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Epstein Barr virus (EBV) is one of the most successful pathogens of humans,
persistently colonizing more than 95% of the adult human population. At the same
time EBV encodes oncogenes that can readily transform human B cells in culture
and threaten healthy virus carriers with lymphomagenesis. Cytotoxic lymphocytes have
been identified in experimental models and by primary immunodeficiencies as the
main protective immune compartments controlling EBV. EBV has reached a stalemate
with these cytotoxic T and innate lymphocytes to ensure persistence in most infected
humans. Recent evidence suggests that the non-coding RNAs of the virus contribute
to viral immune escape to prevent immune eradication. This knowledge might be used
in the future to attenuate EBV for vaccine development against this human tumor virus
that was discovered more than 55 years ago.
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INTRODUCTION ON EBV AND ITS ONCOGENESIS

Epstein Barr virus (EBV) that is also called human herpesvirus 4 (HHV4) is a common human
γ-herpesvirus establishing persistent infection in more than 95% of the human adult population
(Münz, 2019). Characteristic for herpesviruses it exists in latent and lytic infection in its human
host. Latent infection allows persistence, while lytic replication generates infectious viral particles
for transmission. In the case of EBV, five latent infection programs, namely latency 0, I, IIa, IIb,
and III, are thought to establish a latency reservoir in B cells for long-term persistence of this virus
(Thorley-Lawson and Gross, 2004; Kempkes and Robertson, 2015; Table 1). For this purpose and
after transmission by saliva exchange, EBV is thought to cross mucosal epithelia (Tugizov et al.,
2013) for B cell infection in submucosal secondary lymphoid tissues like the tonsils (Farrell, 2019).
In naïve B cells successively the latency IIb and III infection programs are established after EBV
infection with the expression of all 6 nuclear antigens of EBV (EBNA1, 2, 3A, 3B, 3C, and LP),
the small noncoding RNAs EBER1 and 2, 48 miRNAs in latency IIb and for latency III in addition
the two latent membrane proteins (LMP1 and 2). The 48 EBV miRNAs originate from 25 miRNA
precursors that are encoded in two clusters, namely the BHRF1 cluster (3 miRNA precursors) and
the BART cluster (25 miRNA precursors) (Caetano et al., 2021; Pfeffer et al., 2004). The two latency
programs IIb and III induce B cell transformation and latency III is also found in lymphoblastoid
cell lines (LCLs) that can be generated by EBV infection of B cells in vitro. The associated B cell
proliferation and rescue from apoptosis is thought to drive B cells into differentiation in vivo with
successive down-regulation of viral transcripts (Babcock et al., 2000). In germinal center B cells
only EBNA1, LMP1 and 2, EBERs and BART miRNAs are expressed (latency IIa). This latency can,
however, be also reached without prior EBNA2 dependent latency IIb and III in vivo (Li et al., 2020).
Latency IIa rescues infected cells from the germinal center reaction for persistence in memory
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B cells with only EBER and BART miRNA expression
(latency 0) or additional EBNA1 expression during homeostatic
proliferation (latency I) (Babcock et al., 1998; Hochberg et al.,
2004). However, latency 0 persistence can be also achieved from
latency IIb directly in the absence of EBNA3C (Murer et al.,
2018). From latency 0 and I lytic reactivation of EBV can be
induced by B cell receptor cross-linking, suggesting that cognate
antigen exposure induces the immediate early transactivation
factors BZLF1 and BRLF1 for lytic EBV infection (Kenney and
Mertz, 2014). The resulting plasma cell differentiation is also
associated with lytic EBV replication in vivo (Laichalk and
Thorley-Lawson, 2005; McHugh et al., 2017). More than 80
early and late lytic gene products are then expressed together
with EBERs and BHRF1 as well as BART miRNAs to produce
infectious EBV particles (McKenzie and El-Guindy, 2015). Such
lytic replication resulting in infectious particle production in
submucosal secondary lymphoid tissues allows then for mucosal
epithelia infection from the basolateral side (Tugizov et al., 2003;
Chen et al., 2018; Zhang et al., 2018). Additional lytic replication
in epithelia is thought to amplify shedding of EBV that is ideally
suited for B cell infection and transmission via saliva exchange
(Borza and Hutt-Fletcher, 2002; Hadinoto et al., 2009; Hutt-
Fletcher, 2017). In addition to the EBER, BHRF1 and BART
small ncRNAs, miRNA independent functions of the BART long
ncRNA and EBV derived circular RNAs have been described
(Bullard et al., 2018; Ungerleider et al., 2019). Among these
the BART long ncRNA contains also a small nucleolar RNA
that could be involved in RNA modifications (Hutzinger et al.,
2009). However, their functions in EBV infected B cells and the
regulation of latent and lytic infection remain largely unclear.
Thus, EBV is ideally adapted to the human B cell physiology to
achieve both persistence in long-lived memory B cells and lytic
replication in plasma cells.

Despite asymptomatic EBV co-existence with its human host
in most virus carriers, the above described EBV latency programs
are, however, also associated with malignancies that occur more
frequently during immune suppression after transplantation or
human immunodeficiency virus (HIV) co-infection (Cesarman,
2014; Shannon-Lowe and Rickinson, 2019). In fact EBV causes
around 200,000 tumors every year in the human population
(Cohen et al., 2011). Latency I is found in Burkitt’s lymphoma
and gastric carcinoma, latency IIa in Hodgkin’s lymphoma and
nasopharyngeal carcinoma, and latency III in post-transplant
lymphoproliferative disease (PTLD) and some diffuse large B
cell lymphomas (DLBCL) (Shannon-Lowe and Rickinson, 2019).
In this review I will discuss the role of EBV’s non-coding
RNAs (ncRNAs), focusing on EBERs and miRNAs, in EBV
driven tumorigenesis, transition of latent to lytic replication, and
immune control thereof.

REGULATION OF VIRAL TRANSCRIPTS
BY EBV ncRNAs

EBER1 and 2 are non-polyadenylated RNA polymerase III
transcripts of 162 and 172 nucleotide length, respectively (Farrell,
2019). Despite them being with several 1,000 copies per EBV

infected cell (Lerner et al., 1981) among the most abundant
viral transcripts and due to their expression in all latent and
lytic infection program valuable for diagnostics by in situ
hybridization (Weiss and Chen, 2013) EBER function still
remains enigmatic. Both EBERs are not required for in vitro
immortalization of human B cells and do not affect EBV infection
of mice with reconstituted human immune system compartments
(Gregorovic et al., 2011, 2015). Although deletion of EBER1 or
2 in recombinant EBVs leads to increased LMP2 mRNA in the
respective LCLs immortalized with these viruses, LMP2 protein
levels are not affected and no changes in the transformation
frequency of primary human B cells or the growth of established
EBER deficient LCLs were observed. Thus, EBERs seem to have
little influence on viral gene expression.

In contrast the RNA polymerase II miRNA precursors that
are then processed by Drosha and Dicer, regulate both latent
and lytic EBV gene transcripts (Skalsky and Cullen, 2015;
Poling et al., 2017). Regarding latent EBV infection regulation
it was originally noted that in the absence of BHRF1 miRNAs
B cell transformation in vitro and EBV infection in mice
with reconstituted immune system components is compromised
(Feederle et al., 2011a,b; Wahl et al., 2013). Furthermore, LMP2
is down-regulated by BART miRNA 22 in nasopharyngeal
carcinoma cells (Lung et al., 2009). In contrast to this regulation
of latency establishment by the EBV miRNAs, BART miRNAs
of EBV might be predominantly involved in blocking lytic
replication (Figure 1; Cai et al., 2006; Chen et al., 2019; Serrano-
Solis et al., 2019). Along these lines it was found that the BART
miRNA 2 down-regulates the viral DNA polymerase BALF5
(Barth et al., 2008). This reduced BALF5 protein levels by 50%
and infectious virus production by 20%. In addition, BART
miRNA 20-5p down-modulates BZLF1 and BRLF1 transcripts
(Jung et al., 2014; Lin et al., 2015). This diminishes lytic
replication upon BART miRNA 20-5p expression. BART miRNAs
are affected by the deletion that is present in the B95-8 laboratory
strain of EBV (Yang et al., 2013) and EBV isolates with similar
deletions are enriched in DLBCLs (Okuno et al., 2019). Therefore,
it was suggested that enhanced early lytic EBV gene expression
supports lymphomagenesis, probably via conditioning of the
tumor microenvironment (Ma et al., 2011; Münz, 2019). BART
miRNAs are expressed during all EBV infection programs,
thereby presumably blocking this pro-tumorigenic effect of
early lytic EBV gene expression. Furthermore, BART miRNAs
are expressed during latency 0 and I, presumably raising the
bar for lytic reactivation to maintain persistence in long-
lived memory B cells.

REGULATION OF HOST TRANSCRIPTS
BY EBV ncRNAs

EBV miRNAs do not only compromise lytic EBV replication
by targeting the viral DNA polymerase and immediate early
transactivators of lytic EBV infection, but also by down-
regulating cellular machinery that induces lytic EBV reactivation.
BHRF1 miRNA 2-5p and BART miRNA 2-5p have been recently
described to target components of B cell receptor signaling
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TABLE 1 | EBV latency patterns.

Latency 0 I IIa IIb III

Viral proteins – EBNA1 EBNA1, LMP1, LMP2 EBNA1, EBNA2,
EBNA3A, EBNA3B,
EBNA3C, EBNA-LP

EBNA1, EBNA2,
EBNA3A, EBNA3B,
EBNA3C, EBNA-LP,
LMP1, LMP2

Viral small noncoding
RNAs

EBER, BART miRNA EBER, BART miRNA EBER, BART miRNA EBER, BART miRNA,
BHRF1 miRNA

EBER, BART miRNA,
BHRF1 miRNA

Associated tumors – Burkitt’s lymphoma,
gastric carcinoma

Hodgkin’s lymphoma,
nasopharyngeal
carcinoma

– Diffuse large B cell
lymphoma,
post-transplant
lymphoprolifera-tive
disease

EBNA, EBV nuclear antigen; LMP, latent membrane protein; EBER, EBV encoded small RNAs, BART, BamH1 fragment A rightward transcript; BHRF1, BamH1 fragment
H rightward transcript 1
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FIGURE 1 | Immune modulation by EBV ncRNAs. BART miRNAs block lytic EBV reactivation by down-regulating BZLF1, BRLF1 and BALF5, limiting viral antigen
production for immune responses. BART miRNAs block also MICA/B expression to inhibit NKG2D mediated NK cell recognition of EBV infected B cells. BHRF1 and
BART miRNAs compromise antigen presentation by MHC class I molecules by down-regulating the transporter associated with antigen processing (TAP) to load
MHC class I complexes with proteasome products in the endoplasmic reticulum (ER) for stimulation of CD8+ T cells. EBERs can be recognized by innate immune
sensors of RNA like RIG-I, but the RIG-I pathway is also down-regulated by BART miRNAs. MHC class II ligand generation by lysosomal proteolysis is inhibited by
BHRF1 and BART miRNAs down-regulating cathepsin B (catB), asparaginyl endopeptidase (AEP) and IFN-γ–inducible lysosomal thiol reductase (GILT). T cell
priming and NK cell activation is also compromised by BHRF1 and BART miRNAs blocking IL-12p40 production. This figure was created in part with modified
Servier Medical Art templates, which are licensed under a Creative Commons Attribution 3.0 unported license: https://smart.servier.com.

(Chen et al., 2019) which is involved in reactivating lytic EBV
infection from latency I or 0 (Binne et al., 2002). The targeted
transcripts encode GRB2, SOS1, MALT1, RAC1, and INPP5D,
and the respective viral miRNAs attenuate lytic EBV reactivation
upon BCR cross-linking. Furthermore, caspase 3 dependent
apoptosis induction seems also to be required for lytic EBV
replication and BART miRNA 20-5p was shown to down-regulate
BAD, thereby compromising lytic replication (Lin et al., 2015;

Kim et al., 2016). Furthermore, BART miRNAs 1-3p and 16
were reported to target caspase 3 directly (Vereide et al., 2014).
Finally, the BART miRNA 18-5p down-regulates MAP kinase
kinase kinase 2 (MAP3K2) and thereby also blocks lytic EBV
infection (Qiu and Thorley-Lawson, 2014). In contrast, late lytic
EBV infection is supported by the BHRF1 miRNA 1 targeting the
ubiquitin ligase RNF4 that modifies SUMO-conjugated targets
(Li et al., 2017). Expression of miRNA regulation resistant
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RNF4 attenuates infectious viral particle release. Therefore,
multiple miRNAs block induction of lytic EBV infection by
downregulating both viral and host factors involved in it, but then
might support infectious viral particle production.

In addition to blocking lytic replication BART miRNAs
have been also reported to sustain proliferation and block
apoptosis. They do so in part by regulating the Wnt/β-catenin
pathway. BART miRNA 10-3p has been shown to down-regulate
the Dickkopf WNT Signaling Pathway Inhibitor 1 (DKK1) in
EBV positive gastric carcinoma cell lines (Min and Lee, 2019).
This enhances proliferation and migration of the respective
tumor cells. Moreover, BART miRNA 1-3p was reported to
down-modulate Disabled Homolog 2 (DAB2) that attenuates
the Wnt/β-catenin pathway (Min et al., 2020). The resulting
DAB2 down-regulation blocked apoptosis. Furthermore, also
the Wnt/β-catenin inhibitor Adenomatous Polyposis Coli (APC)
is down-regulated by BART miRNA 19-3p (Zhang et al.,
2020). Finally, Mitogen-Activated Protein Kinase 4 (MAP2K4)
is down-regulated by BART miRNA 22, stimulating β-catenin
dependent transcription (Liu et al., 2019). Thus, BART miRNAs
down-regulate inhibitors of the Wnt/β-catenin pathway to
enhance proliferation, apoptosis resistance and migration of EBV
associated carcinomas.

Additional pathways are targeted by mostly BART miRNAs to
increase apoptosis resistance and migration of EBV infected cells.
These include p53 mRNA down-regulation by BART miRNA 5-
3p (Zheng et al., 2018). This regulation enhanced proliferation of
gastric carcinoma cells in vitro and in a xenograft model in mice.
In addition, ATM/ATR dependent DNA repair is augmented by
BART miRNAs (Zhou et al., 2019). This increases radioresistance
of nasopharyngeal carcinoma cells in a xenograft model. Finally,
BART miRNA 2-5p targets RND3, a negative regulator of Rho
signaling (Jiang et al., 2020). BART miRNA 2-5p expression in
EBV negative nasopharyngeal carcinoma cells promoted their
migration and metastasis formation in a xenograft model. Many
of the studies that argue for a pro-proliferative, anti-apoptotic
and migration promoting function of BART miRNAs have been
performed with nasopharyngeal or gastric carcinoma cell lines
and carcinogenesis in vivo was reported to be increased by BART
miRNAs (Qiu et al., 2015), while EBV infection of B cells in mice
with reconstituted human immune system components was not
significantly altered by BART miRNA deficiency (Murer et al.,
2019). However, increased lytic EBV replication in the absence
of BART miRNAs might have been missed due to the B95-8 EBV
strain that was used and the small as well as transient contribution
of lytic EBV replication to viral loads in this model (Antsiferova
et al., 2014). Nevertheless, an EBV strain lacking all viral miRNAs
replicated to similar viral loads and similar lymphomagenesis
in mice with reconstituted immune system components after
antibody depletion of T cells (Murer et al., 2019). This suggests
that immune escape might be the dominant function of EBV
miRNAs, as discussed below.

Similar to their effects on viral gene products, EBER1 and 2
regulation of host gene products remains unclear. While these
EBV ncRNAs trap RNA binding proteins like La (SS-B) and
rpL22 in the nucleus (Fok et al., 2006; Gregorovic et al., 2011)
the role of this relocalization has not been clarified. However, a

recent study suggested that EBER1 can substitute for the ncRNA
TMER4 in a mouse γ-herpesvirus to allow infected B cells to
migrate from secondary lymphoid tissues into the circulation
(Hoffman et al., 2019). Such changes in migratory behavior might
not have been sufficiently analyzed during EBER deficient EBV
infection of mice with reconstituted human immune system
components, even so unaltered viral loads were observed in blood
(Gregorovic et al., 2015).

IMMUNE CONTROL OF EBV

Although most of these pro-tumorigenic functions have been
assigned to BART miRNAs of EBV, recombinant EBV that is
deficient in BHRF1 miRNAs was found to infect mice with
reconstituted human immune system components with a slower
kinetic and attenuated systemic dissemination compared to wild-
type virus (Wahl et al., 2013; Murer et al., 2019). This seems to
be at least in part due to improved cell-mediated immune control
(Murer et al., 2019).

Indeed, most adults carry EBV as an asymptomatic persistent
infection (Münz, 2019). However, primary or acquired
immunodeficiencies predispose for EBV associated malignancies
(Damania and Münz, 2019; Latour and Fischer, 2019; Tangye
and Latour, 2020). These point toward cytotoxic lymphocytes
as the cornerstone of EBV specific immune control (Long et al.,
2019). Immune suppression due to human immunodeficiency
virus (HIV) co-infection or immune suppressive treatment after
transplantation leads to increased EBV associated lymphoma
formation (Gottschalk et al., 2005; Totonchy and Cesarman,
2016). This can be modeled by immunosuppressive FK506
treatment and HIV co-infection of EBV infected mice with
reconstituted human immune system components (Caduff et al.,
2020; McHugh et al., 2020). Both treatments compromise CD4+

T cell help leading to a less functional CD8+ T cell phenotype
(Caduff et al., 2020; McHugh et al., 2020) and compromising
CD8+ T cell mediated immune control of EBV infection with
no further increase of viral loads upon antibody mediated
depletion of this cytotoxic T cell subset (McHugh et al., 2020).
Moreover, primary immunodeficiencies that predispose for
EBV associated pathologies identify molecular requirements for
EBV specific immune control. Mutations in perforin and gene
products that mediate cytotoxic degranulation (Munc13-4 and
18-2) predispose for uncontrolled EBV infection and identify
cytotoxicity as the main effector function during immune control
of EBV (Katano et al., 2004; Rohr et al., 2010; Cohen et al.,
2015). Furthermore, compromised T cell receptor signaling,
predisposing for EBV associated pathologies, identifies these
adaptive lymphocytes as main contributors to cell mediated
immune control by cytotoxic lymphocytes (Huck et al., 2009;
Linka et al., 2012; Angulo et al., 2013; Kuehn et al., 2013;
Moshous et al., 2013; Lucas et al., 2014; Salzer et al., 2016;
Hoshino et al., 2018; Winter et al., 2018). Accordingly, antibody
mediated T cell depletion, and especially cytotoxic CD8+ T cell
depletion, compromises immune control of EBV infection in
mice with reconstituted human immune system components
(Strowig et al., 2009; Yajima et al., 2009; Chijioke et al., 2015;
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Murer et al., 2019; McHugh et al., 2020). Furthermore, mutations
in certain co-receptors on cytotoxic natural killer and T cells
are also associated with EBV positive malignancies. This is
particularly pronounced for deficiencies in CD27 and its ligand
CD70 (Salzer et al., 2012; van Montfrans et al., 2012; Alkhairy
et al., 2015; Abolhassani et al., 2017; Izawa et al., 2017; Ghosh
et al., 2020). But also, mutations in the SLAM-associated protein
(SAP), affecting co-stimulation of receptors like 2B4, predispose
for EBV associated pathologies (Coffey et al., 1998; Nichols et al.,
1998; Sayos et al., 1998; Sumegi et al., 2000; Pachlopnik Schmid
et al., 2011). Accordingly, antibody blocking of 2B4 compromises
EBV specific immune control in mice with reconstituted human
immune system components but does not do so after CD8+ T
cell depletion (Chijioke et al., 2015). In addition to cytotoxic
CD8+ T cell mediated immune control also cytotoxic innate
lymphocytes seem to contribute to EBV specific immune control.
These include natural killer (NK) cells, NKT cells, and γδ T
cells, controlling lytic and various stages of latent EBV infection,
respectively (Pappworth et al., 2007; Yuling et al., 2009; Chijioke
et al., 2013; Chung et al., 2013; Azzi et al., 2014; Xiang et al., 2014;
Djaoud et al., 2017; Zumwalde et al., 2017). Therefore, cytotoxic
2B4+CD27+CD8+ T cells and innate lymphocytes seem to be
crucial for EBV specific immune control, while type I and type II
interferons as well as antibody responses appear to be dispensable
(Latour and Fischer, 2019). Maybe not surprisingly EBV ncRNAs
have therefore also a crucial function in modulating this immune
control, as will be discussed next.

IMMUNE MODULATION BY EBV ncRNAs

Immune modulatory functions have been described for both
EBERs and miRNAs. Indeed, when complete miRNA and
BART miRNA knock-out viruses of the B95-8 EBV strain were
compared for infection in mice with reconstituted human
immune system components, no significant differences between
wt and BART miRNA deficient EBV were detected, while
complete miRNA deficient virus infection was significantly
attenuated (Murer et al., 2019). Both viral loads and
lymphomagenesis were lower with the miRNA deficient virus
with no tumors detected in the absence of miRNAs. However,
upon depletion of CD8+ T cells both viral loads and tumor
formation were increased. More than 200-fold increased viral
loads for miRNA deficient and more than 40-fold for wt EBV
infection were detected after antibody mediated CD8+ T cell
depletion, reaching similar levels for both infections. Lymphoma
formation was also increased in frequency upon CD8+ T cell
depletion with more than 50% of animals developing tumors,
up from no tumors in miRNA deficient and 20–30% in wt EBV
infected mice. These findings suggest that immune evasion
from CD8+ T cell mediated immune control is one of the main
functions of EBV miRNAs, especially the BHRF1 cluster.

Indeed, CD8+ T cell recognition of LCLs carrying miRNA
deficient EBV is significantly increased (Albanese et al., 2016;
Murer et al., 2019). This is associated with down-regulation of
the transcripts for TAP2 (Figure 1), one of the two chains of
the transporter associated with antigen processing that imports

peptides into the endoplasmic reticulum (ER) for MHC class
I loading and presentation to CD8+ T cells (Albanese et al.,
2016). This diminished peptide import reduces particularly
the surface expression of HLA-B molecules by which many
immunodominant EBV derived epitopes are restricted (Taylor
et al., 2015). TAP2 is targeted by the BHRF1 miRNA 3 and the
BART miRNA 17 (Albanese et al., 2016). In addition, CD4+

T cell mediated immune control of LCLs is also compromised
by viral miRNAs (Tagawa et al., 2016). CD4+ T cells recognize
LCLs with deficiency in miRNA much better than wt EBV
transformed B cells. MHC class II ligands for CD4+ T cell
stimulation are primarily generated by lysosomal proteolysis
(Trombetta and Mellman, 2005). EBV miRNAs downregulate
some components of this degradation machinery, namely IFN-γ–
inducible lysosomal thiol reductase (GILT) that breaks disulfide
bonds prior to protein degradation, and the proteases cathepsin
B and asparaginyl endopeptidase (AEP) (Figure 1; Tagawa et al.,
2016). GILT is down-regulated by BART miRNAs 1–5p and 1–3p,
cathepsin B by BART miRNA 2–5p, and AEP by BHRF1 miRNA
2 and BART miRNA 2–5p (Albanese et al., 2016; Tagawa et al.,
2016). Moreover, also the cytokine IL-12 that is instrumental for
T cell priming and activation of NK cells is targeted by viral
miRNAs (Albanese et al., 2016; Tagawa et al., 2016). BHRF1
miRNA 2, BART miRNA 1–3p, BART miRNA 2–5p, BART
miRNA 10-3p and BART miRNA 22 down-regulate IL-12p40
which is part of both IL-12 and IL-23 cytokines (Figure 1).
NK cell recognition is further compromised by BART miRNA
2-5p and 7 down-regulation of MICB and MICA, respectively
(Figure 1; Nachmani et al., 2009; Wong et al., 2018), two
ligands of the activating NK cell receptor NKG2D which has
been implicated in the recognition of lytically EBV replicating
B cells (Pappworth et al., 2007). As additional immune escape
mechanisms EBV miRNAs lead to the up-regulation of PD-L1
and PD-L2, ligands for the inhibitory receptor PD1 on cytotoxic
lymphocytes (Cristino et al., 2019; Yoon et al., 2020). Thus, EBV
miRNAs compromise immune control by cytotoxic lymphocytes
on multiple levels, by targeting antigen presentation, immune
stimulation and inhibitory receptor engagement, most likely
for efficient virus persistence and transmission. Since, however,
CD8+ T cell depletion restores viral load and lymphomagenesis
of miRNA deficient EBV infection in mice with reconstituted
human immune system components (Murer et al., 2019),
regulation of MHC class I presentation might be one of the
dominant functions of EBV encoded miRNAs.

EBERs have been suggested to also influence immune
responses by being sensed via pathogen associated molecular
pattern (PAMP) recognition receptors (PRRs) that detect viral
RNAs, including toll-like receptor 3 (TLR3) and 8 (TLR8), RIG-I
(Figure 1) and PKR (Vuyisich et al., 2002; McKenna et al., 2006;
Samanta et al., 2008; Iwakiri et al., 2009; Li et al., 2019). Such
immune stimulation by EBERs might also be transferred via
EBER containing exosomes to dendritic cells (Ahmed et al., 2014,
2018; Baglio et al., 2016). BART miRNA 6-3p down-regulates
this recognition by attenuating the RIG-I pathway (Figure 1;
Lu et al., 2017). Despite this suggested role for innate immune
recognition of EBERs, EBER deficient EBV infection of mice with
reconstituted human immune system components did not result
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in a significantly altered immune activation (Gregorovic et al.,
2015). The viral DNA is via TLR9 mediated detection at least
an equally important immune stimulus and readily sensed by
plasmacytoid dendritic cells (Fiola et al., 2010; Severa et al., 2013;
Gujer et al., 2019). Thus, the human immune system does not
seem to require EBERs for detection of EBV infection.

CONCLUSION AND OUTLOOK

Non-coding RNAs are the ideal tools for viruses to modulate their
life cycle, host cell behavior and immune responses, because they
do not need the expression of proteins that could serve as antigens
for the immune system to detect infection. Along these lines
EBV extensively modulates its life cycle, promoting latency and
suppressing lytic replication with BART miRNAs. Furthermore,
its BHRF1 miRNAs seem to serve a crucial role in immune
escape from cytotoxic lymphocytes, compromising anti-viral NK,
CD4+ T, and CD8+ T cell responses. This realization offers the
opportunity to explore miRNA deficient viruses, probably with
additional safety mutations as vaccine candidates. Their superior
ability to be recognized by both CD4+ and CD8+ T cell responses
should be harnessed to induce both systemic and tissue resident
T cell memory to protect from symptomatic acute EBV infection,
namely infectious mononucleosis, and the associated risk for
EBV positive malignancies and the autoimmune disease multiple
sclerosis (MS) (Ruhl et al., 2020).

In contrast, EBERs remain an enigma of EBV biology. Their
high expression in all EBV infection programs mocks us, having
not identified a non-redundant function for these non-translated

RNAs. It might require more sophisticated in vitro and in vivo
systems of EBV infection and immune control to reveal the
function of EBER1 and 2, possibly with more physiological
migration behaviors of EBV infected cells from mucosal sites
to secondary lymphoid organs (Hoffman et al., 2019). EBERs
are joined by other non-translated RNA species, including small
nucleolar RNAs (snoRNAs), long non-coding RNAs (lncRNAs),
stable intronic sequence RNAs (sisRNAs) and circular RNAs
(circRNAs), for which also functions need to be explored in more
detail in the future. Nevertheless, it is already clear that EBV
masterfully manipulates the cellular RNA network in addition to
its fine-tuned proteins exploiting human B cell differentiation.
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