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Abstract: Firefly Algorithm (FA) is a recent swarm intelligence first introduced by X.S. Yang in 2008. It
has been widely used to solve several optimization problems. Since then, many research works were
elaborated presenting modified versions intending to improve performances of the standard one.
Consequently, this article aims to present an accelerated variant compared to the original Algorithm.
Through the resolving of some benchmark functions to reach optimal solution, obtained results
demonstrate the superiority of the suggested alternative, so-called Fast Firefly Algorithm (FFA),
when faced with those of the standard FA in term of convergence fastness to the global solution
according to an almost similar precision. Additionally, a successful application for the control of a
brushless direct current electric motor (BLDC) motor by optimization of the Proportional Integral
(PI) regulator parameters is given. These parameters are optimized by the FFA, FA, GA, PSO and
ABC algorithms using the IAE, ISE, ITAE and ISTE performance criteria.

Keywords: Fast Firefly Algorithm; optimization; benchmark functions; BLDC motor; PI controller;
nature inspired algorithm

1. Introduction

Optimization is one of the methods that seek to solve complex problems in engineering
or other fields. The objective of optimization is to locate the optimal value of a cost
function in a well-defined research space under different constraints [1]. Among the
techniques used, in optimization, are those of swarm intelligence algorithms which are
nature-inspired algorithms, these optimization techniques have spread over the past two
decades [2]. Thus, the significant performance of swarm intelligence algorithms compared
to other conventional optimization methods motivates researchers and are still to be
attractive to exploit them in several complex optimization problems at different fields [3].
These algorithms operate on two different search properties: exploitation and exploration,
where exploration scans the entire search space and prevents the algorithm from falling
into the local optima, while exploitation ensures the efficiency of the search and the
convergence of the algorithm towards the optimal solution [4]. Since the appearance of
Genetic Algorithm [5], many optimization algorithms have been proposed such as Ant
Colony Optimization [6,7], Artificial Bee Colony (ABC) [8,9], Particle Swarm Optimization
(PSO) [10,11] Modified Particle Swarm Optimization [12] Cuckoo Search (CS) [13,14], Bat
Algorithm (BA) [15,16], Gray Wolf Optimizer (GWO) [17,18], Firefly Algorithm [19,20] and
so on.
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Recently, Firefly Algorithm is one of the famous swarm intelligence algorithms for
optimization problems that have been introduced in 2008. Due to its ease of design, imple-
mentation and flexibility in nature, it has become popular in the field of optimization and
has been widely applied to diverse engineering optimization problems such as in [21,22].
Despite all these advantages, it has drawbacks such as the problem of local minima and it
was unable to guarantee a balance between exploration and exploitation [2,23]. Therefore,
several improvement algorithms have been proposed to overcome such drawbacks which
make them more widely applied successfully in engineering like optimizing Proportional
Integral Derivative (PID) parameters in machine control [24–28].

The PID controller and its variants are mainly used in control process to have a
better dynamic performance of the controlled systems. Therefore, the optimal value of the
corrector parameters is needed. In this context, the choice of controller gains has become
an optimization problem [29]. FA and rival algorithms were successfully applied in the
optimization of the parameters of PID mainly in electrical engineering and other fields [30].
One of the prominent applications in electrical engineering is the control of BLDC motor
driven by a tuned and optimized PID. However, a BLDC motor is developed on the basis of
Brushed DC motor and it is one of the special electrical synchronous motor. It is driven by
DC voltage, but current commutation is obtained by solid-state switches. The commutation
time is fixed by the rotor position which is detected by hall sensor position [31].

It is noticeable that BLDC motor has the advantages that are: high efficiency, long
operating time, low noise, small size and well speed–torque features. In general, it has
a great improvement in automotive, aerospace and industry of engineering and so on.
Therefore, its use has been exposed to many types of load disturbances. Conventional
control methods cannot resist these alterations and lose their precision. Thus, it was
necessary to implement advanced control techniques to solve this problem, especially those
based on the artificial intelligence, such as: fuzzy control [32,33], neural control [34,35],
Genetic Algorithm (GA) control [36,37], PSO control [38], BAT control [31] and recently, FA
control and Improved Firefly Algorithm (IFA) or Modified Firefly Algorithm (MFA) [24–28].
These methods are based essentially on the optimization of the PID corrector parameters
and its derivatives to obtain optimal performance.

In this paper, we propose an improved version of the FA for function optimization
by reducing the search space. We apply this method to several benchmark problems and
also to the design of a controller for BLDC motor. The paper contains two experimental
parts, the first concerns the search for the global optimum of several benchmark functions
according to the FA and FFA algorithms and then a comparative study is carried out. In
order to consolidate its efficiency, a second application of PI parameters’ optimization for
the BLDC motor control is achieved through simulation in the MATLAB platform. This
application used the FFA, FA, GA, PSO and ABC algorithms according to the IAE, ISE,
ITAE and ISTE performance criteria, to test the competitiveness of the FFA algorithm.
Finally, by comparison of the obtained results, it is found that the performances of the
FFA are better than those of the other algorithms and it can be concluded that this new
algorithm can be a valid concurrent meta-heuristic optimization method.

The paper is organized as follows. Section 2 introduces the mathematical background
of the standard FA and the suggested FFA. In Section 3, the two algorithms are compared
through optimum finding of several standard test functions. The mathematical model
of BLDC motor and the PI controller with description of the experimental results are
presented in Section 4. Finally, drawn conclusion summarizing the achieved work is given
in Section 5.

2. Firefly Algorithm and Proposed Fast Firefly Algorithm
2.1. Standard Firefly Algorithm

Firefly Algorithm is inspired by the natural behavior of fireflies by using their self-
luminosity to get closer to each other in the dark. Three assumptions have been suggested
by Yang to clarify the behavior of fireflies [19,20]. Firstly, all fireflies are unisex. Thus, each
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firefly can be attracted to other fireflies regardless of gender. Secondly, the attractiveness is
linked to the intensity which is a function of the distance between the firefly concerned
and the other fireflies. The attractiveness decreases as the distance increases. Finally, the
luminosity or the luminous intensity of a firefly is given by the value of the cost function
of the problem posed. Mathematically, the FA algorithm can be given by the following
equations [19].

The light intensity of a firefly is given by Equation (1).

I(r) = I0 exp(−γ.rij) (1)

where: γ is the absorption coefficient and (I0) is the initial value at (r = 0).
The attractiveness is expressed by Equation (2) where β0 is the initial value at (r = 0):

β = β0 exp(−γ.rm
ij ) , m ≥ 1 (2)

Equation (3) evaluates the distance between two fireflies i and j, at positions xi and xj,
respectively, and can be defined as Cartesian distance. Where xik is the kth element of the
spatial coordinate xj of the ith firefly and D denotes the dimensionality of the problem [19].

rij =
∣∣ri − rj

∣∣ =
√√√√ D

∑
k=1

(xik − xjk)
2 (3)

The motion equation of the ith firefly to the jth one is determined by Equation (4).

xi(t + 1) = xi(t) + β(xj(t)− xi(t)) + α(rand− 0.5) (4)

where xi(t + 1) is the position of firefly i at iteration t +1 displacement. As it can be seen, the
first part of the right side of Equation (4) is the position of firefly i at iteration t, the second
term is relative to the attractiveness and the last one is randomization (blind flying if there
is no light) where α is the random walk parameter α ∈ [0,1), [19].

The FA Algorithm 1 is given as follows [19]:

Algorithm 1. Firefly Algorithm

Initialization of the parameters of FA (Population size, α, βo, γ and the number of iterations).
The Light intensity is defined by the cost function f(xi) where xi(i = 1, . . . ,n).
While (iter < Max Generation).

for i = 1:n (all n fireflies)
for j = 1:n (all n fireflies)

if (f(xi) < f(xj)), move firefly i towards j,
end if.
Update attractiveness β with distance r.
Evaluate new solution and update f(xi) in the same way as (4).

end for j
end for i

rank the solutions and find the best global optimal.
end while.
Show the results.

2.2. Fast Firefly Algorithm

It is worth noting that the original algorithm of Xin-She Yang performs (Max genera-
tion n.n) tests. However, in the proposed version, (K.n) tests only are performed, where K
is an integer. It means that the conventional one is hugely time consuming when compared
to the suggested one. The proposed Algorithm 2 is summarized as follows:
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Algorithm 2. Fast Firefly Algorithm

While (iter < Max Generation)
for k = 1:K.n (all n fireflies) // Here it is the first modification

i = rand(n) // Here it is the second modification
j = rand(n) // Here it is the third modification
if (f(xi) < f(xj)), move firefly i towards j,
end if.
Update attractiveness β with distance r.
Evaluate new solution and update f(xi) in the same way as Equation (4).
Modify the new position obtained by Equation (4) according to Equation (5).
end for k

rank the solutions and find the best global optimal.
end while.
Show the results.

As above mentioned, the new position obtained by Equation (4) is modified according
to Equation (5):

xi(t + 1) = α.xi(t) (5)

It should be noted that the values of α and γ are given empirically in the original
version according to each test function, β0 is equal to unity. However, on the other hand,
the α in FFA is taken equal to:

α = exp(−10.iter/(iter + 100)) (6)

where the convergence is reached easily and γ still chosen equal to 1. The randomization
parameter α is reduced exponentially from a maximum value to a minimum value accord-
ing to successive iterations instead of keeping it constant; with this injected artifice, we can
maintain the research balance between the exploitation and the exploration of the proposed
algorithm and it can give better results than its rival FA [4].

In the original version of the FA, the technique of updating the motion of fireflies can
be improved to be more faster. Thus, it is beneficial for each firefly in the swarm to find a
promising region by reorienting its motion in order to easily reach the overall optimum.
Consequently, the updated term is redirected to have a better exploration and exploitation
of the algorithm and the speed of its convergence is, thus, guaranteed [1,39].

The essence of the proposed method is the reduction of the search space (exploration)
while keeping the search efficiency satisfactory to reach the optimal solution. It means that
(K.n) evaluated tests were found clearly sufficient to obtain the optimal solution for the
large number of benchmark functions and other applications [40].

3. Simulation Results and Analysis
3.1. Benchmark Functions

Standards’ functions are essential to prove and compare the characteristics of opti-
mization algorithms. The most terms of evaluation are: The convergence speed and the
precision. Hence, 12 different test functions are used to compare the performance of the
original algorithm FA and the proposed one FFA according to the previously mentioned
evaluation terms. The used test functions are listed in Table 1, highlighting the variables,
ranges and values of the global optimum to reach [41,42].



Sensors 2021, 21, 5267 5 of 23

Table 1. Benchmark functions.

Function Name Expression Range f(x*)

F1 Schaffer N.1 F1(x, y) =
sin2(x2+y2)

2−0.5

(1+0.001(x2+y2))
2

[−100,100] 0 for x* = (0,0)

F2 Matyas F2(x, y) = 0.26
(
x2 + y2)− 0.48xy [−10,10] 0 for x* = (0,0)

F3 BohachevskyN1 F3(x, y) = x2 + 2y2 − 0.3cos(3πx)− 0.4cos(4πy) + 0.7 [−100,100] 0 for x* = (0,0)

F4 Xin-SheYang N.2 F4(x) =
D
∑

i=1
|xi | exp

(
D
∑
i

sin
(
x2

i
)) [−2π,2π] 0 for x* = (0, . . . . . . ,0)

F5 Zakharov F5(x) =
D
∑

i=1
x2

i +

(
D
∑

i=1
0.5ixi

)2

+

(
D
∑

i=1
0.5ixi

)4
[−5,10] 0 for x* = (0, . . . . . . ,0)

F6 Ackley
F6(x) = −20 exp(−0.2

√
1
D

D
∑

i=1
x2

i )−

exp( 1
D

D
∑

i=1
cos(2πxi) + 20 + exp(1)

[−32,32] 0 for x* = (0, . . . . . . ,0)

F7 Powell F7(x) =
D
∑

i=1
|xi |i+1 [−1,1] 0 for x* = (0, . . . . . . ,0)

F8 Rastrigin F8(x) = 10D +
D
∑

i=1

[
x2

i − 10cos(2πxi)
] [−5.12,5.12] 0 for x* = (0, . . . . . . ,0)

F9 Schewel223 F9(x) =
D
∑

i=1
x10

i
[−10,10] 0 for x* = (0,0)

F10 Alpinen1 F10(x) =
D
∑

i=1
|xisin(xi) + 0.1xi | [0,10] 0 for x* = (0,0)

F11 Grienwak F11(x) = 1 +
D
∑

i=1

x2
i

4000 −
D
∏
i=1

cos
(

xi√
i

)
[−600,600] 0 for x* = (0, . . . . . . ,0)

F12 Brown F12(x) =
D−1
∑

i=1

(
x2

i
)(x2

i+1+1)
+
(
x2

i+1
)(x2

i +1) [−1,4] 0 for x* = (0, . . . . . . ,0)

F13 Sphere F13(x) =
D
∑

i=1
x2

i
[−5.12,5.12] 0 for x* = (0, . . . . . . ,0)

F14 Salomon F14(x) = 1− cos

(
2π

√
D
∑

i=1
x2

i

)
+ 0.1

√
D
∑

i=1
x2

i
[−100,100] 0 for x* = (0, . . . . . . ,0)

F15 Three Hump Camel F15(x) = 2x2
1 − 1.05x4

1 +
x6

1
6 + x1x2 + x2

2
[−5,5] 0 for x* = (0, . . . . . . ,0)

3.2. Parameter Settings

The parameter settings of FA and FFA are showed in Table 2.

Table 2. Parameter settings of FA and FFA.

Symbol Quantity Value

N Population size 30
Iter Number of iterations 1000
α Randomization parameter [0,1]
β0 Attractiveness 1
γ Absorption coefficient [0,1]

3.3. Functions’ Experimental Results

The two algorithms are applied to minimize a set of test functions of dimensions 2D,
10D, 20D and 30D, respectively. The experimental environment is the MATLAB R2017a
software, the CPU is an E5700@3.00 GHZ, the RAM is of size 6 GB. To compare their
performance, minimum, mean, standard deviation and the computational time are taken
over 10 runs. For each function, the two algorithms operate independently. The results of
the optimization are summarized in Table 3.
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Table 3. Comparative simulation results of FA and FFA for the 12 benchmark test functions.

Function Algorithm Dim. D Theoretical
Optimal Value

Minimum
Value

Computational
Time (s)

Average Speed up
Ratio of 10 Runs Std Mean

F1
FA

2 0
1.6542 × 10−13 86.483887

12.0295:1
2.9426 × 10−12 3.4053 × 10−12

FFA 2.2204 × 10−16 7.189327 1.1466 × 10−16 3.5527 × 10−16

F2
FA

2 0
5.8618 × 10−15 110.617901

11.7869:1
2.2829 × 10−15 4.2810 × 10−15

FFA 1.1794 × 10−22 9.384792 5.2167 × 10−22 3.4229 × 10−22

F3
FA

2 0
8.0766 × 10−10 114.399397

11.9121:1
2.2452 × 10−9 2.2950 × 10−9

FFA 1.1102 × 10−16 9.603642 1.0320 × 10−15 1.4211 × 10−15

F4
FA

10 0
5.6623 × 10−4 165.318332

13.0661:1
1.3542 × 10−8 5.6625 × 10−8

FFA 3.4134 × 10−11 12.652510 2.4298 × 10−11 3.6237 × 10−11

F5
FA

10 0
1.9635 × 10−7 102.111224

12.0521:1
1.1191 × 10−7 3.1165 × 10−7

FFA 5.0686 × 10−22 8.472478 9.9126 × 10−38 5.0686 × 10−22

F6
FA

10 0
0.0252 174.645121

12.6941:1
0.0061 0.0357

FFA 7.5286 × 10−11 13.758015 5.5179 × 10−11 8.6060 × 10−11

F7
FA

20 0
5.4225 × 10−8 254.090816

11.9330:1
4.4293 × 10−8 6.0622 × 10−8

FFA 6.0701 × 10−27 21.293091 1.6065 × 10−25 2.1326 × 10−25

F8
FA

20 0
1.7397 × 10−9 86.135286

11.9768:1
2.2366 × 10−9 2.5533 × 10−9

FFA 7.1054 × 10−15 7.191834 1.1235 × 10−14 1.0658 × 10−14

F9
FA

20 0
5.4774 × 10−26 199.923385

12.2129:1
6.8916 × 10−26 7.4821 × 10−26

FFA 2.9153 × 10−84 16.369803 4.8193 ×
10−100 2.9153 × 10−84

F10
FA

30 0
1.7988 × 10−4 139.507606

12.2676:1
1.5871 × 10−5 2.1766 × 10−4

FFA 5.6687 × 10−9 11.372018 3.6465 × 10−10 6.0921 × 10−9

F11
FA

30 0
8.0295 × 10−6 130.429223

17.9004:1
2.0834 × 10−7 1.2770 × 10−6

FFA 3.3304 × 10−16 7.286405 2.0572 × 10−16 6.5503 × 10−16

F12
FA

30 0
2.0832 × 10−4 312.021582

16.2503:1
2.1256 × 10−5 1.7312 × 10−4

FFA 3.5141 × 10−16 19.200945 2.1964 × 10−17 3.5897 × 10−16

In terms of precision of convergence towards the global optimum, by visualizing the
results in Table 3, it can be seen that the mean and the standard deviation of the reached
optimum, after 10 runs for each test function, of FFA in all dimensions are better than of FA.

Concerning the convergence fastness to the global optimum, it can be clearly remarked,
from extensive simulation tests, that the proposed method outperforms the original one
and it is significantly faster (see Table 3). Accordingly, the average speed up ratio, when ap-
plying the two algorithms on the 12 test functions, is 12:1, which confirms the effectiveness
of the suggested technique.

It is worthy to note that the speed up ratio is defined by:

SR =
tFA
tFFA

(7)

where tFA is the execution time of the original algorithm FA, and the tFFA is the execution
time of the proposed one FFA.

As is shown in Figures 1–4 below, the proposed algorithm reaches all solutions of all
test functions with high precision outperforming, accordingly, those obtained from the
standard one.
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As can be seen from Table 3, the proposed algorithm is more unbiased (the statistical
expected value of obtained cost function of FFA is more tending to the theoretical value
than FA) and more consistent (the standard deviation of obtained cost function when
applying FFA is more tending to 0 than the FA). The reported remarks hold for the twelve
test functions as previously shown in Table 3 for dimensions 2D, 10D, 20D and 30D,
respectively. For more convincing, robustness and stability of FFA in higher dimensions
are evaluated by using the test functions (F13, F14 and F15) for dimensions 50D, 100D,
150D and 200D, respectively. Table 4 gives the results of these tests with a 10 times run
for each test function. Finally, it can be concluded that the stability of FFA is not affected
by increasing significantly dimensions (high precision remains obtained). The graphs of
Figure 5 reflect these results.
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Table 4. Stability of FFA in higher dimensions.

Function Algorithm Dim. D Theoretical
Optimal Value

Minimum
Value Std Mean Computational Time

of 10 Runs (Seconds) Iterations

F13 FFA

50

0

3.7950 × 10−16 2.9222 × 10−17 3.9330 × 10−16 11.743543

1000
100 8.9766 × 10−16 5.3287 × 10−17 9.2937 × 10−16 12.630883

150 1.5083 × 10−15 4.4389 × 10−17 1.5223 × 10−15 13.399011

200 2.1964 × 10−15 8.7426 × 10−20 2.1966 × 10−15 14.696007
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Table 4. Cont.

Function Algorithm Dim. D Theoretical
Optimal Value

Minimum
Value Std Mean Computational Time

of 10 Runs (Seconds) Iterations

F14 FFA

50

0

1.9615 × 10−9 5.8730 × 10−11 2.0092 × 10−9 12.619130

1000
100 3.0618 × 10−9 6.2137 × 10−11 3.1208 × 10−9 13.483702

150 3.9315 × 10−9 1.7846 × 10−11 3.9107 × 10−9 14.451983

200 4.6921 × 10−9 1.1344 × 10−11 4.6959 × 10−9 15.718014

F15 FFA

50

0

1.1834 × 10−21 7.7571 × 10−22 2.0847 × 10−21 8.676127

1000
100 1.3134 × 10−21 9.5957 × 10−22 1.7686 × 10−21 9.238064

150 1.6926 × 10−21 4.3289 × 10−21 3.9281 × 10−21 10.033184

200 2.8146 × 10−21 3.7922 × 10−21 5.1335 × 10−21 11.103394

4. Application for the Control of Brushless DC Motor
4.1. Description

BLDC motor is a permanent magnet synchronous motor that has trapezoidal Back-
EMF and an almost rectangular current. It uses position detectors and an inverter to
control the armature currents. It becomes popular for industrial applications because of its
high efficiency, reliability, noiseless operation, low maintenance and an optimized volume.
BLDC motors are available in several different configurations, but three-phase is the most
common type due to its high speed and low torque ripple [43].

The drive model of a BLDC motor is shown in Figure 6. It is divided into two blocks.
The first one is the inverter and the second is the BLDC motor. Accordingly, the BLDC
motor is powered by a six-switch inverter where, for each control step, two phases operate
simultaneously while the third is eliminated. Note that the signals of the Hall Effect position
sensor (Ha, Hb, Hc) shifted by 120◦, electrically govern these switches by generation of the
pulses (S1, . . . ,S2) at every 60◦ electrical angle [43–45].
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4.2. Mathematical Modeling of a BLDC Motor

By consideration of the symmetry of the phases, it is assumed that the three phases’
resistances are identical as well as the inductances. Consequently, the equations describing
the model of the equivalent circuit of the motor are [43–45]:

va = Ria + L
d
dt

ia + ea (8)

vb = Rib + L
d
dt

ib + eb (9)

vc = Ric + L
d
dt

ic + ec (10)

Then, the line voltage equation can be obtained by subtraction of the phase voltage
equation as:

vab = R(ia − ib) + L
d
dt
(ia − ib) + ea − eb (11)

vbc = R(ib − ic) + L
d
dt
(ib − ic) + eb − ec (12)

vca = R(ic − ia) + L
d
dt
(ic − ia) + ec − ea (13)

where:

R: resistance of a stator phase [Ω].
L: inductance of a stator phase [H].
va, vb and vc are the stator phase voltages [V].
vab, vbc and vca are the stator phase to phase voltages [V].
ia, ib and ic are stator phase currents [A]
ea, eb and ec are motor Back-EMFs [V].

The relationship between phase currents is given by the equation:

ia + ib + ic = 0 (14)

Since each voltage is a linear combination of the other two voltages, two equations are
sufficient. Using relation 14, Equations (11) and (12) become [44]:

vab = R(ia − ib) + L
d
dt
(ia − ib) + ea − eb (15)

vbc = R(ia + 2ib) + L
d
dt
(ia + 2ib) + eb − ec (16)

The equation of mechanical part represents as follows:

Te = k f ωm + J
dωm

dt
+ TL (17)

ωm =
dθm

dt
(18)

where:

Te and TL are the electromagnetic torque and the load torque [Nm].
J is the rotor inertia, kf is a friction constant andωm is the rotor speed [rad/s].

The Back-EMF and electromagnetic torque can be expressed as:

ea = keωmF(θe) (19)

eb = keωmF
(
(θe −

2π

3
)

)
(20)
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ec = keωmF
(
(θe −

4π

3
)

)
(21)

where:

ke is the Back-EMF’s constant.
θe is equal to the rotor angle (θe= p. θm/2), θm the mechanic angle and p the number of pole
pairs. F(θe) is trapezoidal waveform of Back-EMFs.

Thus, the torque equation can be defined as:

Te =
(eaia + ebib + ecic)

ωm
=

kt

2

[
F(θe)ia + F

(
θe −

2π

3

)
ib + F

(
θe −

4π

3

)
ic

]
(22)

kt: the torque constant.

Therefore, the function F(θe) is a function of rotor position, which gives the trapezoidal
waveform of Back-EMF. One period of function can be written as:

F(θe) =


1 0 ≤ θe <

2π
3

1− 6
π

(
θe − 2π

3
) 2π

3 ≤ θe < π

−1 π ≤ θe <
5π
3

−1 + 6
π

(
θe − 5π

3
) 5π

3 ≤ θe < 2π

(23)

For illustration, Figure 7 shows Back-EMF, Hall Effect sensor signal and the current in
the three phases. In the trapezoidal motor Back-EMF induced in the stator has a trapezoidal
shape and its phases must be supplied with quasi square currents for ripple free torque
operation [44,46].

Finally, Equations (15)–(18) can be converted to a state space form. The resulting
complete model is given as:

dia
dt
dib
dt

dωm
dt

dθm
dt

 =


− R

L 0 0 0
0 − R

L 0 0

0 0 − k f
J 0

0 0 1 0




ia
ib

ωm
θm

+


2

3L
1

3L 0
− 1

3L
1

3L 0
0 0 1

J
0 0 0


 vab − eab

vbc − ebc
Te − TL

 (24)

ic = −(ia + ib) (25)

where: eab = ea − eb and ebc = eb − ec

4.3. Hall Effect Sensor and Transistor Switching Sequence

According to the angular position of the rotor evolution between 0◦ and 360◦, the
position produced by Hall Effect sensors is given which is described in Table 5 below.

Table 5. Switching sequence by using Hall Effect sensor signals.

Electrical Angle (◦) Sequence Number
Hall Sensors Phase Current

Switch Closed
Ha Hb Hc ia ib ic

0–60 1 1 0 1 + − off S1 S4

60–120 2 1 0 0 + off − S1 S6

120–180 3 1 1 0 off + − S3 S6

180–240 4 0 1 0 − + off S3 S2

240–300 5 0 1 1 − off + S5 S2

300–360 6 0 0 1 off − + S5 S4
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Each Hall Effect sensor operates during the passage of the poles based on the rising
and falling edges. Thus, the rising front for the north pole and falling for the south pole.
Accordingly, the sensor indicates 1 or 0, respectively. Following this switching logic of Hall
Effect sensors, the switching sequence of the inverter is expressed in Table 5, where the
switching sequence for shaft rotation is clockwise [45,47].

According to the circuit in Figure 6, the three-phase voltages are calculated with the
following formulas [45]:

va =
vd
2
(S1− S2) (26)

vb =
vd
2
(S3− S4) (27)

vc =
vd
2
(S5− S6) (28)

where vd is the DC supply voltage.
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4.4. Speed Control of Brushless DC Motor

The principle diagram for speed control of the three-phase BLDC motor is shown in
Figure 8. At the regulator input, the reference speed is compared to the actual speed of the
motor to generate a control voltage at its output.
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The signals of the switching sequences are obtained from the position of the motor
shaft. The motor stator is excited by the three-phase currents [45].

4.5. PI Controller

PI controller is a derivative of PID controller. It has been extensively used in industrial
applications due to its simplicity, robustness, reliability and easy tuning gains in simple
control [21].

The equation of the PI controller is specified by:

y(t) = kpε(t) + ki

t∫
0

ε(τ)dτ (29)

The Laplace transfer function is:

C(S) = kp +
ki
s

(30)

where:
kp: proportional gain,
ki: integral gain,
s: Laplace operator.

4.6. Simulation Results and Discussion

To ensure efficient performance of the system to be monitored, the performance criteria
defined by Equations (31)–(34) are used. The objective functions are chosen for minimizing
the time response characteristics due to the dependency of error on time [27]:

J1 = IAE =

T∫
0

ε(t)dt =
T∫

0

(ωre f −ωm)dt (31)

J2 = ISE =

T∫
0

ε2(t)dtdt =
T∫

0

(ωre f −ωm)
2dt (32)
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J3 = ITAE =

T∫
0

t.ε(t)dt =
T∫

0

t.(ωre f −ωm)dt (33)

J4 = ITSE =

T∫
0

t.ε2(t)dt =
T∫

0

t.(ωre f −ωm)
2dt (34)

The problem can be represented as:
Minimize J subjected to:

kpmin ≤ kp ≤ kpmax

kimin ≤ ki ≤ kimax

where ωref is the reference speed and ωm is the actual one. Figure 9 shows PI controller
block of the control. In this problem, the values of overshoot, rise time and stabilization
time are controlled indirectly. These parameters are directly linked to the objective function
so they are optimized implicitly [27].
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The model of BLDC motor drive is simulated in MATLAB. The parameters of the
BLDC motor are reported in Table 6.

Table 6. Parameters of BLDC motor.

Parameters Values

Number of pole 4

Nominal voltage vd 114 V

Stator resistance R 1.2 Ω

Stator inductance L 1.2 mH

Torque coefficient kt 0.3262 Nm/A

Back-EMF coefficient ke 0.3262 Vs/rad

Rotor inertia J 0.00085 kgm2

Rated speed Nr 3000 rpm

Friction coefficient kf 0.0001 Nms/rad

To control the BLDC motor, a conventional PI controller is used. However, it is not
easy to adjust its parameters in order to have an efficient control. Therefore, the FFA_PI
controller is used and it is compared to other algorithms to evaluate its competitiveness.
The simulation is performed by considering the well-known algorithms GA, PSO, ABC
and the standard FA. The simulation is run with 100 iterations and a population size of 10.

Figure 10 shows the evolution of the different performance criteria with the different
algorithms. The results of FFA, with the different criteria, are all the better than those
presented by the other algorithms. Figure 11, also, presents the cost functions IAE, ISE,
ITAE and ISTE obtained by FFA algorithm.
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The values of the PI controller, obtained by different simulations, are shown in Table 7.
The values are obtained by the five algorithms used, with different criteria.
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Table 7. kp, ki parameters obtained by various objective functions and various algorithms.

Algorithm Parameters/Criterion IAE ISE ITAE ITSE

FFA
kp_FFA 18.19 24.5 24.56 24.06

ki_FFA 4468.8 4435.2 4132.2 4002.32

FA
kp_FA 26.54 20.21 24.08 24.08

ki_FA 2207.2 3615.8 3451.2 2996.2

GA
kp_GA 19.45 23.14 19.11 24.76

ki_GA 1685.1 2474.5 3220.2 2896.1

PSO
kp_PSO 25.8 17.68 22.06 21.72

ki_PSO 2081.5 3440.8 3451.2 3601.66

ABC
kp_ABC 24.51 19.53 20.16 24.17

ki_ABC 3140.9 3796.6 3650.8 2901.12

In the chosen cost functions, the values of the overshoot, the rise time and the settling
time can be controlled indirectly. Based on their optimization, the cost functions force
the values of the other parameters to be optimum [27]. Table 8 shows the values of the
different correctors used in this simulation. The values of the rise time, settling time, peak
time, peak and overshoot are reported in Table 8. Accordingly, the results concerning the
time are better for the FFA algorithm as well as for the peaks and the overshoots which are
alternated with the other algorithms.

Table 8. Performance of the different controllers.

Controller Criterion Rise Time(s) Settling Time(s) Peak Peak Time(s) % Overshoot

FFA_PI

IAE

0.0217 0.413 3067.3 0.0264 2.2497

FA_PI 0.0219 0.0722 3041.1 0.0289 1.3708

GA_PI 0.0219 0.0731 3038.8 0.0293 1.2922

PSO_PI 0.0219 0.0730 3039.9 0.0289 1.3299

ABC_PI 0.0219 0.0579 3046.5 0.0289 1.5486

FFA_PI

ISE

0.0217 0.0478 3058.2 0.0263 1.7516

FA_PI 0.0218 0.0488 3060.7 0.0264 2.0226

GA_PI 0.0219 0.0646 3044.3 0.0290 1.4769

PSO_PI 0.0217 0.0488 3062.4 0.0265 2.0804

ABC_PI 0.0217 0.0488 3062.1 0.0264 2.0713

FFA_PI

ITAE

0.0218 0.0488 3051.5 0.0263 1.7163

FA_PI 0.0219 0.0546 3049.7 0.0263 1.6554

GA_PI 0.0218 0.0488 3058.9 0.0264 1.9620

PSO_PI 0.0219 0.0612 3055.2 0.0263 1.8398

ABC_PI 0.0218 0.0488 3061.2 0.0264 2.0393

FFA_PI

ISTE

0.0218 0.0513 3051.0 0.0263 1.7013

FA_PI 0.0219 0.0613 3046.4 0.0290 1.5480

GA_PI 0.0219 0.0613 3046.4 0.0290 1.5473

PSO_PI 0.0218 0.0513 3058.9 0.0263 1.9625

ABC_PI 0.0219 0.0596 3045.8 0.0290 1.5269
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Moreover, the execution simulation time comparison is given between the different
correctors and shown in Table 9. It can be reported that the calculation time using the
FFA_PI is faster than those obtained with the FA_PI, GA_PI, PSO_PI and ABC_PI when
using 50 or 100 iterations.

Table 9. Simulation time of the five algorithms.

Simulation Time (s)

Iteration FFA FA GA PSO ABC

50 108.53 284.15 119.55 242.23 135.95

100 216.57 570.06 239.77 486.82 268.20

According to the used criterions, Figures 12–15 represent the BLDC motor speeds
obtained with the different corrector optimized. Consequently, the figures are given for
comparison and they justify the values in Table 8.
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The graphs are zoomed in the area of the overshoot and the rejection of the disturbance
for better visualization of signals.
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From the previous numerical results and the figures’ responses, it can be concluded
that the optimized PI controller-based FFA showed a better capacity to compete with its
FA counterpart, and its rivals GA, PSO and ABC. Thus, it provided the fastest rise and
response times in addition to the minimum peak time.

Figure 16 show the simulation results of the various variables of the BLDC motor
using the FFA_PI using (ki = 2468, kp = 18.19). Accordingly, Figure 16a presents the speed
of the BLDC motor where the reference speedωref is chosen as a ramp in order to dampen
the current at start-up and to avoid peaks as well as for the electromagnetic torque on the
Figure 16b. At 0.125 s, a torque load TL = 4 Nm is applied and a good rejection by the
control is observed. The effect of the load is very apparent on the figure of the speed, the
torque, the voltages and the current.

On each figure presented, there are three phases, where the first phase is zoomed-in to
clearly visualize the behavior of the signals. Thus, Figure 16c,d show the phase voltages
and the phase to phase voltage simultaneously. The trapezoidal Back-EMF shape is well
illustrated on the Figure 16e. Finally, the shape of the currents of the three phases of the
stator is given by the Figure 16f. As can be seen, there is a distortion in the torque signals
which is due to the trapezoidal shape of the Back-EMF and the nature of the currents
containing harmonics. Finally, Figure 17 gives the evolution, until the convergence, of the
parameters of the FFA_PI and FA_PI on the control technique.
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5. Conclusions

A fast FA algorithm so-called FFA is presented and compared with the standard FA
through searching the global optimum by using different standard benchmark functions
in a first application. The simulation results were compared, taking in consideration
the precision and the speed of convergence criteria for the two algorithms. The reached
results prove that those obtained by FFA are better than those of FA. A second application
concerning the optimization of the gains of a PI controlling a BLDC motor is carried out
through the ITSE performance criterion. The results obtained show the robustness of the
two algorithms with superiority for FFA. The acceleration of the proposed algorithm is due
to the search space reduction by a random election of a significantly small set of moving
fireflies while the whole search space stills covered. It should be noted that the acceleration,
in the optimization function, is in the average 12:1, with respect to FA. Additionally, for
the complex problem (BLDC motor control), the acceleration is clearly remarked for the
modified algorithm FFA than FA, GA, PSO and ABC algorithms. Globally, the suggested
FFA algorithm can be considered as most state of the art metaheuristic algorithms such as
FA, GA, PSO and ABC, and presents superior fastness against all reported optimizers.

Furthermore, a modification on the α parameter is given and this guarantees the
robustness and precision through the enhancement of search directions toward the global
optimal solution.
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Nomenclature

Symbols used in this paper
ABC Artificial Bee Colony
PSO Particle Swarm Optimization
CS Cuckoo Search
BA Bat Algorithm
GWO Gray Wolf Optimizer
FA Firefly Algorithm
FFA Fast Firefly Algorithm
GA Genetic Algorithms
PI Proportional Integral
PID Proportional Integral & Derivative
kp, ki Proportional and Integral gains of the PI controller
IFA Improved Firefly Algorithm
MFA Modified Firefly Algorithm
tFA Execution time of the original algorithm FA
tFFA Execution time of the proposed algorithm FFA
R Resistance of a stator phase, [Ω]
L Inductance of a stator phase, [H]
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va, vc, vc Stator phase voltages, [V]
vab, vbc, vca Stator phase to phase voltages, [V]
ia, ib, ic Stator phase currents, [A]
ea, eb, ec Motor Back-EMFs, [V]
Te, TL Electromagnetic and load torques, [Nm]
J Rotor inertia, [kgm2]
kf Friction constant, [Nms/rad]
kt Torque coefficient, [Nm/A]
ωm Rotor speed, [rad/s]
Nr Rated speed, [rpm]
θe Electric angle of rotor, [rad]
θm Mechanic angle of rotor, [rad]
F(θe) Back-EMF reference function
ε(t) Error input signal
y(t) Output signal
Ha, Hb, Hc Hall Effect Sensors for the three phases
IAE Integral Absolute Error
ISE Integral Square Error
ITAE Integral Time Absolute Error
ISTE Integral Square Time Error
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