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Abstract

Background: The infective stage of the parasitic nematode hookworm is developmentally arrested in the environment and
needs to infect a specific host to complete its life cycle. The canine hookworm (Ancylostoma caninum) is an excellent model
for investigating human hookworm infections. The transcription factor of A. caninum, Ac-DAF-16, which has a characteristic
fork head or ‘‘winged helix’’ DNA binding domain (DBD), has been implicated in the resumption of hookworm development
in the host. However, the precise roles of Ac-DAF-16 in hookworm parasitism and its downstream targets are unknown. In
the present study, we combined molecular techniques and bioinformatics to identify a group of Ac-DAF-16 binding sites
and target genes.

Methodology/Principal Findings: The DNA binding domain of Ac-DAF-16 was used to select genomic fragments by in vitro
genomic selection. Twenty four bound genomic fragments were analyzed for the presence of the DAF-16 family binding
element (DBE) and possible alternative Ac-DAF-16 bind motifs. The 22 genes linked to these genomic fragments were
identified using bioinformatics tools and defined as candidate direct gene targets of Ac-DAF-16. Their developmental stage-
specific expression patterns were examined. Also, a new putative DAF-16 binding element was identified.

Conclusions/Significance: Our results show that Ac-DAF-16 is involved in diverse biological processes throughout
hookworm development. Further investigation of these target genes will provide insights into the molecular basis by which
Ac-DAF-16 regulates its downstream gene network in hookworm infection.
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Introduction
Many parasitic nematodes, including hookworms, infect the

definitive host as developmentally arrested third-stage larvae (L3).

The L3 is analogous to the dauer stage of the free-living nematode

Caenorhabditis elegans in many biological aspects [1,2,3]. The

FOXO-family forkhead transcription factor DAF-16 mediates

dauer formation of C. elegans in response to cues indicating poor

environmental conditions. When conditions improve, DAF-16 is

negatively regulated by an insulin-like signaling (ILS) pathway that

culminates in transport of phosphorylated DAF-16 out of the

nucleus [4,5,6,7,8,9,10]. The primary protein structure of DAF-16

contains a conserved forkhead or ‘‘winged helix’’ DNA binding

domain (DBD) with three major a-helices and two large wing-like

loops [11,12,13]. Orthologs of DAF-16 have been recently

characterized in the parasitic nematodes Ancylostoma caninum (Ac-

DAF-16), Strongyloides stercoralis (Ss-DAF-16), and Haemonchus

contortus (Hc-DAF-16) [14,15,16,17]. Heterologous rescue of C.

elegans daf-16 mutants [15,16] and reporter assays in mammalian

cells [17,18] indicate that parasitic nematode DAF-16 orthologs

play similar regulatory roles during development, providing

further support for the use of dauer exit as a model to investigate

the molecular events of infection and successful establishment of a

parasitic relationship with the host [1].

Murine DAF-16/FOXO was shown to bind an 8-bp consensus

DAF-16 family member binding element (DBE) in vitro [19].

Several approaches have since been used to identify DAF-16 target

genes in C. elegans, with the results suggesting that DAF-16 is

recruited to a large number of promoters to modulate the

expression of genes involved in development, metabolism, stress

responses, and longevity [20,21,22,23].

Our lab has been focusing on the infectious process of hook-

worms, one of the most common infectious diseases in tropical and

subtropical countries, causing anemia and malnutrition in almost a

billion people [24]. The canine species A. caninum is a commonly

used model for investigation of human hookworm infections. The

DAF-16 ortholog from A. caninum (Ac-DAF-16) was shown to be

transcriptionally active and capable of interacting with a

hookworm 14-3-3 protein, suggesting a critical role in gene

expression associated with hookworm L3 development and the

transition to parasitism [17,18]. Given the functional conservation
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between dauer recovery and hookworm infection, there is

considerable interest in the transcriptional outputs of DAF-16 in

hookworm and their function in parasitic development. Dissecting

the hookworm DAF-16 downstream effector network will have

important implications in the development of new intervention

strategies for hookworm and other nematode infections.

The present study utilizes in vitro genomic selection, a technique

built on the concept of systematic evolution of ligands by exponential

enrichment (SELEX), where natural genomic sequences are used as a

source for selection and amplification [25]. A combination of in vitro

genomic selection and subsequent cloning has been developed as a

powerful method to identify naturally occurring DNA-binding sites in

a genomic context and provide a foundation for investigation of the in

vivo targets of DNA-binding proteins [26,27,28]. We employed the

in vitro genomic selection strategy using Ac-DAF-16 DBD to screen

digested hookworm genomic DNA, and identified high-affinity

binding sites in the hookworm genome and potential Ac-DAF-16

gene targets. Finally, the expression profile of the Ac-DAF-16 related

transcripts was determined by examining cDNAs from four

developmental stages of A. caninum.

Results

Ac-DAF-16 DNA binding domain (DBD) expression and
purification

Amino acid sequence alignment of different FOXO proteins

revealed that the DBD is approximately 100 amino acids-long,

with a conserved N-terminal region, and a divergent, but

arginine/lysine-rich C-terminal region (Fig. 1). Several crystal

structures for FOXO transcription factor DBDs have been solved,

and reveal that the structural basis for FOXO protein recog-

nition of DNA comes from direct base-specific contacts as well

as phosphate contacts between DNA molecules and critical C-

terminal arginine/lysine amino acid residues in the FOXO DBD

[29,30]. Based on the information from those crystal structures

and sequence alignment between different DAF16/FOXO

molecules, the DBD of Ac-DAF-16 was defined to start at amino

acid Asn214 and end at amino acid Asp314.

Properly functioning recombinant hookworm DAF-16 DBD

peptide was required for the in vitro genomic selection technique. A

fragment of 303 bp corresponding to Ac-DAF-16 DBD (aa 214-

314), and a 249 bp fragment corresponding to a truncated Ac-

DAF-16 DBD (aa 220–302) lacking the arginine/lysine-rich C-

terminal region (DAc-DAF-16 DBD) were cloned and expressed

(Fig. 2A). The calculated molecular masses for the coding regions

of these two constructs are 14047.4 Da (pET28a-Ac-DAF-16

DBD) and 12510.6 Da (pET28a-DAc-DAF-16 DBD). As expected,

bands corresponding to the predicted molecular weights (14 kDa

for rAc-DAF-16 DBD, and 12 kDa for rD Ac-DAF-16 DBD) were

detected by Coomassie Blue staining (Fig. 2B). Immunoblots using

an anti-His tag (C-term) antibody indicated that the bands were

present only in E. coli cultures that had been transformed with the

expression constructs and induced with IPTG (Fig. 2C, Lanes 3

and 4).

Ac-DAF-16 was previously shown to bind to the consensus DBE

sequence and initiate reporter gene transcription [17]. Our pull-

down assay results (Fig. 3) indicated that rAc-DAF-16 DBD, but

not rD Ac-DAF-16 DBD, recognizes and binds strongly to the

conserved DBE, indicating that the arginine/lysine -rich section at

the C-terminus of DBD is critical for its binding activity.

In vitro genomic selection
The in vitro genomic selection enabled unbiased identification of

transcription factor binding sites in the absence of influence from

chromatin and other cofactors [25]. Immobilized rAc-DAF-16

DBD was first prepared by binding to anti-FLAG M2 affinity

Figure 1. Amino acid sequences of DNA binding domains from selected FOXO transcription factors were aligned using CLUSTAL W
software on the San Diego Supercomputer Center Biology Workbench server (http://workbench.SDSC.edu) and displayed using
BOXSHADE3.21 software located on Swiss EMBnet server (http://www.ch.embnet.org). Identical amino acids are in red type, and
conserved amino acids in blue. C-terminal arginine and lysine residues are shaded. The DBDs are from the following species: AcDAF16 (Ancylostoma
caninum accession ACD85816); CeDAF16 (Caenorhabditis elegans, AAB84390); Foxo3, (Mus musculus, AAH19532); Foxo1 (Homo sapiens, AAH70065);
Foxo4 (Homo sapiens, AAI06762).
doi:10.1371/journal.pone.0012289.g001

Hookworm DAF16/FOXO Genes

PLoS ONE | www.plosone.org 2 August 2010 | Volume 5 | Issue 8 | e12289



matrix, which was confirmed by silver staining (Fig. 4 A) and

Western blot (Fig. 4 B), and used to screen BfuCI digested A.

caninum total genomic DNA (Fig. 4C). Discrete bands appeared

progressively over the four rounds of binding and PCR

amplification (Fig. 4D, lanes 2 to 5), suggesting preferential

amplification of particular genomic fragments. Cloning the

amplified DNA fragments from the fourth round resulted in a

total of 311 clones (117 pBluescript KS+ constructs and 194

pGEM-T Easy constructs), and high-quality sequences were

obtained for 274 of them. The length ranged from 100 bp to

300 bp. Sequence analysis showed that 198 sequences contained

low-complexity microsatellite regions, which were characterized

by the presence of the repetitive trinucleotide ‘‘GTT’’ or its reverse

complement ‘‘AAC’’ with a repeat number of 5 to 15. The

remaining 76 sequences represented 25 distinct genomic frag-

ments, and 24 of them were successfully mapped to A. caninum

genomic sequences. A single fragment remained unidentified after

extensive sequence similarity searching against nucleotide data-

bases at Genebank, suggesting that it might by located in a section

of the A. caninum genome that has not been sequenced. Five of the

25 fragments were overrepresented, and the remaining 20

fragments were recovered once or twice (Table 1). The sequences

of the distinct genomic fragments were submitted to the Genome

Survey Sequence database (dbGSS) at the NCBI, and the

accession numbers reported in Table S1.

A control selection was performed to control for non-specific

binding to the antibody-bead matrix. A total of 211 clones were

picked, and 190 high quality sequences were obtained. Sequence

analysis showed that anti-FLAG M2 affinity matrix bound to a

different set of hookworm genome fragments (Table S2). Among

these sequences, only one was shared with the DAF-16 DBD-

selected fragments, indicating that selection using the DBD

Figure 2. Expression of Ac-DAF-16 DBD (aa 214–314) and D Ac-DAF-16 DBD (aa 220–292) in E. coli Rosetta (DE3) cells. (A) Amino acid
sequences of Ac-DAF-16 DBD and D Ac-DAF-16 DBD. Identical amino acids are in red. (B) Coomassie staining of purified rAc-DAF-16 DBD and rDAc-
DAF-16 DBD. (C) Western blot of rAc-DAF-16 DBD and rDAc-DAF-16 DBD probed with anti-his (C-term) antibody. Lane 1, non-transformed Rosetta
(DE3) cells; Lane 2, pET28a-Ac-DAF-16 DBD transformed Rosetta (DE3) cells in the absence of IPTG; Lane 3, pET28a-DAc-DAF-16 DBD transformed
Rosetta (DE3) cells induced with IPTG; Lane 4, pET28a-Ac-DAF-16 DBD transformed Rosetta (DE3) cells induced with IPTG. The arrowheads indicate
the position of Ac-DAF-16 DBD or D Ac-DAF-16 DBD.
doi:10.1371/journal.pone.0012289.g002

Figure 3. Streptavidin bead pull-down to detect DBE binding
activity of recombinant Ac-DAF-16 DBD and DAc-DAF-16 DBD.
Biotinylated dsDBE (Bio-DBE) was incubated with purified Ac-DAF-16
DBD or DAc-DAF-16 DBD, and peptide/oligonucleotides complexes
were pulled down with streptavidin conjugated Sepharose beads.
Precipitated DBD/oligo complexes were separated by SDS-PAGE and
blotted to PVDF membranes for Western blotting using an anti-His (C-
term) antibody. Bio-random represents a biotinylated oligomer of
random sequence.
doi:10.1371/journal.pone.0012289.g003
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generated specific genomic fragments associated with DAF-16

binding elements.

Motif analysis of rAc-DAF-16 DBD bound hookworm
genome fragments

The consensus DBE is an 8-bp oligonucleotide, with the

sequence 59-TTGTTTAC-39 [19]. The core sequence of DBE is

TGTT, and a single base-pair replacement in this sequence might

significantly weaken its interaction with forkhead proteins.

Therefore, only a single mismatch outside of the DBE core

sequence was allowed when the 24 selectively bound fragments

were inspected for DBEs. Using this criterion, 13 fragments

contained the DBE or its reverse counterpart (Table 1), and two

contained two copies of the DBE arranged as direct repeats

separated by variable length of nucleotides. The remaining 11

genomic fragments were analyzed further, and a new over-

represented sequence, 59-GAC/GAA/TG-39, was found, occur-

ring 17 times in 9 of those fragments (Fig. 5a, Table 1). Genomic

fragments selected by the anti-FLAG M2 control were also

analyzed for over-represented motifs. One element (59- AGGAA-

GAG- 39) was found in 36% of the control fragments, but only 5%

(5/103) of the fragments contained a DBE-like element (Table S2),

indicating that the DBE and over-represented GAC/GAA/TG

motif were bound specifically by rAc-DAF-16 DBD.

The newly identified motif was tested for its ability to bind to Ac-

DAF-16 DBD. Oligos containing the four most abundant motifs

(59-GACAAG-39, 59-GACATG-39, 59-GAGAAG-39, 59-GA-

GATG-39) were tested in a streptavidin bead pull-down assay.

The oligos failed to pull down rAc-DAF-16 DBD (data not shown).

One possible explanation for this result was that additional

flanking sequence might be required for efficient binding. To test

this possibility, biotinylated T7 primer was used to amplify

representative cloned genomic fragments, which were tested for

their ability to bind the DAF-16 DBD. As shown in Figure 5b, rAc-

DAF-16 DBD strongly bound to positively selected genomic

fragments that contained a DBE (fragments 4.6 and 2.23) or the

newly identified motif (fragments 3.23 and 3.28), but not to the

anti-FLAG M2 affinity matrix selected (control) genomic frag-

ments. This suggests that sequence flanking the element is required

for in vitro binding, and that the newly identified motif specifically

binds to the Ac-DAF-16 DBD when located in the proper context.

Genes or gene clusters linked to the recovered rAc-DAF-
16 DBD bound fragments

Transcription factor binding sites are typically linked to their

direct target genes. To identify the genes or gene clusters linked to

the rAc-DAF-16 DBD bound fragments, approximately 6 kb of the

A. caninum genome scaffold sequences [39], (Mitreva, unpublished)

containing the fragments at the center were searched against stage-

specific hookworm cDNA databases. Nineteen of the 24 genome

scaffolds retrieved about 5000 cDNAs from different developmen-

tal stages, one scaffold matched an rRNA region, and the other

four scaffolds either had poor sequence alignments or failed to

retrieve any cDNAs (Table 2, Table S3).

Clustering the retrieved cDNAs yielded 22 transcript contigs.

One rAc-DAF-16 bound fragment was allowed to be linked to one

or two transcript contigs. Sequence alignment between those

transcripts and genome scaffolds revealed that rAc-DAF-16 bound

fragments resided in coding regions, introns, or 39 untranslated

regions (39-UTR) (Table S3). However, not all the relative

locations, especially the upstream ones, could be detected by this

method due to incomplete annotation of the hookworm genome.

Figure 4. In vitro genomic selection of A. caninum DNA fragments containing Ac-DAF-16 binding sites. (A–B) Immobilized rAc-DAF-16
DBD on Anti-FLAG M2 matrix confirmed by silver staining (A) and Western Blot with anti-FLAG antibody (B). The arrowheads indicate the position of
Ac-DAF-16 DBD. M, protein standard; lane 1, Anti-FLAG M2 matrix; lane 2, anti-FLAG M2 matrix incubated with 2 ug of Ac-DAF-16 DBD and washed
with 500 mM KCl. (C) A. caninum genomic DNA preparation. A 0.8% agarose gel was used to examine the DNA quality, and increasing amounts of a l
DNA standard were loaded to estimate DNA concentration. Lane 1–5, 30 ng l DNA standard, 60 ng l DNA standard, 90 ng l DNA standard, 120 ng l
DNA standard, 150 ng l DNA standard, respectively; lane 6, 2.5 mL of A. caninum genomic DNA sample; Lane7, 5 mL of A. caninum genomic DNA
sample. (D) PCR amplification of the genomic fragments after each selection round. Lane 1, A. caninum genomic DNA sample cut with BfuCI; lane 2,
1st round purified PCR product; lane 3, 2nd round purified PCR product; lane 4, 3rd round purified PCR product; lane 5, 4th round purified PCR
product.
doi:10.1371/journal.pone.0012289.g004
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Transcript sequences were searched against protein databases in

Genbank and Gene Ontology Consortium for prediction of

their function based on homology. The results classified rAc-DAF-

16 linked transcripts into two groups. The first contained

transcripts homologous to known or hypothetical proteins, and

displayed a variety of putative biological processes such as intra-

and extracellular signaling (PKA, NLP-2, SRT-42), metabo-

lism (CPT-II, ABC transporter class F, phosphate transporter),

development (cuticlin), and transcription/translation (SNR-3); the

second contained the transcripts without any identified homologs

across available protein databases and therefore represent putative

A. caninum specific genes.

The recent studies of Wang et al [31] generated 1.5 million

A. caninum cDNAs from four developmental stages of A. caninum:

infective L3 larva (L3), serum stimulated (activated) L3 larva (aL3),

adult male (M), and adult female (F), covering approximately 93%

of the A. caninum transcriptome. This dataset allowed construction

of a stage-specific digital expression profile for many transcripts

[31]. Examining the available expression pattern profiles indicated

that five rAc-DAF-16 linked transcripts (PKA, contig00807,

contig25170, contig12656, and contig08715) were significantly

up-regulated and three (contig40879, contig04080, and phosphate

transporter) were significantly down-regulated by serum stimula-

tion (table 2, Table S3), which is hypothesized to mimic the very

early events of hookworm infections [1]. Three rAc-DAF-16 linked

transcripts (contig00807, contig25170, and NLP-2) are larval

specific, and therefore turned off during development from L3 to

adult. A major difference between parasitic hookworms and free-

living C. elegans is that hookworms are dioecious, and the

differential digital expression profile indicated that nine rAc-

DAF-16 linked transcripts are gender-specific (PKA, contig12656,

contig40879, cuticlin1-17, CPT, contig04080, phosphate trans-

porter, contig08715, and contig44862). Therefore, the DAF-16

linked transcripts identified here are involved in multiple biological

processes during at least 4 hookworm developmental stages.

Discussion

During infection, hookworm L3 resume developmental pro-

grams that had been arrested during the environmental stage,

resulting in the successful establishment of a parasitic relationship

with their host. Most of the molecular events associated with this

‘‘transition to parasitism’’ are still unknown. Dauer recovery of the

free-living nematode C. elegans has long been used as a model for

investigating the mechanisms of this transition to parasitism due to

the biological similarities between the dauer stage and infective L3

of hookworms [1,2,3]. Specifically, the conserved insulin signaling

pathway, which is required for C. elegans to exit the dauer stage in

response to the improving environmental conditions, is also

involved in the hookworm infection process [32,33,34]. Studies

Table 1. Proposed binding motifs found in fragments that bound to DAF-16 DBD in vitro.

Genomc selection clone # Motif present Occurrence Rate

Fragment 1.11 TTGTTTAC (N)n TTGTTTAC 18

Fragment 1.25 CATTTGTT a 10

Fragment 1.3 GAAAACAA b (N)nGTAAACAT b 1

Fragment 1.4 TTGTTTAT b 1

Fragment 2. 10 GAGAAG 1

Fragment 2.14 GTAAACAT b 1

Fragment 2.18 GACAAG 2

Fragment 2.19 GTAAACAA (N)n GTAAATAA 1

Fragment 2.23 AACAAATA a,b 12

Fragment G2.28 AACAAATA a,b 1

Fragment G2.38 GACATG (N)n GAGAAG 1

Fragment 3.23 GACATG (N)n GACATG 1

Fragment 3.28 GGCAAG c 1

Fragment 3.30 7

Fragment G4.41 CTGTTTAC b (N)nCTGTTTAC b 1

Fragment 4.26 ATAAACAA (N)nGTAAATAA 7

Fragment 4.6 GATTTGTT a,b 2

Fragment 5.20 GGCAAG c 1

Fragment G5.21 GACAAG (N)n GAGAAG 1

Fragment G5.7 TACAAGc (N)n GGCAAG c 1

Fragment 6.33 1

Fragment 6.34 TTGTTTAC 1

Fragment 6.48 1

Fragment 8.1 TATTTGTT (N)nCATTTGTT a,b 1

Predicted new rAc-DAF-16 binding sites were indicated as italic.
aReverse DBE.
bOne mismatch compared with consensus DBE.
cOne mismatch compared with predicted GAC/GAA/TG binding site.
doi:10.1371/journal.pone.0012289.t001
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using inhibitors have shown that the ILS pathway is involved in

hookworm larval activation, and the hookworm ortholog of the

central transcription factor in this signaling pathway, DAF-16, has

been identified and characterized [17,35]. Furthermore, Ac-DAF-

16 was transcriptionally active and interacted with hookworm 14-

3-3 protein in a phosphorylation-status dependent way in cultured

mammalian cell [17,18].

DAF-16 is a FOXO transcription factor that is negatively

regulated by ILS [4]. It functions in numerous biological processes,

including metabolism, life span, stress responses, and dauer forma-

tion and exit, by mediating downstream gene expression in response

to environmental and nutritional conditions [36]. Many of the

downstream targets have been identified in C. elegans, and provide

insights into the mechanism by which DAF-16 mediates multiple

phenotypes [20,21,22,23]. While many of these mechanisms are

conserved in hookworms, the life cycles of parasitic nematodes differ

significantly from that of C. elegans, and at least some of the DAF-16

outputs are likely to mediate processes specific to nematode

parasitism. Therefore, fundamental mechanistic questions about

hookworm infection can be addressed by the identification of DAF-

16 binding sites and direct gene targets, and how those downstream

effectors are coordinated in hookworm development.

To begin identifying Ac-DAF-16 target genes, we used an in vitro

genomic selection technique to enrich for genomic fragments that

were bound by the recombinant Ac-DAF-16 DBD. In vitro genomic

selection with transcription factors differs from other affinity-based

strategies because it uses the native genomic background, and

therefore direct transcription factor targets are identified without

influences from complex cellular environments [37]. The cyclical

strategy selects binding sites with relatively high affinity and

reduces indirect or nonspecific binding. In the present study, a

group of genomic fragments with high affinity for rAc-DAF-16

DBD were enriched, as indicated by higher-than-expected

occurrence of some genomic fragments. Sequence analysis

indicated that more than half of those fragments contained a

reported consensus DBE or DBE-like element, and these elements

were present in four of the five most represented DBD bound

genomic fragments. The DBE or DBE-like elements occurred as

single or multiple copies, and the element orientations and

nucleotide spacers between the elements varied. As C. elegans DAF-

16 and its mammalian homologs bind to this consensus DBE, the

presence of the DBE in Ac-DAF-16 selected hookworm genome

fragments suggests a conserved function for hookworm DAF-16.

However, nearly half of the fragments we isolated did not contain

a canonical DBE or DBE-like sequence, suggesting that the DAF-

16 DBD bound to a previously unknown binding element. Further

analysis of these fragments identified an over-represented 6-bp

element, 59- GAC/GAA/TG -39. The Ac-DAF-16 DBD bound to

amplicons containing this element, but not individual oligos,

suggesting that the new element requires surrounding sequence for

DBD binding. Our results do not rule out the presence of

additional DAF-16 binding elements in the hookworm genome. It

is not unusual that a single transcription factor has variable bind

sites [38]. In any case, we have identified a new, previously

unreported DAF-16 DBD binding element (GAC/GAA/TG) in

hookworms, supporting a role for Ac-DAF-16 in multiple, perhaps

novel, hookworm-specific biological processes.

The availability of the draft genome of A. caninum and

comprehensive expression data enabled a detailed analysis of the

DBD-bound genes. Twenty four of 25 rAc-DAF-16 DBD

selectively bound fragments were confirmed as A. caninum, and

their proximal genomic regions were analyzed for coding regions.

A total of 22 transcripts within a 6 kb range surrounding rAc-DAF-

16 DBD bound fragments were identified as Ac-DAF-16 primary

Figure 5. Identification of a novel DAF-16 DBD binding element. (A) Sequence logo of the putative DBD binding motif discovered using
Gibbs Motif Sampler in bound fragments lacking a canonical DBE. (B) Streptavidin bead pull-down to detect the binding activity between positively
selected genomic fragments and rAc-DAF-16 DBD. Biotin labeled PCR products were incubated with rAc-DAF-16 DBD. The protein/biotinylated PCR
amplicon complexes were separated by SDS-PAGE and blotted to PVDF membrances for Western Blotting using anti-FLAG antibody. Lane1–4,
Genome fragments from control selection; Lane 5, Fragment 3.23 (GACAAG motif); Lane 6, Fragment 3.28 (GACAAG motif); Lane 7, Fragment 4.6
(DBE); Lane 8, Fragment 2.23 (DBE).
doi:10.1371/journal.pone.0012289.g005
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target genes. The use of a 6 kb search range was based on C. elegans

transcription factor binding site analyses [20,34]. However, not all

the genomic sequence hits in the present study returned transcript

contigs within this range. Therefore, an extended search might be

necessary to identify them, as A. caninum has a larger genome than

C. elegans [39] and the A. caninum genome project is still underway.

Functions of the proteins encoded by the transcripts were

predicted based on their homology to known or hypothetical

proteins. This analysis suggested that DAF-16 is involved in a variety

of biological processes. For example, PKA is a conserved serine/

threonine kinase, activated by second messenger cAMP, and

converts various extracellular signals into intracellular processes

[40]. Serpentine receptors are G protein-coupled transmembrane

receptors that play important roles in C. elegans chemoreception [41].

The NPL protein is critical for synaptic transmission between

neurons [42], and membrane transporters are involved in transport

of a wide variety of substrates across extra- and intracellular

membranes [43,44]. Cuticlins comprise the insoluble, high-order

material in nematode cuticle and determine the developmental

morphology and mobility of the worms [45]. Small nuclear

riboproteins (SNR) are a part of RNA post-transcriptional

modification machinery [46]. Among these genes, the serpentine

receptor and ABC transporter were also reported in previous studies

of DAF-16 targets in C. elegans, indicating that some pathways

downstream of DAF-16 are conserved in free living and parasitic

nematodes [20,22,23]. Additionally, some rAc-DAF-16 DBD linked

gene transcripts failed to match any homologs by exhaustive search

of the available databases, and were defined as A. caninum specific.

These are of particular interest, as they are absent from C. elegans and

consequently might be involved in parasitism. Furthermore, several

of these molecules could be envisioned functioning during the

transition to parasitism based on homology and expression apttern.

Combining the transcriptomic and genome sequences revealed

the relative location of Ac-DAF-16 binding sites to their linked

genes in the A. caninum genome. However, this method is

biased towards identification of Ac-DAF-16 binding sites located

between exons due to incompleteness of hookworm genome

annotation and the inability to identify 59 ends and promoter

sequences. Nonetheless, all 10 fragments that could be definitively

linked to a gene had binding elements in introns or downstream

sequences, suggesting that they may be regulated differently from

genes with DBEs in the promoter. In C. elegans, DAF-16 target

genes containing DBEs located downstream of the start codon

were more likely to be negatively regulated by DAF-16 [47].

Characterizing intergenic Ac-DAF-16 binding sites will depend on

further information about the genomic structure for the corre-

sponding genes. The present study surprisingly indicates that

Ac-DAF-16 binding sites, unlike C. elegans DAF-16 binding sites,

reside at variable locations relative to the gene transcripts [23],

suggesting that Ac-DAF-16 might regulate expression of genes with

diverse functions and exert its action through different mecha-

nisms.

In the absence of functional information for most of the

identified rAc-DAF-16 linked genes, evidence of differential

expression is the most important source for prioritizing future

investigations. Using the extensive cDNA dataset available for

A. caninum, the expression profile for the gene transcripts have been

quantitatively analyzed by comparing the frequency of EST

occurrence in the different cDNA libraries. Examination of the

expression patterns for the identified transcript contigs in the

present study suggests that Ac-DAF-16 regulates gene expression in

all hookworm developmental stages studied, including exit from

developmentally arrested infective L3 stage, maturation to adults,

and sexual differentiation in adults.

Using the affinity-based in vitro genomic selection procedure, we

have shown for the first time that Ac-DAF-16 directly binds to

response elements in the hookworm genome. The relative location

of Ac-DAF-16 bound elements to the linked genes is variable, with

an apparent bias towards downstream locations. The Ac-DAF-16

direct target candidates that were identified include both

conserved and A. caninum specific genes, and will be subject to

future functional investigations. With more comprehensive

screening such as chromatin immunoprecipitation and improved

A. caninum genome and transcriptome data, more Ac-DAF-16

Table 2. Expression pattern of genes that bound to DAF-16 DBD in vitro.

Genomic
Fragment Contig ID1 Homology/description Adult Expression Pattern2 Larval Expression Pattern3

1.3 11016 cAMP-dependent protein kinase (PKA) down in F up in aL3

3.28 00807 larval specific; up in aL3

1.4 52455 nc nc

4.6 25170 Hypothetical protein R05C11.4 larval specific; up in aL3

6.34 03743 ABC transporter, class F family (abcf-2) up in F up in aL3

1.25 12656 M specific up in aL3

2.18 20406 Neuro-peptide like protein family (NLP-2) larval specific

2.18 40879 Hypothetical protein T01B6.1 F specific down in aL3

2.19 09925 cuticlin1–17 up in F up in aL3

3.30 53549 Carnitine palmitoyl transferase (CPT) up in F nc

6.68 04080 M specific down in aL3

G2.38 05677 Phosphate transporter F specific down in aL3

G2.38 08715 Male specific up in aL3

G5.7 44862 Adult specific; down in F

1From Wang et al, 2010 [31].
2Change in relative transcript reads between adult female (F) and male (M) libraries. Up, up regulated; down, down regulated.
3Change in relative transcript reads between infective L3 and activated L3 (aL3) libraries.
doi:10.1371/journal.pone.0012289.t002
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downstream targets will be detected. Subsequent manipulation of

these genes may lead to novel avenues for intervention in the

hookworm life cycle.

Materials and Methods

Ac-DAF-16 DBD cloning, expression and purification
To clone the Ac-DAF-16 DBD, a fragment containing the C-

terminally FLAG-tagged DBD (corresponding to amino acids 214-

314) was amplified from a cDNA clone of Ac-DAF-16 isoform b,

pCMV4-daf16 [17]. The specific forward primer (DAF16-DD-E-

FLAG-FN: 59–GATACCATGGGCAA TGCGTGGGGTAA-

TCTC-39, containing restriction site NcoI, underlined) and reverse

primer (DAF16-DD-E-FLAG-RH: 59–GATCAAGCTTATCGT-

CG TCATCCTTGTAGTC CAAGGTGGAGGCTCG AAC-39, con-

taining restriction site HindIII, and the FLAG Tag, italics), were

incubated with the template in a PCR. The cycling conditions

were 2 min at 95uC; followed by 35 cycles of 1 min at 95uC, 1 min

at 55uC, 1 min at 72uC and a final extension for 6 min at 72uC.

The purified amplicon was digested with NcoI and HindIII, ligated

into expression vector pET28a (Novagen) cut with the same

restriction enzymes, and transformed into Escherichia coli DH5a
competent cells. The expression construct contained both an in-

frame FLAG tag and an in-frame hexahistidine (His) tag at C-

terminus of the Ac-DAF-16 DBD, as confirmed by DNA

sequencing (Nevada Genomics Center, Reno, NV).

The resulting plasmid DNA (pET28a-Ac-DAF-16 DBD/

FLAG/His) was transformed into E. coli Rosetta (DE3) competent

cells (Strategene), and expression was induced by addition of

1 mM isopropyl-b-D-thio-galacto-pyranoside (IPTG) to log-phase

bacterial culture at 37uC for 4 hrs. An aliquot of E. coli Rosetta

(DE3) cells were removed from the culture prior to induction to

serve as a pre-induction control, and second aliquot from a culture

grown under the same conditions except in the absence of IPTG

served as an un-induced control. Induced bacterial cells and

control bacterial cells were collected by centrifugation at 5000 rpm

for 15 mins. After cell lysis by sonication in the presence of

protease inhibitors (Pierce, Thermo Scientific, Rockford, IL), the

expressed recombinant Ac-DAF-16 DBD (rAc-DAF-16 DBD) was

affinity-purified by Ni-NTA resin (Qiagen, Valencia, CA). Purified

rAc-DAF-16 DBD peptide was fractionated by SDS-PAGE

eletrophoresis through 4–20% Tris-glycine pre-cast Novex

gradient gels (Invitrogen, Carlsbad, CA), and examined by

staining with Coomassie Brilliant Blue R250 (Sigma, St. Louis,

MO) and Western Blot with anti-His (C-term) antibody (Invitro-

gen). The concentration of the expressed peptide was determined

by the Micro BCA Protein Assay (Thermo Scientific).

Ac-DAF-16 DBD Binding Assay
The DNA binding ability of rAc-DAF-16 DBD was tested by

streptavidin bead pull-down assay using double stranded DNA as

described previously [17]. Briefly, 59 end biotin-labeled forward

oligonucleotides and their unlabeled complements for the DBE or

predicted motif elements were synthesized (IDT, Coralville, IA).

Forward and reverse oligonucleotides were annealed to form

double-stranded (ds) DNA and 100 pmoles were used in the pull-

down assays. To label selected genomic fragments, 59 end biotin-

labeled T7 primer was synthesized and used to amplify the

fragment from a plasmid clone by PCR. The amplicons were

purified and 2 pmoles were used in the pull-down assays. Biotin-

labeled dsDNA was incubated with 200 ng of Ac-DAF-16 DBD in

binding buffer (10 mM Tris pH 7.5, 50 mM KCl, 1 mM DTT,

2.5% glycerol, 5 mM MgCl2, 50 ng/ mL poly (dI NdC), 0.05%

Nonidet P-40) at 4uC for 2 h. After incubation, 25 ml of 30%

Streptavidin–Sepharose (GE Healthcare) slurry equilibrated with

TNE50 buffer (10 mM Tris, 50 mM NaCl, 1 mM EDTA,

pH 7.5)+0.1% Nonidet P-40 were added to the mixture and

incubated for 2 h at 4uC. Beads were collected by centrifugation at

2500 g and washed twice with TNE100 buffer (10 mM Tris,

100 mM NaCl, 1 mM EDTA pH 7.5) +0.1% Nonidet P-40. The

bound proteins were separated on a 4–20% SDS–PAGE and

Western blotted with anti-FLAG antibody (Sigma).

Hookworm genomic DNA preparation
The Baltimore strain of A. caninum (US National Parasite

Collection #100655.00) was maintained in beagles as previously

described [48]. The George Washington University Medical

Center Institutional Animal Care and Use Committee approved

this study (protocol #A147). Infective L3 larvae were recovered

from coproculture by a modified Baermann technique and stored

in buffer BU (50 mM Na2HPO4, 22 mM KH2PO4,70 mM NaCl,

pH 6.8) [49] at room temperature until used.

Eighty thousand hookworm L3 were frozen in liquid nitrogen

and ground to a fine powder using a pre-chilled mortar and pestle.

Following physical disruption of the worms, hookworm genomic

DNA was isolated using the Wizard SV Genomic DNA

Purification System (Promega) according to the manufacture’s

instructions. Briefly, digestion solution master mix containing

RNase A (75 mg/mL) and proteinase K (1.5 mg/mL) was added

to the homogenate and the sample was incubated at 55uC
overnight. The sample was then mixed with lysis buffer, applied to

the minicolumn assembly, and eluted with buffer TE (10 mM

Tris.HCl, 1 mM EDTA, pH 8.0). Fifteen micrograms of A. caninum

genomic DNA were digested with 48 units of BfuCI restriction

endonuclease (NEB) overnight and stored at 220uC. The quality

of DNA was examined by 0.8% agarose gel electrophoresis and

the concentration was determined using a NanoDrop ND-1000

spectrophotometer.

In vitro Genomic Selection
Thirty microliters of anti-FLAG M2 affinity matrix (Sigma)

were rinsed with TBS buffer (10 mM Tris HCl, pH 7.4, 150 mM

NaCl, 0.1 mM EDTA) three times. Two micrograms of purified

rAc-DAF-16 DBD/FLAG/His were immobilized on the prepared

matrix by incubation for 2 hours at 4uC in 150 mL of TBS buffer.

The matrix was then washed with TBS buffer containing 1 M

NaCl, followed by two washes with the binding buffer (10 mM

Tris at pH 7.5, 2.5% glycerol, 10 mM MgCl2, 50 mM KCl,

1 mM dithiothreitol (DTT), 0.05% NP-40). All washes were

performed at 4uC for 5 min on a nutating mixer. Immobilized Ac-

DAF-16 DBD was then incubated with 5 mg of BfuCI digested

A. caninum genomic DNA, in 150 mL of binding buffer containing

50 ng/ mL poly (dINdC) for 30 min at room temperature on a

nutating mixer. To control for non-specific binding and

subsequent PCR enrichment of spurious genomic fragments, a

control selection using only the anti-FLAG M2 affinity matrix was

performed under identical conditions. Protein-DNA matrix

complexes were washed with 150 mL binding buffer for 5 min

on a nutating mixer at 4uC, followed by a wash with binding buffer

containing 250 mM KCl and a third wash containing 500 mM

KCl. Washing conditions were optimized with the consensus DBE,

and 500 mM KCl was shown to be sufficient to remove most of

the unspecific binding. Ac-DAF-16 DBD-bound DNA was eluted

from the matrix with 250 mL of the binding buffer containing 1 M

KCl (10 min with 150 mL followed by 15 min with 100 mL) on a

nutating mixer. Two hundred and fifty microliters of TE (10 mM

Tris HCl, pH 8.0, 1 mM EDTA) were then added to the eluate.

The eluted DNA was phenol/chloroform-extracted and ethanol-
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precipitated in the presence of 5 mg of glycogen. The DNA pellet

was re-dissolved in 12 mL H2O. The following oligonucleotides,

which contain the NotI restriction site, were synthesized: forward

NotIBfuCI (59-AAAAGGGGCGGCCGC-39) and reverse NotIB-

fuCI (59-GATCGCGGCCGCC CCTTTT-39), and annealed to

form double-stranded (ds) NotIBfuCI oligomer DNA for use in a

ligation reaction. One pmole of ds NotIBfuCI oligomer was ligated

to 10 mL of the re-dissolved Ac-DAF-16 DBD bound DNA with

T4 DNA ligase in 20 mL total volume. Two microliters of the

ligation product were used as template in PCR reactions with

NotIBfuCI PCR primer (59-AAAAGGGGCGGCCGCG ATC-39).

The cycling conditions were 4 min at 95uC, followed by 29 cycles

of 1 min at 95uC, 1 min at 57uC, 2 min at 72uC and a final

extension for 6 min at 72uC.

Amplified PCR products were purified with NucleoSpin Extract

II kit (Clontech). Two micrograms of the DNA were used for

subsequent rounds of binding experiments, as described above.

After each round of binding and elution, PCR was performed for a

total of 4 rounds. Purified PCR products from the last round were

subcloned either into the NotI site of pBluescript KS+ vector

(Stratagene) or directly into pGEM -T Easy vector (Promega) for

sequencing and analysis.

Motif analysis of hookworm DAF-16 bound genomic
fragment

Constructs containing Ac-DAF-16 bound fragments from the in

vitro genomic selection cloned in pBluescript KS+/pGEM-T were

sequenced with vector specific primer T7. The sequence

chromatograms were screened using sequence display software

Chromas 2.33 (Technelysium Ltd.) to identify high quality regions,

vector linker regions, and the low complexity regions. All

subsequent analyses were based on the high-quality sequences

with vector linker sequences removed.

Nucleotide sequences were searched against the draft A. caninum

genome scaffold sequences [39] (Mitreva, unpublished) using

BLAST to confirm the identity of the hookworm genomic fragments.

If the overall percent identity of an alignment was above 95%, the

genome scaffold was assumed to be a hit. The bound fragments that

failed to hit any A. caninum genome scaffolds were further searched

against nucleotide databases at GenBank (http://www.ncbi.nlm.nih.

gov/) to detect possible contamination from other genomes. The

scaffold hits were next analyzed for their coding potential by

mapping the cDNAs to the genome sequence (see below).

Given the current knowledge of reported FOXO transcription

factor binding sites, Ac-DAF-16 bound A. caninum genome

fragments were first inspected for existence of the consensus

DBE, 59-TTG/ATTTAC-39 (and the corresponding reverse

compliment 59- GTAAAC/TAA -39) [19], or its reverse

counterpart, 59-CATTTA/GTT-39 (and the corresponding re-

verse compliment 59-AAT/CAAATG-39). The motif discovery

algorithm Gibbs Motif Sampler [50,51] was applied to sequences

lacking canonical binding sites to seek over-represented motifs as

additional candidate Ac-DAF-16 response elements. The default

eukaryotic parameters were used to run the Gibbs Motif Sampler

program with a slight modification made to the target motif

widths, with 6, 8, 10, 12, and 14 bp chosen based on the width

range of C. elegans transcription factor binding sites in Open

REGulatory ANNOtation database (ORegAnno) [52,53]. Two

other motif discovery algorithms, MEME [54] and Mdscan [55],

were also attempted for de novo motif discovery; however, unlike

the robust Gibbs Motif Sampler, either their performance in

detecting the consensus DBE with a set of positive control

sequences was poor or the parameter setting was not flexible.

Therefore, only Gibbs Motif Sampler was used for the current

data set. Returned motifs were ranked based on the occurrence

rates in the bound genomic fragments. Sequence logos for

identified motifs were generated using WebLogo [56]. All of the

cDNA and genomic sequences are available at the Nematode.net

FTP site (http://nematode.net/FTP/index.php) [57].

Identification of potential Ac-DAF-16 regulated genes
Ancylostoma caninum genome scaffold sequences containing Ac-

DAF-16 bound genomic fragments, stage specific A. caninum

expressed sequence tag (EST) databases [58], and the recent

A. caninum cADNA databases [31] were obtained from Nemato-

de.net [57]. The available data sets cover 93% of the A. caninum

transcriptome.

For each genome scaffold hit, the genomic template including

the Ac-DAF-16 bound region and up to 3 kb extensions at both

ends were extracted. Those templates were searched against EST

databases/transcriptome databases using BLAST to identify

corresponding transcripts. The cut-off for the overall percent

identity of an alignment was 93% and a length of at least a 100 bp.

Gene location was predicted with greater confidence if more ESTs

were aligned. Gaps between two adjacent exon segments in an

EST alignment were treated as possible introns and were

confirmed by checking intron boundary sequences (GT/AG

rule)[59]. The transcript contigs were then derived from those

ESTs.

The identified transcripts were compared with existing protein

sequences at GenBank for functional annotation, using a

maximum E-value of 1610210 and a minimum of 50% similarity

as cut-off. Their expression specificity across different develop-

mental stages (L3, aL3, F and M) were characterized using a

statistical approach defined by Audic [31,60] Briefly, the cDNAs

were organized into transcript contigs, and ESTs were grouped to

the corresponding cDNA libraries derived from different devel-

opmental stages for each transcript contig. The frequencies of

library specific cDNAs for each contig were recorded and analyzed

using a modified Fisher’s exact test with a significance of p,1

e-05. This allowed definition of the stage specificity of transcript

expression with significance. Transcripts were also mapped to the

three organizing principles of the Gene Ontology (GO) based on

sequence similarity displayed using AmiGo (http://amigo.

geneontology.org), and are available at Nematode.net (http://

nematode.net).
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