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Immunological tolerance plays a critical role during pregnancy as semi-allogeneic fetus
must be protected from immune responses during the gestational period. Regulatory T
cells (Tregs), a subpopulation of CD4+ T cells that express transcription factor Foxp3, are
central to the maintenance of immunological tolerance and prevention of autoimmunity.
Tregs are also known to accumulate at placenta in uterus during pregnancy, and they
confer immunological tolerance at maternal-fetal interface by controlling the immune
responses against alloantigens. Thus, uterine Tregs help in maintaining an environment
conducive for survival of the fetus during gestation, and low frequency or dysfunction of
Tregs is associated with recurrent spontaneous abortions and other pregnancy-related
complications such as preeclampsia. Interestingly, there are many parallels in the
development of placenta and solid tumours, and the tumour microenvironment is
considered to be somewhat similar to that at maternal-fetal interface. Moreover, Tregs
play a largely similar role in tumour immunity as they do at placenta- they create a
tolerogenic system and suppress the immune responses against the cells within tumour
and at maternal-fetal interface. In this review, we discuss the role of Tregs in supporting
the proper growth of the embryo during pregnancy. We also highlight the similarities and
differences between Tregs at maternal-fetal interface and tumour Tregs, in an attempt to
draw a comparison between their roles in these two physiologic and pathologic states.
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INTRODUCTION

Our immune system has evolved to protect us from various harmful pathogens such as viruses and
bacteria. The immune system achieves this goal by recognizing molecular patterns unique to
pathogens, mounting an inflammatory immune response, and eliminating the microorganisms
expressing these molecular patterns. An important hallmark of the immune system is its ability to
not only distinguish self- and non-self-antigens but also harmful and innocuous foreign antigens- a
phenomenon also known as immunological tolerance. A range of ‘central’ and ‘peripheral’
mechanisms render the immune system the ability to maintain the state of immunological
tolerance. These include ‘central’ deletion of autoreactive T- and B-cells during development; and
active ‘peripheral’ suppression of immuno-reactive T-lymphocytes by a unique population of
immunocytes, regulatory T cells (Tregs) (1–3).
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Tregs are a subset of CD4+ T cells that constitutively express
high levels of IL-2 receptor subunit, CD25, on their cell surface
and are classically identified as CD4+ CD25+ T cells (3, 4). The
high expression of CD25 on Treg cells allows them to act as ‘IL-2
sink’ and absorb IL-2 from the local microenvironment. This
elegant mechanism renders Tregs to inhibit IL-2 dependent
proliferation of effector T cells (Teff) and promote their
apoptosis (5). A similar IL-2 sequestration-based mechanism
has been shown to operate in Treg-mediated regulation of
natural killer (NK) cells’ function (6, 7). Another cell surface
receptor cytotoxic T lymphocyte antigen 4 (CTLA-4)- that
functions as an immune checkpoint- is known to be
constitutively expressed on Tregs and has been implicated in
Treg-mediated suppression of Teff responses (8, 9). The
differentiation, identity, and function of Tregs depend on the
expression of lineage-specifying transcription factor Foxp3 (10–
13). By virtue of their ability to dampen immune responses,
Tregs are not only critical for averting autoimmune diseases, but
they also form the cellular basis of resolution of inflammation
and tissue repair after the host response to pathogenic infection -
a phenomenon also known as immune homeostasis (4, 14–20).
Consequently, genetic perturbation of Foxp3 locus in mice leads
to loss of Tregs, and these Foxp3-mutant Scurfy mice manifest
lethal inflammation and this phenocopies the Foxp3-less disease
in humans, immune dysregulation polyendocrinopathy
enteropathy X-linked (IPEX) syndrome (13, 21–23).

Evidence gathered over the last two decades has highlighted
the role of Tregs as an important negative regulator of immune
responses in diverse physiological as well as pathological settings.
Pregnancy is one such biological process where Tregs have been
implicated to play a crucial and interesting role. During the
course of pregnancy, the fetal trophoblast cells emanating from
the growing embryo invade the uterine tissue and facilitate the
formation of placenta. The growing embryo is a semi-allogenic
entity as it derives half of its genetic information from the mother
while the other half from the father leading to the expression of
antigens that are both foreign as well as self to the mother. A
successful pregnancy necessitates that a semi-allogenic fetus is
tolerated by the maternal immune system and Tregs actively
contribute to the establishment of maternal immune tolerance
towards the developing fetus (24–26).

While pregnancy is a physiological phenomenon, tumour is a
pathological mimic in terms of tissue invasion. Tumours harbour
Tregs that facilitate their survival, and increased tumour Tregs
are often associated with a poor prognosis in many cancer types
(27–29). The similarities between the placental and tumour
microenvironment provide an exciting avenue to understand
the phenomenon of local immunosuppression. Understanding
the differences between the physiological uterine Tregs and
pathophysiological tumour Tregs can provide insights into the
development of novel therapies specifically targeted towards
tumour Tregs. In this review, we first survey the existing
literature on Tregs in pregnancy and cancer. We then attempt
to highlight the similarities and differences between Tregs from
these two physiologic and pathologic states. This information
will serve as a paradigm towards novel immunotherapy-based
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treatment measures for cancer during pregnancy, and we discuss
the challenges and scope of targeting Tregs for treating cancer
during pregnancy in the last section of this review.
UTERINE TREGS

The maternal decidua originating from the endometrial lining of
the uterus and fetal placenta derived from the trophectoderm of
the blastocyst constitute the maternal-fetal interface (30).
Interestingly, an extraordinarily large proportion (~40%) of the
maternal decidua is composed of immune cells, and T cells
(CD3+TCRab+) constitute ~10-20% of maternal leukocytes in
the first trimester decidua (30–32). The T cell pool at maternal-
fetal interface has cellular repertoire that can have a negative
impact on the pregnancy [T helper type 1 (Th1) cells, Th17 cells,
cytotoxic T-lymphocytes (CTLs)] as well as cells that can
positively influence the fetal growth (Tregs) (33). Hence, a
dynamic equilibrium of effector and tolerance compartments
of the T cell repertoire is essential to ensure successful
placentation and a healthy pregnancy.

On contrary to the general notion that maternal immune
responses are in suppressed state at maternal-fetal interface, it
was observed that the maternal effector T cells display the
potential to be primed by fetal alloantigens and become
activated (26, 34, 35). However, this does not result in loss of
fetus as tolerance to fetal alloantigens is induced and sustained
during pregnancy (34). These observations point towards the
establishment of temporal immune tolerance at maternal-fetal
interface during pregnancy that licences fetal cells to
paradoxically exist in the presence of maternal immune
aggression and Tregs play a key role in establishing
this tolerance.

The major event that commences the immune activities at
maternal-fetal interface is the contact of male seminal fluid with
uterine tissue after conception. This leads to infiltration of innate
immune cells like dendritic cells (DCs) that traffic paternal
antigens to the draining lymph nodes in order to expand the
population of thymic and peripheral Tregs that are further
recruited to endometrium (36–38). Additionally, male seminal
fluid contains various factors like transforming growth factor
(TGF)-b, prostaglandin E, and soluble CD38 that can skew T cell
fate commitment towards Tregs (39, 40).

Expansion of CD4+CD25+ Tregs was observed during
pregnancy in both mice (25) and humans (31, 41). During
the first and second trimester, decidual Tregs constitute a
significant proportion (10-30%) of the CD4+ T cells (25, 31),
and decline postpartum (41). Interestingly, this increase in
Treg proportion was not restricted to maternal-fetal interface
and expansion of Tregs was also observed in other peripheral
tissues of pregnant females (25). These observations suggest
that the maternal immune system undergoes a systemic
change during the period of gestation. Uterine CD4+CD25+

T cells expressed Foxp3 messenger RNA confirming their
identity as bonafide Tregs (25, 41). Maternal Tregs were also
shown to suppress an aggressive allogeneic response directed
April 2022 | Volume 13 | Article 866937
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against the fetus, and their absence led to immunological
rejection of the fetus (25). It was also seen that Tregs from
both pregnant and non-pregnant mice were able to infiltrate
the decidua and placenta of an abortion-prone mice model;
however, Tregs only from pregnant mice were capable of
preventing fetal rejection in vivo (42). These results suggest
that Tregs exposed to paternal alloantigens have unique
immunoregulatory properties not shared with Tregs from
non-pregnant mice. On a similar line, another study
demonstrated that frequencies of Tregs increase more in
allogeneically pregnant mice compared to syngeneically
pregnant mice and these cells contribute to a lowered
alloreactivity against paternal antigens (43).

Studies have demonstrated that depletion of Tregs either with
anti-CD25 antibodies or using Foxp3-Dtr mice promotes
maternal-fetal conflicts in allogeneic pregnant mice, but not in
syngeneic pregnant mice (44, 45). It has also been observed
that loss of Tregs or their dysfunction is associated with
several pregnancy-associated disorders such as recurrent
pregnancy loss (46) and preeclampsia (47, 48), further
emphasizing on the importance of Tregs in immune escape by
the growing embryo.
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Tregs exert a range of immune-suppressive, anti-inflammatory,
and vascular remodelling functions to support successful embryo
implantation in decidua (33, 49). Uterine Tregs exhibit classical
attributes of suppressive T cells like elevated expression of CD25,
CTLA-4, IL-10, and TGF-b, and prevent effector T cell responses
to fetal alloantigens (45, 50–52). Tregs also have an important role
in protection from invariant NK T (iNKT) cell-mediated
pregnancy loss (50). Tregs also support immune-suppressive
phenotype of other cell lineages like macrophages, DCs and
uterine NK (uNK) cells to aid in healthy pregnancy (33). And in
turn, cross-talk between decidual NK and CD14+ myelomonocytic
cells initiates a cascade of events promoting Treg induction and
immunosuppression (53). In brief, Tregs do not work alone, and
both regulate, and are regulated by various other cell lineages,
immunomodulatory chemokines, and molecules in ensuring a
healthy pregnancy (Figure 1A).
TUMOUR TREGS

Cancer is viewed as a group of pathological tissue abnormalities
that include abnormal cell growth and aberrant gene expression.
A

B

FIGURE 1 | Origin and mechanisms of Tregs in pregnancy and cancer. (A) After conception, the seminal fluid encounters the uterine tissue. The presentation of paternal
antigens by dendritic cells (DCs) to T cells as well as other soluble factors in the seminal fluid favour the induction of regulatory T cells (Tregs). The uterine Tregs express
markers such as CTLA-4, PD-1, and Foxp3, and expand locally in the endometrium during early pregnancy (left panel). Uterine Tregs express factors such as IL-10 which
inhibits the proliferation and function of T effector cells (Teff); TGF-b which inhibits the function of cytotoxic natural killer (NK) cells; and HO-1 which maintains decidual DCs
in an immature state. These immature DCs express higher levels of IL-10 that further supports the immune-suppressive phenotype of uterine Tregs. Tregs also induce the
expression of IDO by tolerogenic DCs (tDCs) which inhibits Teff cell function (right panel). (B) Cells in tumour microenvironment release chemokines that recruit Tregs
expressing chemokine receptors such as CCR4, CCR5 and CCR8. Tumour Tregs have thymic origin and interact with diverse cell types in the tumour microenvironment
(left panel). IL-2 is produced by Teff cells, which is sequestered by Tregs as they constitutively express IL-2 receptor subunit CD25, thus decreasing the bioavailability of
IL-2 to Teff cells and inhibiting their function. Tregs may control DCs’ activity through CTLA-4-CD80/86 axis. Tregs also produce immunosuppressive cytokines such as
IL-10, TGF-b, and IL-35 that further inhibit the function of Teff cells and antigen-presenting cells (APCs) (right panel). PGE, Prostaglandin E; TGF-b, Transforming growth
factor-b; HO-1, Heme oxygenase-1; IDO, Indoleamine 2,3-dioxygenase. Created with BioRender.com.
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The progression of cancer is reliant on the interaction between
the tumour cells and immunocytes in the surrounding tumour
microenvironment, such as tumour infiltrating lymphocytes
including Tregs and innate lymphoid cells (ILCs), myeloid-
derived suppressor cells (MDSCs), tumour-associated
macrophages (TAMs), and tolerogenic dendritic cells (54, 55).
Tumour-derived signals often lead to tumour cells evading the
immune effector cells, and it has been observed that Tregs are a
significant contributor to the immune escape by tumours (56,
57). Thus, Tregs are at crossroads of health and pathology in
pregnancy and cancer.

However, on contrary to much believed notion that
infiltration of Tregs in tumours results in poor clinical
outcomes in various cancers, the role of Tregs in colorectal
cancers has been debatable (58, 59). Saito et al. recently
demonstrated that colorectal cancers can be categorized into
two subclasses based on the degree of infiltration of non-
suppressive Foxp3lo T cells that are characterized by absence of
naive T cell marker CD45RA and secretion of inflammatory
cytokines such as IFN-g (60). A strong correlation between the
frequency of non-suppressive Foxp3lo T cells and the
transcription levels of IL-12A and TGF-b1 in colorectal cancer
tissues contributed to a better prognosis in colorectal cancer
patients. Similar results have been observed in the patients with
Hodgkin’s lymphoma, where a high number of Foxp3+ cells
correlated with longer event free survival, and relapsed samples
tended to have a lower frequency of Foxp3+ cells (61). These
results highlight the phenotypic and functional heterogeneity of
Tregs in cancer tissues and warrant a much careful analysis of
Treg subtypes in various types of cancers.

Tumour cells or infiltrating innate leukocytes release
chemokines such as CCL17 and CCL22 to promote the
migration of thymic Tregs expressing receptors such as CCR4,
CCR5, and CCR8 from the secondary lymphoid tissues to the site
of tumour (62–66). Suppressive nature of Tregs in tumours is
supported by the expression of CD25, PD-1 and CTLA-4 on
their surface which further shapes cellular architecture of
tumours in an immunological sense. For example, high levels
of Treg-intrinsic CTLA-4 may aid in suppressing dendritic cells’
activities by affecting CD80 and CD86 expression; while CD25
expression may impact effector T cell and NK cell responses by
quenching IL-2 in tumour microenvironment (67, 68). On the
other hand, tumour infiltrating myeloid cells such as DCs and
MDSCs may support recruitment and differentiation of tumour
Tregs via secretion of chemokines and cytokines such as TGF-b
(69, 70). Overall, an extensive cross-talk of tumour and immune
cells with Tregs defines the immunological nature of tumour
milieu (Figure 1B).
UTERINE VS. TUMOUR TREGS: CLOSE
OR POLES APART?

The parallels between maternal-fetal interface and tumour arise
from multiple observations- 1) Both fetus and tumour are
invasive in nature. 2) These tissues exist in a niche
Frontiers in Immunology | www.frontiersin.org 4
microenvironment. 3) Tregs support the growth of both of
these tissues (71). Remarkably, uterine and tumour Tregs also
display several similarities in their transcriptional signatures. A
recent study by Wienke et al. focused on the transcriptional
status of uterine Tregs in myometrial biopsies from maternal-
fetal interface and compared the transcriptomic profile of these
cells with peripheral blood-derived Tregs and tumour Tregs (72).
Uterine Tregs at maternal-fetal interface showed increased
suppressive capabilities compared to Tregs in circulation with
elevated levels of TIGIT, CD25, IL-10, CTLA-4, OX-40, ICOS,
PD-1 and LAG3. This signature is frequently associated with
enhanced suppressive capabilities of Tregs or a state also known
as “effector Tregs”, especially present in tissues. Not surprisingly,
uterine Tregs exhibited features of tissue imprinting with
upregulation of genes such as BATF and PRDM1 that are
unique to effector Tregs. Interestingly, tumour Tregs also
display elevated suppressive activity as well as an effector
phenotype with expression of signature genes (66, 73, 74). On
similar lines, Wienke et al. observed that the transcriptomic
landscape of uterine Tregs displays stronger overlap with that of
tumour Tregs, and hepatocellular carcinoma (HCC)-infiltrating
Tregs are closest to the uterine Tregs (72, 75). Most importantly,
uterine and tumour Tregs-specific gene signature was distant
from that of healthy tissue-derived Tregs, suggestive of their
unique capabilities (72). These results indicate that both uterine
and tumour Tregs acclimatize to the tissue microenvironment,
with their major job being active suppression of the local
immune responses.

While the similarities between uterine and tumour Tregs have
been well understood, there is still scope for further studies on
understanding the specific differences between uterine and
tumour Tregs. To gather the differences between uterine and
tumour Tregs, it is imperative to first acknowledge the
dissimilarities between the tissue microenvironment in which
these Tregs home. One fundamental difference between
maternal-fetal interface and tumour is the inflammatory milieu
of the two tissues. Cytokines such as IL-10 in the tumour
microenvironment promote a shift towards Th2 responses.
Th2 cells support neoplastic growth through limiting CTL
activity (76–78) and tumour Tregs may foster Th2 niche in
cancer (79). On the other hand, the inflammatory environment
during pregnancy is dynamic. It was observed that several pro-
inflammatory mediators are required for the chemotaxis of
trophoblast cells (80, 81). This pro-inflammatory signature
shifts to a dominant Th2 state which is required for the
maintenance of pregnancy, while parturition is associated with
a shift towards Th1 responses (82, 83). This dynamicity of Th
responses highlights the less appreciated heterogeneity of Tregs
during the course of gestation and raises the need for a
comprehensive study in this direction.

Another major difference is the type of tissue antigens that
uterine and tumour Tregs respond to and the origin of these
Tregs. During pregnancy, Tregs respond to a mix of ‘maternal
self’ and ‘paternal non-self’ antigens. While the initiation of
events promoting embryo implantation enables the infiltration
of thymic Tregs, it was observed that the decidual environment
April 2022 | Volume 13 | Article 866937
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FIGURE 2 | Parallels and dissimilarities between uterine and tumour Tregs. (A) Uterine Tregs display several tissue adaptations which mimic tumour Tregs. Both
uterine and tumour Tregs are characterised by higher expression of BATF and PRDM1. These cells also demonstrate increased suppressive abilities with elevated
levels of IL-10 in comparison to their blood counterparts. Uterine and tumour Tregs exhibit an effector phenotype with increased expression of molecules such as
TIGIT, PD-1, OX-40, CTLA-4 and CD25. (B) A major difference between uterus and tumour microenvironment is inflammatory milieu of these two tissues. Uterine
microenvironment oscillates between T helper type 1 (Th1) and Th2 during pregnancy while tumour growth is fostered by Th2-polarised microenvironment. Uterine
Tregs respond to ‘paternal non-self’ and ‘maternal self’ antigens and expand locally. On the contrary, thymus-derived Tregs populate tumour and are exposed to
self- and neo-tumour antigens. Uterine and tumour Tregs display phenotypic and functional heterogeneity with uterine Treg subtypes being majorly immune-
suppressive while tumour Tregs being both suppressive and non-suppressive. Created with BioRender.com.
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induces extrathymic expansion of Tregs that are vital for the
maintenance of pregnancy (45, 84). On the contrary, it has
been suggested that thymic Tregs gain an upper hand in
tumour and expand in response to self- and neo-tumour
antigens (85, 86). However, there are also reports suggesting
tumour conversion of naive T cells into Treg cells, and the
question of the origin of tumour Tregs is still of significant
interest (87, 88).

The phenotypic and functional heterogeneity of uterine and
tumour Tregs adds another layer to their pre-existing
complexity. As briefly discussed earlier, two distinct
populations of non-suppressive Foxp3lo and suppressive
Foxp3hi Tregs home some cancer types such as colorectal
cancer and their relative frequency contributes to the disease
prognosis (60). Similarly, a recent study by Salvany-Celades et al.
highlighted the flavours of Tregs, namely CD25hiFoxp3+, PD-
1hiIL-10+, and TIGIT+Foxp3dim in uterine tissue during
pregnancy. These three uterine Treg populations expanded
based on different cues offered by diverse cell types at
maternal-fetal interface. Interestingly, unlike the Foxp3lo and
Foxp3hi cells in colorectal cancer, all three Treg subtypes in the
decidua showed suppressive activity on CD4+ T cells while only
CD25hiFoxp3+ population reflected consistent suppressive
activity on CD8+ T cells (84). These observations encourage us
to take a step back and have a deeper look at our understanding
of uterine and tumour Tregs. Figure 2 summarizes a head-to-
head comparison of uterine vs tumour Tregs and their
tissue microenvironment.
TARGETING TREGS FOR CANCER
TREATMENT DURING PREGNANCY:
A DOUBLE-EDGED SWORD?

The incidence of cancer during pregnancy is not uncommon. As
the mean age for pregnancy is increasing, the potential risk of
having malignancies during gestation is also increasing.
Pregnancy-associated breast cancer (PABC), melanoma, and
other cancer types have been diagnosed in women during
pregnancy or in the postpartum period (89–93). Chemotherapy
is a viable treatment option for cancer; however, chemotherapy
during the first trimester imposes an additional risk of
teratogenesis, causing irreversible harm to the fetus. Hence,
immune checkpoint inhibitors that target immunosuppressive
Tregs can be considered as an alternative therapeutic option for
cancer during pregnancy. The most common immune checkpoint
inhibitors target PD-1 and CTLA-4 pathways on leukocytes, and
both these pathways are crucial for Treg functioning and the
maintenance of pregnancy (84, 94–96). Targeting PD-1 and
CTLA-4 pathways is also aimed at restoring the function of
tumour-infiltrating lymphocytes, which is critical for efficient
anti-tumour immunity (97–100). Immunotherapies targeting these
immune checkpoint inhibitors can have negative consequences on
pregnancy as an altered ratio of immunosuppressive Tregs and pro-
inflammatory T cells is associated with pregnancy-related
complications (46, 101, 102).
Frontiers in Immunology | www.frontiersin.org 6
There are few case studies that evaluated the clinical outcome
of immunotherapy for cancer during pregnancy; however, the
data is dichotomous. It was observed in two independent studies
that treatment of melanoma with dual immune checkpoint
inhibitors (anti-CTLA-4 and anti-PD-1) did lead to the
delivery of healthy babies (103, 104). Similar encouraging
observations were made by another recent study and six of
seven women that received immunotherapy for melanoma had
full-term vaginal deliveries (105). However, a recent review
analysed the data from 7 different studies on the therapeutic
use of immune checkpoint inhibitors for cancer during
pregnancy. This review highlighted complications during
pregnancy (71.4%), prematurity (88.9%) and low birth weight
(1267g) following immunotherapeutic treatment of cancer (106).
These results suggest that immunotherapy for cancer may not
always be fatal for fetus but the course of gestation may involve
various pregnancy-related complications. Most importantly, the
lack of larger cohorts in these studies is a major drawback.
Hence, the efficacy and safety of current immunotherapy
regimens during pregnancy remains debatable. More extensive
studies and scientific discussion is needed before Treg-directed
immunotherapies for cancer during pregnancy can become a
norm. And, the studies highlighting differences between uterine
and tumour Tregs can open new immunotherapy based avenues
for the treatment of cancer in pregnant women.
CONCLUSIONS AND FUTURE
PERSPECTIVES

The immunological underpinnings of Tregs at maternal-fetal
interface and in tumours have greatly enhanced our
understanding of how physiological and pathological processes
of pregnancy and cancer ensue. Uterine and tumour Tregs
display significant overlap in their transcriptional signatures;
however, future studies should focus on dissimilarities between
these Treg types. This knowledge will not only help in answering
questions on immunotherapies for cancer during pregnancy, but
may also contribute to the development of novel immunological
treatment regimens for other pregnancy-associated disorders
such as preeclampsia and recurrent pregnancy loss. Moreover,
larger cohorts will aid in evaluating novel Treg-based
immunotherapies for cancer during gestation or in
postpartum period.

In conclusion, our understanding of immunological attributes
during health and disease has improved tremendously in recent
times and this knowledge needs to be harnessed for safer
pregnancies and treating diseases like cancer.
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