considerations, such 
as comprehensive prognostic variable data capture. Ideally, these 
steps can be accomplished in the study design stage through close 
collaborations with experts and stakeholders, including regulators 
when relevant. Lessons from this retrospective study may help re-
fine future work that evaluates retrospectively and prospectively 
constructed EHR-derived RWD cohorts as external comparators 
for single-arm studies.

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
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