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Abstract: Recently new novel magnetic phases were shown to exist in the asymptotic steady states
of spin systems coupled to dissipative environments at zero temperature. Tuning the different
system parameters led to quantum phase transitions among those states. We study, here, a finite
two-dimensional Heisenberg triangular spin lattice coupled to a dissipative Markovian Lindblad
environment at finite temperature. We show how applying an inhomogeneous magnetic field to the
system at different degrees of anisotropy may significantly affect the spin states, and the entanglement
properties and distribution among the spins in the asymptotic steady state of the system. In particular,
applying an inhomogeneous field with an inward (growing) gradient toward the central spin is
found to considerably enhance the nearest neighbor entanglement and its robustness against the
thermal dissipative decay effect in the completely anisotropic (Ising) system, whereas the beyond
nearest neighbor ones vanish entirely. The spins of the system in this case reach different steady states
depending on their positions in the lattice. However, the inhomogeneity of the field shows no effect
on the entanglement in the completely isotropic (XXX) system, which vanishes asymptotically under
any system configuration and the spins relax to a separable (disentangled) steady state with all the
spins reaching a common spin state. Interestingly, applying the same field to a partially anisotropic
(XYZ) system does not just enhance the nearest neighbor entanglements and their thermal robustness
but all the long-range ones as well, while the spins relax asymptotically to very distinguished spin
states, which is a sign of a critical behavior taking place at this combination of system anisotropy and
field inhomogeneity.

Keywords: quantum entanglement; quantum information; dissipative environment; quantum
spin systems

1. Introduction

Quantum entanglement is considered to be the physical resource responsible for
manipulating the linear superposition of the quantum states in many body quantum
systems [1]. Entanglement, and its derivatives, show scaling behavior as the quantum
system crosses a quantum phase transition critical point [2]. In particular, it is crucial
in quantum information processing fields such as quantum teleportation, cryptography,
and quantum computation [3]. However, quantum entanglement is very fragile due to
the induced decoherence caused by the inevitable coupling of the quantum system to its
surrounding environment [4,5]. The main effect of decoherence is to randomize the relative
coherent phases of the possible states of the quantum system diminishing its quantum
aspects. As a result, it is considered to be one of the main obstacles toward realizing
an effective quantum computing system. The decoherence in the system sweeps out
entanglement between the different parties of the system. Therefore, creating, quantifying,
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transferring and protecting entanglement in quantum states of many body systems are
in the focus of interest of both theoretical and experimental research. Many of the newly
engineered quantum systems that are considered promising candidates for the underlying
technology of quantum information processing, such as cold atoms in optical lattices,
ultracold atoms, optical microcavities, trapped ions and superconducting circuits [6–13],
represent great experimental framework for studying dissipative effects in driven many-
body quantum systems. On the other hand, the Heisenberg interacting spin systems have
been in focus of interest for their own sake as they describe the novel physics of localized
spins in magnetic systems as well as for their successful role in modeling many of these
new customized physical systems. Moreover, many of these new systems can be used to
simulate Heisenberg spin systems in a highly controllable manner.

Entanglement properties and dynamics in Heisenberg spin chains in absence of
dissipative environments have been studied intensively [14–24]. The dynamics of a system
of interacting qubits, represented by Heisenberg spin model, coupled to a dissipative
environment has been studied in many works as well. The problem of two interacting
qubits coupled to a dissipative environment has been investigated both analytically and
numerically [25–27]. The one-dimensional interacting spin chains, N > 2, coupled to
dissipative environments were investigated as well at different degrees of anisotropy,
magnetic field strength and temperatures [28–35]. The dynamics of entanglement in the
Ising and isotropic (XXX) one-dimensional spin chains has been studied [30,33] through a
numerical stochastic approach using the quantum state diffusion theory [36], to overcome
the problem of the huge needed storage space. In an interesting relevant work, a one-
dimensional chain of superconducting Josephson qubits with realistic values was studied
under the effect of a noisy and disorder environment [29]. The noise effect was introduced
as a set of bosonic baths, where each one of them was coupled to a separate qubit. the
system was described as an Ising spin chain coupled to a Markovian environment after
tracing out the bath degrees of freedom, which evolves asymptotically to steady state.
In a previous work we have studied the entanglement dynamics in a one-dimensional
spin chain in an external homogeneous magnetic field coupled to a Markovian dissipative
environment. We showed how the interplay among the different system parameters can
control the time evolution and asymptotic steady state of the system [37].

Recently there has been great interest in studying unconventional magnetism in spin
systems in the absence and presence of dissipative effects, where new non-traditional
magnetic phases emerged as a result of varying the system key parameters such as the
system anisotropy and the inhomogeneity of the external magnetic field [38–49]. While the
ground state properties of the system were found to dictate its behavior in the equilibrium
critical phenomena at zero temperature, the asymptotic steady state density matrix was the
major player in the presence of dissipative effects. In a pioneering work, Lee et al. studied
an anisotropic XYZ Heisenberg system of localized spins on a d-dimensional lattice at zero
temperature under dissipative spin-flip process, associated with optical pumping. They
showed how the asymptotic behavior of the system can exhibit new novel magnetic phases,
as the degree of anisotropy of the spin-spin interaction is varied in the absence of external
magnetic fields [38]. The impact of an inhomogeneous magnetic field on entanglement
and coherence in a closed system of a pair of XXZ interacting s spins was investigated
at zero and finite temperature [39]. The critical behavior of the system and its different
phases at different values of the spin (s ≥ 1/2), field gradient, spin interaction anisotropy
and temperature were investigated. It was demonstrated how the inhomogeneity of
the magnetic field can be used to control the system energy eigenlevels and enhance
its entanglement content. Additionally, it was shown that the limiting temperature of
entanglement in this system is mainly decided by the magnetic field gradient, where at a
certain temperature, the system becomes entangled above a threshold value of that gradient.
A finite XXZ systems of arbitrary spin under inhomogeneous fields were studied too [50],
where it was shown that highly degenerate exactly separable symmetry breaking ground
states can be obtained for a wide range of inhomogeneous field configurations of zero sum
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in arrays of any dimension. Recently, the dissipative phase transition of an anisotropic XYZ
Heisenberg spin-1/2 system in a finite two-dimensional lattice, at zero temperature, was
investigated [51], by applying the corner-space renormalization method [52]. The linear
response of the system was studied under the effect of an applied polarizing magnetic field
in the xy-plane and subject to a dissipative incoherent spin relaxation process. The finite
size scaling of the susceptibility of the system was carried out, which exhibited a critical
behavior, where its peak value increased as a power law of the system size. The finite size
scaling of the quantum fisher information indicated a critical behavior of the entanglement
at the transition point. Very recently, spin-s chains with ferromagnetic XXZ coupling in the
presence of sparse alternating magnetic fields have been studied. The exact ground state
of the system was investigated and was found to exhibit a non-trivial magnetic behavior,
where it shows significant magnetization plateaus sustainable at large system size [53].

Frustrated many-body quantum systems presents a very rich framework for studying
exotic phenomena, which significantly rely on the entanglement properties, dynamics
and sharing in the system [54]. A well-known system that presents such frustration is the
Heisenberg spin model on a triangular lattice. The geometry of the triangular lattice is
the mean reason behind this frustration, which leads to a highly degenerate ground state
of the system. Such a geometric frustration has been experimentally realized in optical
lattices [55], trapped ions [56] and magnetic nano-structures [57], which all have a great
potential for applications in quantum simulation, computations and logic gates. In an
interesting pioneering work, Cai et al. [58] proposed a scalable architecture for a practically
realizable large-scale quantum simulator at room temperature. This architecture is based
on a triangular (rectangular) lattice of interacting spins that can be fabricated chemically on
a fluorine-terminated diamond surface. They demonstrated that this system can be used
efficiently to simulate quantum spin models with tunable spin-spin interaction. They used
an external magnetic field to tune the effective spin-spin interaction and also to force a
magnetic phase transition. As can be concluded form the literature review, the dynamics
and asymptotic behavior of a two-dimensional spin lattice has not been studied under the
combined effect of a thermal dissipative environment and an inhomogeneous magnetic
field yet.

In this paper, we study the time evolution and the asymptotic steady state of the bi-
partite quantum entanglement and spin relaxation in a finite two-dimensional Heisenberg
spin-1/2 triangular lattice, where a single central spin is surrounded by equally distant
spins, with nearest-neighbor spin interaction under the influence of a dissipative Lindblad
environment at zero and finite temperatures. We investigate the impact of an external inho-
mogeneous magnetic field on the entanglement sharing, dynamics, asymptotic behavior
and robustness against the thermal dissipative effect of the environment. We show how
a particular inhomogeneous magnetic field setup, where the gradient is directed toward
the central spin, can significantly enhance the bipartite entanglement among the nearest
neighbor spins and boost their thermal robustness in the completely anisotropic (Ising)
system and even the beyond nearest neighbors in the partially anisotropic system, which
indicates that a long range quantum correlation is taking place across the lattice at this
combination of inhomogeneity of the magnetic field and anisotropy of spin-spin coupling.
Additionally, we explore the associated spin dynamics and relaxation process as we vary
the inhomogeneity of the field, the anisotropy of the spin interaction and the environment
temperature. We demonstrate how the same particular inhomogeneous magnetic field
setup has the strongest influence, compared with all other setups, on the steady state of
the spins in the system except at zero anisotropy. We show how in the steady state of the
system, the spins reach different states that are most distinguished from each other in the
partially anisotropic system accompanying the long rang quantum correlation indicating a
tendency of this finite system to exhibit a critical behavior.

This paper is organized as follows. In the next section, we present our model and den-
sity matrix calculations. In Sections 3 and 4, we study the time evolution of entanglement
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and the spin relaxation respectively, in the spin system at different degrees of anisotropy.
We conclude in Section 5.

2. The Model

We consider a set of 7 localized spin- 1
2 particles in a two-dimensional triangular

lattice coupled through nearest neighbor exchange interaction J and subject to an external
inhomogeneous magnetic field, as shown in Figure 1. The Hamiltonian of the system is
given by

H =
(1 + γ)

2
J

N

∑
〈i,j〉

Sx
i Sx

j +
(1− γ)

2
J

N

∑
〈i,j〉

Sy
i Sy

j + δJ
N

∑
〈i,j〉

Sz
i Sz

j +
N

∑
i=1

hz
i Sz

i , (1)

where: Sα
i = 1

2 σα
i (α = x, y or z) and σα

i are the local spin- 1
2 operators and Pauli operators,

respectively, for convenience, we set h̄ = k = 1. γ and δ are the anisotropy parameters,
which determines the relative strength of the spin-spin coupling in the x, y and z-directions.
We study different classes of the Heisenberg spin system, by changing the values of γ
and δ, such as the Ising (γ = 1 and δ = 0), XXX (γ = 0 and δ = 0.5), XYZ (γ = 0.5
and δ = 1), etc. The system is subject to an external inhomogeneous static magnetic
field applied in the z-direction such that the magnetic field strength at the border sites is
hi = B1 (i = 1, 2, 3, 5, 6, 7), whereas the strength at the central site is h4 = B2. We assume
that the maximum external magnetic field strength is ω.

Figure 1. A two-dimensional triangular spin lattice in the presence of an external inhomogeneous
magnetic field with strengths B1 at the border sites and B2 at the central one.

The dynamics of an isolated quantum system is described by the time evolution of
its density matrix ρ(t) according to the quantum Liouville equation ρ̇(t) = −i[H, ρ]. For
an open quantum system interacting with its environment, where the system and the
environment satisfy the Born-Markovian approximation, the time evolution of the system
is best described by the Lindblad Master equation [59,60], which is defined as

ρ̇(t) = −i[H, ρ] +Dρ , (2)

where Dρ is the extra term that describes the dissipative dynamics and is represented in
the Lindblad form as

Dρ = −1
2

M

∑
j=1

N

∑
k=1

{
[L(j)

k ρ, L(j)†
k ] + [L(j)

k , ρL(j)†
k ]

}
, (3)

where the Lindblad operator L(j)
k represents the effect of the considered environment on the

system site k, and the environment is assumed to couple to each site independently of the
other sites, M is the total number of Lindblad operators and N is the total number of sites. It
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is more convenient to work in the Liouville space, where the density operator is represented
as a vector. As a result, Equation (2) can be recasted into the matrix equation form

~̇ρ(t) = (L̂H + L̂D)~ρ = L̂~ρ , (4)

where L̂H and L̂D are superoperators acting on the vector ρ in the Liouville space, where
the first one represents the unitary evolution due to the free Hamiltonian while the second
represents the dissipation process.

The matrix elements of ρ̇ are defined as

ρ̇jl(t) = −i ∑
m,n

(LH
jl,mn + L

D
jl,mn) ρmn , (5)

where the tetrahedral matrices LH and LD are given by

LH
jl,mn = Hjmδln − δjm Hnl , (6)

and
LD

jl,mn =
i
2 ∑

k
[2(L†

k)nl(Lk)jm − (L†
k Lk)jmδln − δjm(L†

k Lk)nl ] . (7)

A detailed discussion of these theoretical arguments was provided in our previous
work, Ref. [37]. The solution of Equation (4) yields the density vector as

~ρ(t) = ∑
i

Ai ~ηi eλi t , (8)

where the coefficients Ai are determined from the initial conditions of the evolution process,
{λi} and {~ηi} are the sets of all eigenvalues and eigenvectors of the tetrahedral matrix L.
As can be noticed, we have converted the Lindblad master equation, Equation (2), of the
system into a matrix equation, Equation (4), by transforming the problem to the Liouville
space. Then by exact numerical diagonalization of the matrix L̂, which is a very hard task,
one obtains the set of eigenvalues and eigenvectors needed to find the evolved density
matrix ρ(t). For a two-dimensional system with N spin-1/2 particles, the dimension of the
Hilbert space is 2N and the dimension of the tetrahedral matrices is 22N which, even for a
small number of spins, is extremely large. For an exact numerical treatment of the problem,
one needs to store 24N matrix elements, of the matrix L, before being able to diagonalize
the matrix, which is an enormous number, even for a few spins. For our considered system,
N = 7, we needed to store 228 matrix elements, i.e., more than a quarter of a billion. As
a result of these huge dimensions, it is practically impossible to provide an analytical
treatment of the problem and is even cumbersome to do it numerically. Adding only one
extra spin will make the matrix elements exceed 4 billion, which is more than the available
memory in most of the current computing systems. As a result, many different approaches
rely on approximate treatment of the system dynamics such as the numerical stochastic
technique, which applies the quantum state diffusion theory [36] or the corner space
renormalization method [52]. To study the next symmetric triangular lattice, we need to
add 12 spins, which is beyond the ability of any existing supercomputing system to handle.
Therefore, testing the effect of the system size, using the exact numerical technique, is a
quite hard task, particularly while preserving the symmetry of the two-dimensional lattice.

For the considered spin system, the effects of thermal relaxing and exciting environ-
ment, respectively, are represented by the two operators

L(1)
k = Γ (n̄ + 1) S−k , L(2)

k = Γ (n̄) S+
k (k = 1, 2, . . . , N), (9)

where S+
k and S−k are the spin raising and lowering operators, S±k =Sx

k ± iSy
k . The quantity

n̄, which reflects the mean number of excitations in the environment, accounts for the
thermal influence of the environment and is proportional to its temperature, whereas Γ is a
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phenomenological parameter that represents the interaction strength between the quantum
system and the environment, which determines the decay rate [29,60,61]. Accordingly, the
dissipation part of the master equation, Equation (2), represents spontaneous emission as
well as thermally induced absorption and emission processes [60].

We adopt the concurrence as a measure of the bipartite entanglement in the system,
where Wootters [62] has shown that for a pair of two-state systems i and j, the concurrence
Ci,j, which varies between 0 to 1, can be used to quantify the entanglement between them
and is defined by Ci,j(ρi,j) = max{0, ε1 − ε2 − ε3 − ε4}, where ρi,j is the reduced density
matrix of the two spins under consideration, εi’s are the eigenvalues of the Hermitian
matrix R ≡

√√
ρi,j ˜ρi,j

√
ρi,j with ˜ρi,j = (σy ⊗ σy)ρ∗i,j(σ

y ⊗ σy) and σy is the Pauli matrix of
the spin in the y-direction. We study the time evolution of the system using the standard
basis {|↑↑ · · · ↑〉, |↑↑ · · · ↓〉, · · · , |↑↓ · · · ↓〉, · · · , |↓↓ · · · ↓〉} and starting from different ini-
tial typical states: a separable (disentangled) state, |ψs〉 = |↑↑ · · · ↑〉; a partially entangled
(W-state), |ψw〉= 1√

N
(|↑↓ · · · ↓〉+ |↓↑ · · · ↓〉+ · · ·+ |↓↓ · · · ↑〉) and a maximally entangled

state, |ψm〉 = 1√
2
(|↑↓〉+ |↓↑〉)|↓↓ · · · ↓〉.

3. Dynamics of Entanglement

When a single spin-1/2 particle is inserted, at rest, into a homogeneous magnetic
field, it precesses around the magnetic field direction with a constant angle that depends
on the initial state of the spin, and with a (Larmor) frequency that is determined by the
strength of the applied field. For a spin system with an XYZ nearest neighbor interaction,
as described by the Hamiltonian (1), in absence of an external magnetic field (hz

i = 0),
every spin in the system experiences an effective net magnetic field due to the interaction
with all its neighboring spins. This magnetic field forces the spin to precess about the
field direction, where the precession strength of every spin depends on its location in
the system and the degree of anisotropy, the higher the anisotropy in the system is, the
stronger is the precession. When this system couples to the Lindblad environment at zero
temperature, only the first term, L(1)

k , in Equation (9) is active with a decay effect on the
precessing spin that acts to align it into the negative z-direction, | ↓〉. Turning on the
temperature activates the second term, L(2)

k , which acts to align the spin into the positive
z-direction, | ↑〉; however, its effect is much smaller than the first term, as can be noticed
from Equation (9), especially at very low temperatures where the quantum character of
the system is preserved. The asymptotic steady state of every spin and its entanglement to
the other spins is determined by the interplay between the spin-spin interaction effective
field, responsible for precession, and the dissipative environment decay effect. While the
initial state of the system may affect the initial and intermediate dynamics of the system,
the asymptotic behavior is independent of it, as we will show in our results. In the extreme
case of a completely isotropic system, the spins don not precess at all around the effective
field and the dissipative decay effect dominates, at zero temperature, forcing all the spins
to point downwards, parallel to each other, leading to an asymptotic separable steady state
with zero entanglement. At finite temperature, the spins in the steady state stay parallel
but slightly deviates from the downward direction. Introducing anisotropy to the system
enhances the precession process, which competes with the dissipative decay effect and
makes the system evolve to a steady state with a finite entanglement, where each spin may
end up in a different state from the others depending on its location in the lattice and the
existing symmetry.

Applying an external homogeneous magnetic field to the spin system adds up to
the effective magnetic field and impacts the precession process in a way that depends
on its magnitude and direction. Applying an inhomogeneous magnetic field causes a
big variance in the asymptotic behavior and entanglement of each spin compared with
the others depending on the field gradient magnitude and direction, which changes the
entanglement distribution and sharing among the spins depending on their locations. As
mentioned before, for Equation (2) to represent a good approximation for the time evolution
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of the system, certain restrictions have to apply to the system parameters, the coupling
parameter between the system and the environment Γ as well as the relaxation time scale
of the environment dynamics should be small compared to that of the system dynamics
manifested by the parameter ω representing the spin precession frequency around the
z-axis. As a result, we consider values of Γ and J such that Γ and J << ω, where we set
Γ = J = 0.05 ω, ω = 1, and the temperature parameter 0 ≤ n̄ ≤ 0.1 (∼41 mK).

3.1. Anisotropic Spin System (Ising Model)

We start by studying the two-dimensional completely anisotropic (Ising) spin system
coupled to the dissipative environment. For convenience, we consider the time evolution
of the system in terms of the dimensionless time T = ω t. We work in a system of units
where ω = h̄ = 1, therefore, the time t is in units of ω−1, B1 and B2 and Γ are in units of ω,
whereas n̄ is a dimensionless parameter.

For the rest of the paper we focus on three different combinations of the magnetic fields
B1 and B2, namely (1,1), (1,0.1), and (0.1,1),which are represented in panels (a), (b) and (c)
respectively in every figure in the paper, unless otherwise is stated explicitly. Additionally, we
adopt a color code for the temperature parameter in all figures in this paper, where we use a
blue (solid) line for n̄ = 0, a green (dashed) line for n̄ = 0.001, a red (dash-dotted) line for
n̄ = 0.005, a violet (dotted) line for n̄ = 0.01, a black (solid with x marks) line for n̄ = 0.05
and brown (dashed with x marks) line for n̄ = 0.1, unless otherwise is stated explicitly.

In Figure 2, in the upper panels, we depict the dynamical behavior of the nearest
neighbor (nn) bipartite entanglement between the two border spins 1 and 2, C12, starting
from an initial maximally entangled state at different temperatures, where spins 1 and 2
are in a Bell state while all the other spins are in a separable state as described by |ψm〉. The
inner inset plots in all panels in this paper provide a magnifying look at the asymptotic
behavior of the entanglement. As can be noticed, in all the three magnetic field cases, C12
starts at the maximum value and decays to zero before reviving again and asymptotically
reaching a final steady state. The steady state entanglement value depends on both of
inhomogeneity of the magnetic field and the environment temperature. Applying a non-
homogeneous magnetic field where the border magnetic field is higher than the central
one, B1 > B2, slightly reduces the entanglement asymptotic value as shown in Figure 2b
compared with that of the homogeneous case presented in Figure 2a at all temperatures.
Clearly, raising the temperature is devastating to entanglement, where the entanglement
value decreases significantly as the temperature increases until completely vanishing at
around n̄ = 0.005, as shown in Figure 2a. Figure 2b illustrates that in this inhomogeneous
magnetic field case, entanglement is more fragile under the thermal effect. Interestingly,
applying an inhomogeneous field with higher value at the center, B1 < B2, as illustrated in
Figure 2c, enhances the steady state entanglement significantly and makes it much more
robust to the thermal excitation, where it persists up to n̄ = 0.1, which is about 20 times
higher than that of the other two cases, particularly at the border sites. The time evolution
of the bipartite entanglement between the border spin 1 and the central spin 4, C14, is
explored in Figure 2, in the lower panels. The nn entanglement C14 starts at zero before
rising up to a maximum value then decaying again, vanishing for a period of time that
increases with increasing temperature before reviving again to maintain an asymptotic
steady state value. While the asymptotic value of C14 is slightly lower than that of C12 at all
temperatures in the homogeneous case, as shown in Figure 2a, which is expected as a result
of the entanglement sharing of the central spin with more nearest neighbor spins compared
with spin 1. However, C14 almost doubles when a weaker magnetic field is applied at the
central spin compared with the border one with a higher robustness to temperature as
illustrated in Figure 2b. Figure 2c shows that the asymptotic values of C14 are lower than
that of the homogeneous case when the stronger magnetic field is applied at the central
spin, B2 > B1. In Figure 2d, we test the effect of a weaker homogeneous magnetic field
acting on the dissipative Ising system starting from an initial maximally entangled state.
While this weaker magnetic field enhances the steady state values of both C12 and C14
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compared with the observed values in Figure 2a, where a stronger homogeneous magnetic
field was applied, still the inhomogeneous magnetic field, presented in Figure 2c, has a
higher enhancement effect on the entanglement and thermal robustness, particularly, in
the boarder sites.
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Figure 2. Time evolution of C12 and C14 in the Ising system in the presence of the environment
(Γ = 0.05) starting from an initial maximally entangled state at different temperatures (0 ≤ n̄ ≤ 0.1)
and different magnetic field strengths (a) B1 = 1 and B2 = 1, (b) B1 = 1 and B2 = 0.1, (c) B1 = 0.1
and B2 = 1 and (d) B1 = 0.1 and B2 = 0.1. The legend for all panels is as shown in panel (c). The
time T = ω t is dimensionless, and for convenience we set ω = h̄ = 1. B1, B2 and Γ are in units of ω,
whereas n̄ is a dimensionless parameter. The inner inset plots in the panels in this figure (and all other
figures in this section) provide a magnifying look at the asymptotic behavior of the entanglement
presented in the corresponding panels.

The dynamical behavior of the next to nearest neighbor (nnn) entanglement C15 is
depicted in Figure 3. In Figure 3a, C15 starts at a zero value which is maintained for a very
short period of time that increases as the temperature is raised, then it increases reaching a
peak value that decreases with temperature before decaying and maintaining a zero value
at all temperatures except zero, where it revives again making a much smaller peak before
completely vanishing. The inhomogeneous magnetic field, B2 < B1, case shows a very
similar behavior but with a slightly longer zero period at the beginning and higher peak
value, as shown in Figure 3b. Applying an inhomogeneous magnetic field with a higher
strength at the central spin leads to a similar behavior as the previous cases but with much
lower peak values and much longer zero-entanglement period at the beginning as can be
seen in Figure 3c. The entanglement C17 was found to maintain a zero value at all times
at all magnetic field combinations. The time evolution of the Ising system starting form
an initially disentangled, separable, state is presented in Figure 4. The dynamics of C12 is
depicted in the upper panels of Figure 4, which shows that the entanglement starting at zero
value revives monotonically within a finite period of time to reach an asymptotic steady
state value in all magnetic field arrangements. The difference between the homogeneous
case, in Figure 4a, and the inhomogeneous case, where B1 > B2, in Figure 4b is quite small,
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where the steady state values are slightly reduced. However, applying an inhomogeneous
field, where B2 > B1 raises the steady state value significantly and increases robustness
against temperature as shown in Figure 4c. Moreover, the zero entanglement period in
Figure 4a,b are almost the same but much longer than the one in Figure 4c.
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Figure 3. Time evolution of C15 in the Ising system in the presence the of the environment (Γ = 0.05)
starting from an initial maximally entangled state at different temperatures (0 ≤ n̄ ≤ 0.05) and
different magnetic field strengths (a) B1 = 1 and B2 = 1, (b) B1 = 1 and B2 = 0.1, and (c) B1 = 0.1
and B2 = 1. The legend for all panels is as shown in panel (c).
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Figure 4. Time evolution of C12 and C14 in the Ising system in the presence of the environment
(Γ = 0.05) starting from an initial disentangled state at different temperatures (0 ≤ n̄ ≤ 0.1) and
different magnetic field strengths (a) B1 = 1 and B2 = 1, (b) B1 = 1 and B2 = 0.1, and (c) B1 = 0.1
and B2 = 1. The legend for all panels is as shown in panel (c).

Comparing Figures 2 and 4, one can conclude that the steady state values of C12 are
exactly the same regardless of the initial state of the system, i.e., the system evolves to the
same final state independent of its initial setup, including the partially entangled state,
|ψw〉, which we have tested as well, but is not presented here. The entanglement C14, which
is presented in the lower panels of Figure 4, also, revives from zero to a steady state value
that depends again on the inhomogeneity of the magnetic field, where as can be seen, the
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asymptotic value and thermal robustness are much higher in panel (b), where B2 < B1,
compared with panels (a) and (c), where particularly in (c), C14 becomes very fragile to
the thermal effect. The nnn entanglement C15 was found to maintain a zero value at all
times at zero and no-zero temperatures, which we do not show here. Again, comparing
Figures 2 and 4, shows that the asymptotic value of C14 is independent of the initial state
of the system.

3.2. Partially Anisotropic System (XYZ Model)

Studying the same spin system at a partial degree of anisotropy of the spin-spin inter-
action shows some similarities to the completely anisotropic (Ising) system but manifests
striking differences as well. In this section, we investigate the time evolution of the partially
anisotropic (XYZ) Heisenberg system, where γ = 1/2 and δ = 1. We present the dynamics
of the system starting form a maximally entangled state in Figures 5 and 6.
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Figure 5. Time evolution of C12 and C14 in the XYZ system in the presence of the environment
(Γ = 0.05) starting from an initial maximally entangled state at different temperatures (0 ≤ n̄ ≤ 0.05)
and different magnetic field strengths (a) B1 = 1 and B2 = 1, (b) B1 = 1 and B2 = 0.1, (c) B1 = 0.1
and B2 = 1 and (d) B1 = 0.1 and B2 = 0.1. The legend for all panels is as shown in panel (a).

The entanglement C12 shows a very similar profile to the corresponding one in Ising
case, presented in Figure 2, at all magnetic field setups, as shown in the upper panels
of Figure 5. Nevertheless, there is a notable difference in the asymptotic values of C12,
lowering the anisotropy reduces these values to almost their half magnitude, except in
Figure 5c, where there is only a slight decrease in the steady state values. On the other
hand, increasing anisotropy has another damaging effect as it reduces the robustness of
the system to thermal excitation at all degrees of inhomogeneity of the field as can be
concluded from Figure 5a–c compared with Figure 2a–c respectively. The dynamics of
C14 is plotted in the lower panels of Figure 5, which in a similar fashion to C12, shows
asymptotic values that are about half the magnitude of the corresponding ones in the Ising
system for all cases of magnetic field including the case of B1 < B2 illustrated in Figure 5c,
in contrast to the behavior of C12 in that particular case. Applying a homogeneous weak
magnetic field to the XYZ system leads to an effect similar to what was observed in the
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Ising system, as shown in Figure 5d, where the steady state values of both of C12 and C14
are higher than the corresponding ones in the homogeneous strong magnetic field case
but are lower than the corresponding ones in the weak field of the Ising case, shown in
Figure 2d. However, the inhomogeneous field effect on the XYZ system as illustrated in
Figure 5c, still offers much higher boost to the steady state entanglement of the border sites
and higher thermal resistance.
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Figure 6. Time evolution of C15 and C17 in the XYZ system in the presence of the environment
(Γ = 0.05) starting from an initial maximally entangled state at different temperatures (0 ≤ n̄ ≤ 0.1)
and different magnetic field strengths (a) B1 = 1 and B2 = 1, (b) B1 = 1 and B2 = 0.1, and (c) B1 = 0.1
and B2 = 1. The legend for all panels is as shown in panel (a).

The most distinguished behavior of the XYZ system, compared with the Ising system,
manifests itself in the nnn entanglement C15 and the nnnn entanglement C17, which are
depicted in the upper and lower panels of Figure 6 respectively. In contrary to the Ising
system case, the nnn entanglement C15 does not vanish asymptotically at zero temperature,
although it does at non-zero temperatures, where it reaches a very small steady state value
in both cases of homogeneous and inhomogeneous magnetic field (B1 > B2), as shown in
Figure 6a,b respectively. Interestingly, in the other case of the inhomogeneous magnetic
field (B1 < B2), depicted in panel (c), C15 shows high robustness against thermal effects
and higher asymptotic values that even exceeds that of the nn entanglement C14, illustrated
in Figure 5c. More interestingly, the nnnn entanglement C17, shown in the lower panels of
Figure 6c, where B1 < B2, evolves from zero before reviving and reaching asymptotically
a non-zero steady state value at zero and non-zero temperatures, which are also higher
than the corresponding C14 values illustrated in Figure 5c. The other two cases of magnetic
field, shown in Figure 6a,b result in an asymptotically vanishing C17. Therefore, applying
an inhomogeneous magnetic field to the spin system, where the field gradient is directed
inward enhances the entanglement among the border spins, even the nnnn neighbors, and
increases its robustness against thermal excitation.

We tested the time evolution of the dissipative XYZ system under the effect of different
magnetic field configurations starting from an initial disentangled state. We found that
the different entanglements, nn, nnn and nnnn bipartite, start from a zero value before
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reviving and increasing monotonically to asymptotically reach steady state values that
coincide with the corresponding ones in the case of an initial maximally entangled state,
as was discussed in Figures 5 and 6, in a very similar fashion to what was observed in
the Ising system. In Figure 7, as an illustration, we depict the time evolution of C12 and
C14 starting from the disentangled initial state, which shows that C12 and C14 evolve to
reach asymptotically the same steady state values, presented in Figure 5, depending only
on the anisotropy of the system, the temperature and the inhomogeneity of the magnetic
field. Testing the system dynamics starting from an initial partially entangled state |ψw〉,
shows that it leads to the same asymptotic state as well. We did not insert the graphs of the
comparison of the other cases to save space and avoid redundancy.
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Figure 7. Time evolution of C12 and C14 in the XYZ system in the presence of the environment
(Γ = 0.05) starting from an initial disentangled state at different temperatures (0 ≤ n̄ ≤ 0.05) and
different magnetic field strengths (a) B1 = 1 and B2 = 1, (b) B1 = 1 and B2 = 0.1, and (c) B1 = 0.1
and B2 = 1. The legend for all panels is as shown in panel (c).

3.3. Isotropic System (XXX Model)

The time evolution of the bipartite entanglements in a completely isotropic (XXX)
system is explored in Figure 8, starting from a maximally entangled state, where the legend
in this figure is different from the default one in this paper. In Figure 8a, the dynamics of C12
and C14 is depicted under the effect of a homogeneous magnetic field at zero temperature.
The entanglement C14, after displaying an oscillatory behavior vanishes within a finite
period of time, while C12 decays from a maximum value to zero monotonically within
a smaller period of time. Raising the temperature, in the presence of a homogeneous
magnetic field, causes a sudden death of entanglement at a much earlier time as illustrated
in Figure 8b. The effect of an inhomogeneous magnetic field at different temperatures
is shown Figure 8c,d. Applying any inhomogeneous magnetic field, B1 > B2, at zero
temperature, reduces the entanglement oscillation, and the entanglement vanishes within a
finite period of time close to that of the homogeneous field case, as illustrated in Figure 8c.
Considering the other inhomogeneous field case, at zero temperature, does not show
a significant change from what is shown in Figure 8c, but as the temperature is raised,



Entropy 2021, 23, 1066 13 of 20

a sudden death behavior is observed where the death times, for C12 and C14, are quite
distinguished from each other, as illustrated in Figure 8d, compared with the homogeneous
field case shown in Figure 8b. Testing the XXX system behavior under a weak homogeneous
field, B1 = B2 = 0.1, shows some changes compared with the case of a strong homogeneous
magnetic field, presented in Figure 8a,b. The reviving peaks of the entanglement C12 and
C14 are higher than the corresponding ones in the strong homogeneous magnetic field case
with stronger thermal persistence, and the entanglement vanishes eventually after a longer
time but shorter than the inhomogeneous magnetic field case particularly for the border
sites. However, in all cases, the entanglement in the XXX system vanishes asymptotically
regardless of the system setup, where the environment dissipative decay effect dominates
over the net magnetic field acting on the spins, aligning all spins down, at zero temperature,
or close to down at finite temperature, to a separable steady state, which will be discussed
further in the next section. Comparing the behavior of the bipartite entanglement in the
triangular lattice, in a homogeneous field, with the one-dimensional system case reported
in [37], one can notice a strong similarity in the entanglement dynamics and asymptotic
profile, which is not a surprise. In both cases, each spin is driven by the effective mean
magnetic field of the other spins while exposed to the dissipative effect of the environment
as we explained earlier, where the asymptotic state of the spin and the entanglement steady
state are decided by the competitive effects of these two parameters. However, as expected,
the different spin configurations lead to different early dynamics and different steady
state values.
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Figure 8. Time evolution of C12 and C14 in the XXX system in the presence of the environment
(Γ = 0.05) starting from an initial maximally entangled state, at different temperatures and magnetic
fields, where in (a) n̄ = 0, B1 = 1 and B2 = 1, (b) n̄ = 0.01, B1 = 1 and B2 = 1, (c) n̄ = 0, B1 = 1 and
B2 = 0.1 and (d) n̄ = 0.01, B1 = 0.1 and B2 = 1. The legend for all panels is as shown in panel (a).

4. Spin Relaxation
4.1. Ising System

It is very important and enlightening to explore how the spin state evolves in time
under the different system configurations, compare and correlate it with the time evolution
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of the corresponding entanglements reported before, particularly their asymptotic behavior.
In Figure 9a, we study the time evolution of the spin state at the border site 1 and the
central site 4 in the dissipative Ising system in the presence of a homogeneous magnetic
field, B1 = B2 = 1, at different temperatures starting from different initial states; maximally
entangled (thin lines) and disentangled (bold lines).

Figure 9. Time evolution of the spin state
〈
Sz

1
〉

and
〈
Sz

4
〉

in the Ising system in the presence of the
environment (Γ = 0.05) at different temperatures (0 ≤ n̄ ≤ 0.01), and different magnetic field
strengths, where (a) B1 = 1 and B2 = 1, (b) B1 = 1 and B2 = 0.1, and (c) B1 = 0.1 and B2 = 1. The
legend for all panels is as shown in Figure 7c. The inner inset plots in the panels in this figure provide
an overall look at the spin dynamics presented in the corresponding panels.

In the upper panel of Figure 9a, we compare the time evolution of the spin 1 state〈
Sz

1
〉

starting from two different initial states, maximally entangled and disentangled
(separable), represented by |ψm〉 and |ψs〉 respectively. In the maximally entangled state
case, represented by the thin plots, at all temperatures,

〈
Sz

1
〉

starts from zero, decays,
reaches a minimum value, then shows a brief oscillation before reaching a steady state
value that is very close to −0.5 at zero temperature but increases as the temperature is
raised. Obviously, the spin state starts at zero value but asymptotically, under the decay
effect of the environment, it is pushed downward; however, due to the impact of the
precession motion induced by the net magnetic field, it ends up at a steady state value that
is slightly higher than −0.5 at zero temperature. It deviates further up, away from −0.5,
as the temperature increases due to the thermal excitation as expected. Starting from a
disentangled state value, 0.5, depicted in Figure 9a as bold lines, it decays monotonically
reaching a steady state value that coincides with that of the maximally entangled initial
state case at all temperatures. The inner inset plots in this figure and all coming figures
represent the overall dynamics of the concerned spin state. In fact, comparing the dynamics
of the spin state, in the current set up, with the corresponding bipartite entanglements
that we reported in Figures 2–4, one can notice a strong resemblance. The entanglements
corresponding to the maximally entangled state show oscillatory behavior before reaching
a steady state value, while that starting from a disentangled state increases from zero
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monotonically before reaching the same steady state asymptotically. In addition, the time
rate to reach the steady state is very much the same for the spin state and the entanglements.

In the lower panel of Figure 9a, we explore the time evolution of the state of the central
spin, 4, in the Ising system starting from the maximally entangled state (thin lines) and the
disentangled one (bold lines). As can be noticed, the dynamics of

〈
Sz

4
〉

shows a very similar
behavior to that of

〈
Sz

1
〉
, which depends on the initial state but it reaches asymptotically a

common steady state value regardless of the initial state at all temperatures. Comparing
the behavior of

〈
Sz

1
〉

and
〈
Sz

4
〉
, starting from the initial maximally entangled state, shows

that they reach their steady state values at around the same time but these values are not
coinciding as can be seen, the value of

〈
Sz

4
〉

is slightly higher than that of
〈
Sz

1
〉
. This behavior

should be expected as the central spin is interacting with more nearest-neighbor spins
compared with the border spin, which provides a stronger precession and consequently
a stronger resistance to the environment decay effect. The effect of an inhomogeneous
magnetic field on the time evolution of the spin states of the Ising system is explored in
Figure 9b, where B1 > B2. The dynamics of

〈
Sz

1
〉

is depicted in the upper panel of Figure 9b
starting from a maximally entanglement state (thin lines) and a disentangled state (bold
lines), which shows a very similar behavior to what was observed in the homogeneous
case except that for both of the initial states, the spin state decays monotonically without
any oscillation, reaching a common steady state value at each temperature, which is very
slightly higher than that of the homogeneous field case. Therefore, although the magnetic
field at the boarder sites is still of the same strength, applying a weaker field at the center
deviates the asymptotic value further away from −0.5. The dynamics of

〈
Sz

4
〉

is plotted
in the lower panel of Figure 9b, where it starts at −0.5 for the maximally entangled state
(thin lines) and 0.5 for the disentangled state (bold lines) but in both cases, it evolves to
a common steady state value. Comparing the lower panel of Figure 9b with the upper
panel, one can notice an increase in the steady state values of

〈
Sz

4
〉

at all temperatures as a
result of applying a weaker magnetic field at the central spin. Comparing the dynamics
of
〈
Sz

1
〉

and
〈
Sz

4
〉

and their asymptotic steady state values starting form a disentangled
state, where both spins are initially pointing upward with the same value 0.5. The steady
state value of

〈
Sz

4
〉

is clearly higher than that of
〈
Sz

1
〉
, at all temperatures, as a result of the

applied inhomogeneous magnetic field. The difference in the steady state values is larger
than what was observed in the homogeneous magnetic field case discussed in Figure 9a.

The other inhomogeneous magnetic field case, where B1 = 0.1 and B2 = 1, is presented
in Figure 9c. The common steady state values of

〈
Sz

1
〉
, as illustrated in the upper panel

of Figure 9c, is much higher than that was reported in the previous cases in Figure 9a,b,
as a result of the weak magnetic field strength applied at the border sites in the current
case. On the other hand, the common steady state values of

〈
Sz

4
〉
, shown in the lower panel

of Figure 9c, is slightly lower than what was observed in the lower panels of Figure 9a,b,
which emphasizes the very small impact of varying the magnetic field strength on the
central spin. Comparing the upper and the lower panels of Figure 9c shows a huge
difference between the corresponding steady state values of

〈
Sz

1
〉

and
〈
Sz

4
〉
, compared

with what was observed in the two previous magnetic fields configurations reported in
Figure 9a,b. This shows that in this particular configuration,

〈
Sz

1
〉

and
〈
Sz

4
〉

end up in two
completely different states and the steady state of

〈
Sz

1
〉

deviates the most away from the
downward state, in contrrast to

〈
Sz

4
〉
, which an indication that the net magnetic field in this

case is significantly enhancing the spin precession motion against the dissipative decay
effect, causing the bipartite entanglement, as well as the robustness against thermal effects,
to be considerably boosted, as was illustrated Figures 2c and 4c.

4.2. XYZ System

The spin state dynamics of the dissipative partially anisotropic (XYZ) spin system un-
der different magnetic field configurations is explored in Figure 10. Comparing Figure 10a
with Figure 9a, where the magnetic field is homogeneous, one can see that

〈
Sz

1
〉

and
〈
Sz

4
〉

in
the partially anisotropic system behave in a very similar way to the Ising system case except
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that the oscillatory behavior is reduced in the XYZ system and the asymptotic values, at
all temperatures, are slightly lower than that of the Ising case, which is expected as the
effect of the spin-spin interaction in the current case is lower than the anisotropic case.
Turning to the inhomogeneous magnetic field case, where B1 > B2, comparing Figure 10b
and Figure 9b, it shows that, again, the dynamic behavior of

〈
Sz

1
〉

and
〈
Sz

4
〉

is very similar
to the Ising case, but the asymptotic equilibrium values are lower even compared with the
homogeneous field case.

Figure 10. Time evolution of the spin state
〈
Sz

1
〉

and
〈
Sz

4
〉

in the XYZ system in the presence of
the environment (Γ = 0.05) at different temperatures (0 ≤ n̄ ≤ 0.01), and different magnetic field
strengths, where (a) B1 = 1 and B2 = 1, (b) B1 = 1 and B2 = 0.1, and (c) B1 = 0.1 and B2 = 1. The
legend for all panels is as shown in Figure 7c. The inner inset plots in the panels in this figure provide
an overall look at the spin dynamics presented in the corresponding panels.

The interesting change takes place in the other inhomogeneous field case, B1 < B2,
presented in Figure 10c, where the magnetic field strength at the border sites is much
smaller than the one at the central site. While there is no notable change in the

〈
Sz

4
〉

behavior compared with that depicted in Figure 10b, the steady state values of
〈
Sz

1
〉

are much higher than the corresponding ones in the Ising case, illustrated in Figure 9b.
One may have expected a different behavior for

〈
Sz

1
〉
, and all the border spins, where

they should have relaxed asymptotically to a steady state value that is lower, closer to
the downward state, than the corresponding one of the Ising system, similar to the two
previous magnetic field configurations, illustrated in Figure 10a,b. However, the observed
behavior means that the precession motion of the border spins is enhanced and persistent
against the dissipative decay effect and thermal excitation, which may explain the strong
long range, beyond nearest neighbors, entanglement observed in this system configuration,
as illustrated in Figure 6c. This also might be a sign of a critical behavior of the system at
this particular combination of the system parameters that needs further investigation.
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4.3. XXX System

We study here the time evolution of the spin state in the completely isotropic dissipa-
tive (XXX) system, where a representative sample of the results are depicted in Figure 11.
We found that, at zero temperature regardless of the magnetic field configuration or the
initial state, the steady state of both of

〈
Sz

1
〉

and
〈
Sz

4
〉

takes exactly the value −0.5, which as
we discussed before is due to the fact that the spins are pointing along the net magnetic
field direction with no precession motion at all and as a result the dissipative decay effect
dominates and force all the spins to, eventually, align downward, parallel to each other
reaching a final separable (disentangled) state, as shown in Figure 11a,c. At a non-zero
temperature, the spin states

〈
Sz

1
〉

and
〈
Sz

4
〉
, due to thermal excitation, relax to a common

final steady state value that is higher than −0.5, where the higher the temperature is, the
larger is the deviation, as shown in Figure 11b. Applying an inhomogeneous magnetic
field does not split the common steady state value of

〈
Sz

1
〉

and
〈
Sz

4
〉
, even at non-zero

temperature as can be noticed in Figure 11d. This means, in the XXX system case, all the
spins end up pointing in the same direction reaching a separable disentangled steady state,
as was pointed out in Figure 8, regardless of the initial state or the system parameters.
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Figure 11. Time evolution of
〈
Sz

1
〉

and
〈
Sz

4
〉

in the XXX system in the presence of the environment
(Γ = 0.05) starting from an initial maximally entangled state, at different temperatures and magnetic
fields, where in (a) n̄ = 0, B1 = 1 and B2 = 1, (b) n̄ = 0.01, B1 = 1 and B2 = 1, (c) n̄ = 0, B1 = 1
and B2 = 0.1 and (d) n̄ = 0.01, B1 = 0.1 and B2 = 1. The legend for all panels is as shown in panel
(a). The inner inset plots in the panels in this figure provide a magnifying look at the asymptotic
behavior of the spin dynamics presented in the corresponding panels.

5. Conclusions

We studied a finite two-dimensional Heisenberg spin lattice with nearest-neighbor
spin interaction coupled to a dissipative Lindblad environment in the presence of an
external inhomogeneous magnetic field at finite temperature. The spin lattice consists of a
central spin surrounded by 6 border spins equally distant form it in a triangular symmetric
structure. We developed an exact numerical solution for the Lindblad master equation of
the system, under the Born-Markovian constrain, in Liouville space. We have shown that
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applying an inhomogeneous magnetic field, compared with the homogeneous one, has a
great impact on the entanglement distribution among the spins in the lattice and can be
used to significantly enhance the bipartite entanglement among the spins in the system,
even beyond nearest neighbors, and boost their thermal robustness at different degrees
of anisotropy. In particular, applying an inhomogeneous magnetic field with a gradient
directed inward, where the central spin is exposed to higher magnetic field strength
compared with the border spins, has the most significant impact on the entanglement
enhancement and robustness against the thermal dissipative environment at all degrees of
anisotropy, compared with the other magnetic field configurations. Applying such a field
to a completely anisotropic (Ising) system, enhanced the nearest neighbor entanglement
among the border spins in the steady state considerably, though the bipartite entanglements
involving the central spin were slightly reduced. All the beyond nearest neighbor bipartite
entanglements of all spins vanish asymptotically in this setup. However, when the same
inhomogeneous field was applied to a partially anisotropic (XYZ) system, not only it
has significantly enhanced the steady state entanglement among the nearest neighbor
border spins, and its thermal robustness, but also among all the beyond nearest neighbor
spins in a remarkable way, which indicates that this combination of inhomogeneous
external magnetic field and anisotropic spin-spin interaction creates a long range quantum
correlation across the lattice. The entanglement in the isotropic (XXX) system was found
to asymptotically vanish regardless of the initial state of the system, the temperature or
the degree of inhomogeneity of the magnetic field, where the last affects only the length of
the time period the system spends before completely losing its entanglement as well as
the loss rate. Testing the effect of a weak homogeneous magnetic field on the system at
different degrees of anisotropy showed that the entanglement among the different spins is
enhanced compared with the strong homogeneous magnetic field case with higher thermal
persistence. However, the effect of the inward inhomogeneous magnetic field was still
much higher on the entanglement steady state value and thermal robustness of the system
at all degrees of anisotropy.

Furthermore, we investigated the spin state dynamics in the system and its correlation
to the entanglement behavior under the different system configurations. We have demon-
strated that in the isotropic (XXX) system, the dissipative decay effect dominates entirely,
over the other system parameters influences, forcing all the spins to align parallel to each
other, downward at zero temperature or very slightly away from the downward state at
finite temperature, into a separable (disentangled) steady state, regardless of the system
initial state or the inhomogeneity of the magnetic field. On the other hand, for anisotropic
system, the inhomogeneous magnetic field, with again an inward gradient, was found to
have the greatest impact on the spins dynamics and steady state. The complete anisotropy,
in the Ising system, enhanced the system robustness against the environment thermal dissi-
pative decay effect, protecting the mutual entanglement among the spins and causing them
to asymptotically relax to different steady states that depend on their locations in the lattice,
deviating from the downward state induced by the decay. Interestingly, the XYZ system,
where the degree of anisotropy is lower than that of the Ising system, exhibited a stronger
robustness to the environment decay effect, which was reflected in more distinguished
steady states of the spins, from each other, and further away from the downward state.
These states, as we have already pointed out, were accompanied by a long range quantum
entanglement among the spins across the lattice, which is a sign of a critical behavior of the
system taking place at this configuration.
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