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ABSTRACT: We extend our recently proposed Deep Learning-aided
many-body dispersion (DNN-MBD) model to quadrupole polar-
izability (Q) terms using a generalized Random Phase Approximation
(RPA) formalism, thus enabling the inclusion of van der Waals
contributions beyond dipole. The resulting DNN-MBDQ model only
relies on ab initio-derived quantities as the introduced quadrupole
polarizabilities are recursively retrieved from dipole ones, in turn
modeled via the Tkatchenko−Scheffler method. A transferable and
efficient deep-neuronal network (DNN) provides atom-in-molecule
volumes, while a single range-separation parameter is used to couple the
model to Density Functional Theory (DFT). Since it can be computed
at a negligible cost, the DNN-MBDQ approach can be coupled with DFT functionals, such as PBE, PBE0, and B86bPBE
(dispersionless). The DNN-MBQ-corrected functionals reach chemical accuracy while exhibiting lower errors compared to their
dipole-only counterparts.

The importance of modeling matter through computer
simulations has risen tremendously in the past decades in

virtue of both the theoretical achievements and the advent of
mass-produced computers whose performances have increased
exponentially. Despite these tremendous achievements, the
exact solution of the nonrelativistic electronic Schrödinger
equation remains out of reach for multielectron systems and
different approximations have been introduced in order to
model and tackle systems of chemical relevance. In particular,
Kohn−Sham Density Functional Theory (KS-DFT) has
established itself as the most widely used electronic structure
method being the cheapest way for introducing electronic
correlation. KS-DFT is based on the idea of evaluating the
kinetic energy from a single Slater determinant, thus assuming
the electrons being noninteracting. The difference between the
true and KS kinetic energies as well as the difference between
the true electronic and exchange interaction ones is essentially
embedded and modeled by the exchange correlation func-
tional, key quantity in KS-DFT, however, in practice unknown.
The different approaches taken in modeling the exchange-

correlation functional define the plethora of KS-DFT variants
which, however, are mainly capable of capturing local
correlation effects. Dispersion interactions, on the other
hand, are rooted in the long-range electron correlation that
can clearly not be captured by the intrinsic locality of common
exchange correlation functionals. This inadequacy of KS-DFT
in modeling noncovalent dispersion interactions, ubiquitous in

nature and materials, has risen the attention toward the
development of dispersion correction models,1 the most widely
used being based on empirical pairwise terms, eq 1.2
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This pairwise approach coupled with KS-DFT has shown to
provide very good accuracy despite its very simple nature that
adds basically negligible computational time and, for this
reason, it is also employed in the majority of force fields as
attractive component of the Lennard-Jones potential.
Each of the above pairwise terms can be further expanded

via a second-order perturbative approach3 (in the limit of large
interatomic separation) to include the higher-order contribu-
tions shown in eq 2 where αk

j (iν) is the k-pole polarizability at
imaginary frequency of atom j (only the single pair ij is
considered for the sake of simplicity).4
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While providing the correct long-range asymptotic limit, C6
terms alone are not enough to describe the short- and medium-
range dispersion effects and these higher-order terms have
proven to improve significantly interaction energies near
equilibrium regions as well as condensed phase properties
obtained with molecular dynamics simulations based on force
field potentials.5

Regardless of the higher-order terms inclusion discussed,
this pairwise approach completely neglects the collective many-
body dispersion (MBD) effects inherited from the intrinsic
quantum mechanical nature of long-range electron correlation
and their relevance has been proven in modeling extended
systems, supramolecular complexes and proteins in solu-
tions.6−9

These nonadditive dispersion effects have been modeled via
a set of coupled fluctuating dipoles10,11 as well as quantum
Drude oscillators.12 In recent years, Tkatchenko, DiStasio, Jr.,
and Ambrosetti have proposed the MBD@rsSCS introducing
the range-separation of the self-consistent screening (rsSCS) of
atomic polarizabilities based on Tkatchenko−Scheffler volume
rescaling that relies on Hirshfeld’s molecular electron density
partitioning.13 This many-body dispersion approach is
particularly elegant as it fully relies on ab initio-derived
parameters (atomic polarizabilities) except for the unique
range separation parameter governing the coupling to the
chosen KS-DFT method, while providing chemical accuracy.13

A fractionally ionic variant of the MBD@rsSCS model
(MBD@rsSCS/FI) has also been proposed by Gould et al.
where iterative Hirshfeld (HI) density partitioning together
with a charge-dependent atomic polarizability approach are
embraced,14 making the partitioning more suitable than the
original Hirshfeld scheme in the treatment of ionic
compounds.15

Newer developments in the MBD modeling include the
nonlocal many-body dispersion method (MBD-NL) of
Hermann and Tkatchenko16 where the MBD approach is
combined with the Vydrov and Van Voorhis (VV). A
polarizability functional,17 as well as our recently proposed
DNN-MBD model where atomic polarizabilities are obtained
via deep neuronal network (DNN) model, thus bypassing the
explicit electron density partitioning.18

Being based on the interaction among coupled fluctuating
dipoles, the MBD model (rsSCS is implicitly assumed and
from now dropped) and its variations represent the many-body
counterpart of eq 1, where the effect of higher-order fluctuating
multipoles are neglected, although Massa et al. have recently
proposed a beyond-dipole MBD model based on the Random
Phase Approximation (RPA) formalism.19

In the same line, this work independently generalizes the
MBD model to coupled fluctuating dipole and quadrupoles in
order to improve the description of short and midrange many-
body dispersion. Particularly, we will show how atomic
quadrupole polarizabilities can be recursively derived from
dipole ones, thus without the need on introducing further

parameters. Furthermore, in doing so we will adopt our
recently proposed DNN model approach that completely
bypasses the explicit electron density partitioning. The
outcoming density-free DNN-MBDQ model exhibits improved
accuracy especially near equilibrium regions without the
inclusion of any additional parameter, compared to other
MBD-based models.
The correlation energy c for a system of interacting

electrons can be rigorously expressed with the adiabatic
connection fluctuation−dissipation formula in eq 3, v being the
Coulomb potential |r − r′|−1 whose coupling strength is
governed by λ while χλ and χ0 are the interacting and
noninteracting response functions where the latter can be
evaluated from a set of single particle orbitals ϕi(r) with their
corresponding energies ϵi and occupation numbers f i via the
Adler−Wiser formalism, eq 4.20,21
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By defining χλ(r, r′, iν) via the self-consistent screening Dyson
equation, eq 5, and by setting the exchange-correlation kernel
f xcλ = 0 as for the RPA,22 the correlation energy in eq 3 assumes
the form in eq 6 where the last equality is obtained by anaytical
integration over λ.23

= + +v f( )0 0 xc (5)

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
=

= [ + ]

d d v

v

d v v

1
2

Tr
( )

1

1
2

Tr ln(1 )

c
RPA

0 0

1
0

2

0

0 0 0 (6)

In virtue of its generality, the framework here discussed for
the case of electronic correlation, can be used in different
contexts and in particular in connection with the many-body
dispersion model where the target energy arises from the
correlation of coupled fluctuating dipoles.23 In this case the
response function assumes the form of the frequency-
dependent atom-in-molecule (AIM) isotropic dipole polar-
izability αi

μ(iν) localized at the atomic position Ri, while the
Coulomb potential v(r, r′) is replaced by the (properly
damped) dipole−dipole interaction tensor Tij

LR = Tij
LR,μμ.

Eq 6 (last equality) is, thus, written in terms of the MBD
model’s quantities as shown in eq 7, A(iν) being the (3N, 3N)
diagonal superpolarizability matrix having atomic polar-
izabilities as elements and TLR being the full dipole−dipole
interaction tensor excluding self-interactions =T 0( )ii

LR . We
note that eq 7 does not include the χ0v term appearing in eq 6
due to the traceless property of the A(iν)TLR matrix product.
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For MBD models based on coupled fluctuating dipoles, the
RPA formula in eq 7 does not represent the most efficient
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strategy to compute correlation energies solution as the
problem can be equivalently solved via exact diagonalization of
the MBD potential matrix for a system of coupled quantum
harmonic oscillators.23 However, the power and generality of
the RPA formulation of the MBD model allows for the
generalization of the model and the inclusion of higher-order
polarizabilities as recently discussed by Massa et al.19

The matrix form of eq 7 can rather straightforwardly be
generalized to higher-order moments gathered in A(iν) by
consistently augmenting the interaction tensor T with proper
interaction blocks. In particular, for a model based on coupled
fluctuating dipoles and quadrupoles (Q), the two matrices of
dimension (12N, 12N), N being the number of atoms in the
systems, take the form reported in eq 8 where a general out-of-

diagonal (thus nonvanishing) block of size (12,12) is shown.
We will now focus our attention on A and, in particular, on its
dipole and quadrupole dynamic polarizability entries being the
model’s key parameters.
As mentioned earlier, a pleasant feature of the MBD model

is the fact that it only relies on ab initio-derived parameters. In
particular, AIM dipole polarizabilities are typically obtained via
the volume rescaling approach shown in eq 9, αi

μ and Vi being
the AIM static dipole polarizability and volume respectively of
the i-th atom while the zero superscript denotes free-atom
reference quantities.
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This volume/polarizability proportionality was discussed by
Brinck et al.24 and later used by Johson and Becke,25 as well as
Tkatchenko and Scheffler,26 and further adopted in most of the
MBD model’s variations. Gould discussed a more complicated
volume/polarizability relationship27 while Szabo et al. recently
suggested a four-dimensional scaling of dipole polarizability
based on single-particle systems’ analysis.28 We will, in the
present work, stick to the common volume/polarizability
proportionality in eq 9 as this will allow us to make ready
comparisons with our dipole-only DNN-MBD model.
The AIM volume Vi is commonly accessed by Hirshfeld

partitioning the explicit electron density obtained via the
solution of KS equations. Instead, we will adopt the recently
proposed efficient and accurate 5-hidden layers DNN model
trained with the minimal basis iterative Stockholder atom29

(MBISA) volumes of approximately 4.6 millions molecules
that provides AIM volumes bypassing the electron density
partitioning.18

Compared to Hirshfeld partitioning as well as its Iterative HI
variant more suitable for ionic systems,15 the MBISA scheme
used to generate the training set does not suffer from
asymmetric AIM densities arising from the use of free-atom
reference densities that, especially for hydrogen atoms, lead to
an overestimation of high radial moments, i.e., AIM volumes.29

A further disadvantage related to the use of free-atom reference
densities affecting the HI partitioning arises from the density
interpolation for negatively charged atoms. In fact this
procedure is, for some anionic species and for all doubly
charged anions typically encountered in inorganic oxide
clusters, ill-defined.
The next step is to find a suitable expression for αi

Q(0),
possibly without the introduction of empirical parameters to
preserve the original MBD spirit. At this point, it is possible to
relate two consecutive dispersion coefficients by the scaled
Starkschall−Gordon relation30 shown in eq 10 for the specific
case of homonuclear C6

ii and C8
ii coefficients, where Zi is the

atomic number, ⟨rn⟩ are expectation values or multipole-type
moments derived from atomic densities while γ scaling factor
will be introduced shortly.30 We note, in passing, that eq 10
represents a fundamental recursion relation for Grimme’s
successful DFT-D3 dispersion correction model.31
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In order to retrieve αi
Q(0) in terms of known quantities, we can

now assume to model atom i via a quantum Drude particle
characterized by the frequency ωi as this allows us to express
C6
ii and C8

ii in terms of dipole and quadrupole polarizabilities,
eqs 11 and 12.32
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By inserting eqs 11 and 12 into eq 10, it is finally possible to
isolate the static AIM quadrupole polarizability in eq 13.

= Q(0)
9

20
(0)i

Q
i i (13)

The combination of the scaled Starkschall−Gordon relation
with a quantum Drude particle expression for the C8

ii dispersion
coefficient was originally adopted by Carter-Fenk et al. in their
extended symmetry-adapted perturbation theory with MBD
(XSAPT+MBD) approach including pairwise dipole−quadru-
pole dispersion effects.33 In that occasion, the γ scaling factor
was successfully modeled according to eq 14, where γ0 was
chosen such that noble-gas quadrupole polarizabilities are
reproduced and the same strategy is embraced in this work.

= + Zexp( /2)i0 (14)

A further discussion about the combination of the Starkschall−
Gordon rule with a quantum Drude particle expression is
found in the Appendix section at the end of the manuscript.
The above-discussed recursive relation represents an

efficient strategy to derive quadrupole polarizabilities that
can be readily applied to any AIM volume partitioning scheme
as the atomic volume is the only density-related quantity
which, however, in this work is retrieved from an accurate
DNN model.
The solution of eq 7 requires frequency-dependent atomic

polarizabilities while our discussion was, until now, restricted
to the zero-frequency (static) case.
Dynamical dipole polarizabilities have been successfully

modeled via a [0/2] Pade ́ approximant form and Tang et al.
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suggested the same form to be employed also in modeling
higher-order multipole dynamical polarizabilities, as shown in
eq 15, the superscriptM denoting a general multipole level and
ωk
M,0 the k-th free-atom multipolar-dependent characteristic

excitation frequency.34

=(i )
(0)

1 (i / )k
M k

M

k
M

,0

,0 2
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In particular, we employ a common ωk
M,0 parameter for both

dipole and quadrupole dynamical polarizabilities and we
express it as a function of free atom C6 and static dipole
polarizability, eq 16.
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This assumption is, however, well-defined as it guarantees
modeling dynamical quadrupole polarizabilities as lower bound
quantities while the introduction of ab initio-derived scaling
factors could be used to improve over this assumption.34

We note that the dipole polarizabilities used in eq 13 can be
either taken directly from eq 9 or can be further screened by
solving Dyson-like self-consistent screening equations.13,35 In
this work the latter is chosen and, as a consequence, these
screening effects are thus transferred to quadrupole polar-
izabilities via eq 13.
The explicit expressions of the multipole interaction tensor

Tik
LR is given in eq 17 for the ik pair placed at distance Rik, and

greek letters are used to denote x, y, z Cartesian components.
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The general form of the Fermi damping function f MM′(Rik, Sik)
(MM′ denoting μμ, μQ, or QQ) is defined in eq 18 where Rivdw
represents the AIM van der Waals radius here modeled as the
ratio between the AIM dipole (screened) polarizability and the
free atom one while β is the parameter modulating the range-
separation of the multipole interaction tensor. Finally the lMM′
term, represents a multipole-dependent universal factor that
ensures a stronger damping as the multipole order increases
(lμμ < lμQ < lQQ), in line to the behavior of the popular Tang
and Toennies damping functions based on the incomplete
gamma function.36
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These lMM′ terms could in principle be set as parameters and
optimized together with β to reduce a target energy error.
However, to avoid overfitting of these terms we will choose
them once and for all regardless of the employed functional.

In particular, the lμμ term was set to 1 as this follows the
choice undertaken within dipole-only models. On the other
hand, lμQ and lQQ were chosen after a screening of a few test
values, with the constraint being lμQ < lQQ as this prevents
short-range spurious effects. We note in passing that there is
clearly room for improvements if a fully data-driven process
was embraced in the optimization of these terms.
We solve the RPA formula in eq 7 by means of Gauss−

Legendre quadrature, nevertheless, more sophisticated techni-
ques such as the Clenshaw-Curtis quadrature37,38 could also be
potentially employed.
The DNN-MBDQ model is implemented in the Tinker-HP

package39 where the extremely efficient linear-scaling stochatic
Lanczos-based DNN-MBD model is also implemented.40

In order to design an accurate and reliable dispersion-
corrected KS-DFT model, both the functional and the
dispersion correction must fulfill specific criteria. These
requirements are essential for avoiding error cancellation
effects in favor of more physically grounded achievement of
small errors, as recently discussed by Price et al.41 While the
dispersion correction should possibly include higher-order
terms as well as many-body effects, the DFT functional should
be dispersionless since by adding a dispersion correction to an
exchange-correlation functional that somewhat partially
includes dispersion, will lead to double counting at shorter
ranges, with a consequent loss of accuracy. In fact, in order to
reduce this artifact, dispersion corrections are often excessively
damped with an inevitable deterioration of the midrange
interactions’ description. Among the possible dispersionless
functionals, the B86bPBE has proven numerically stable and,
coupled with the exchange-hole dipole moment dispersion
model,42,43 has performed well for molecular and material
applications.44 On account of both the higher-order terms and
the many-body nature of the proposed DNN-MBDQ
dispersion correction, thus fulfilling the above-mentioned
criteria, it is of interest to probe its performances in connection
with the B86bPBE dispersionless functional. Furthermore, the
DNN-MBDQ dispersion model is also coupled to the common
PBE and PBE0 semilocal density functionals and this allows us
to make comparisons with different MBD-based dispersion
corrections including our recently proposed dipole-only DNN-
MBD.
Pure energies have been calculated in all cases with Jensen’s

pcseg-3 basis set as this corresponds de facto to the complete
basis set limit.45

The S66x8 data set for noncovalent biologically relevant
interactions46 consisting of 66 dimers placed at 8 different
intermolecular distances (CCSD(T) complete basis set
interaction energies) was taken as reference to tune the β
parameter in eq 18 for the three functionals here discussed and
the optimal values relative to the DNN-MBDQ model are
shown in Table 1 together with the ones for dipole-only based

Table 1. Range-Separation β Parameter Values Optimized
by Minimizing the Mean Absolute Relative Error for the
DNN-MBD and DNN-MBDQ Models Coupled with the
PBE and PBE0 Functionals for the S66x8 Data Set

DFT functional DNN-MBD DNN-MBDQ

PBE 0.75 0.82
PBE0 0.77 0.83
B86bPBE 0.69 0.76
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DNN-MBD. lμμ, lμQ, and lQQ factors are set to 1, 2.8, and 3.0,
respectively, as these have proven to be good and transferrable
values for different functionals. We observe that the PBE0/
DNN-MBDQ method requires a larger range-separation
parameter compared to the correspondent PBE-based model.
This is consistent to what observed also in the PBE/DNN-
MBD model due to the PBE0 functional’s improved
description of short-range exchange-correlation.
Moreover, the DNN-MBDQ model requires larger range-

separation parameters compared to the DNN-MBD one, and
this can be rationalized by virtue of the additional stabilizing
dispersion contributions arising from the dipole−quadrupole
and quadrupole−quadrupole interactions being the many-body
analogues of the pairwise C8 and C10 terms in eq 2. We note, in
passing, that compared to the original MBD method based on
Hirshfeld partitioning for the same functionals (PBE and
PBE0), our DNN-MBD model requires smaller β values. The
reason has to be sought in the relatively smaller AIM volumes
predicted by the MBISA method used to build the DNN
training set and the consequent effects in AIM volume-scaled
polarizabilities for which less screening is necessary. Focusing
now on the B86bPBE dispersionless case, we observe that both
the DNN-MBD and DNN-MBDQ models require a smaller
range-separation parameter (less damping) compared to their
PBE/PBE0 counterparts. This is completely in line with the
less stabilizing nature of the B86bPBE functional arising from
its dispersion-free features as shown in Figure 1 where the pure
potential energy surface of the argon dimer for the PBE and
B86bPBE functionals are shown. In fact, a less damped DNN-
MBDQ correction leads to model dispersion at shorter ranges
where functionals such as PBE and PBE0 usually involve more
damped dispersion corrections to avoid double counting,
Figure 2.
It is now of interest to compare the DNN-MBDQ error for

the present data set with the ones related to different dipole-
only MBD models, Table 2, where the DFT-D3 correction to
the PBE functional is also included as a reference method
considering its broad use and popularity. The proposed DNN-

MBDQ model exhibits reduced mean absolute errors, although
by a small margin, compared to its dipole-only based DNN-
MBD version coupled with both PBE0 and PBE functionals
while for the B86bPBE dispersionless functional, the DNN-
MBDQ model introduces a more consistent improvement
compared to the DNN-MBD and it reaches a notably small
value of 0.19 kcal/mol. The MAE of the DNN-MBDQ model
coupled to the PBE and PBE0 functionals is always lower than
the one relative to other MBD-based models, for which
reference data are found in literature, however, except for the
B86bPBE functional the DNN-MBDQ model have an slightly
higher MARE value. Even in the case of the DNN-MBDQ,
dispersion corrected PBE0 provides the smallest error for the
considered S66x8 data set, in line to what observed in the
DNN-MBD as well as for other dipole-only MBD models.
As anticipated earlier, Massa et al. have recently proposed a

beyond-dipole MBD model based on the RPA formalism
termed MBD+Q@rsSCS, to be coupled to DFT,19,48 and it is
thus of interest to compare it with our DNN-MBDQ model. In

Figure 1. Interaction energy for the argon dimer computed with the PBE and B86bPBE pure functionals (pcseg-3 basis set) as a function of the
interatomic distance.

Figure 2. Pictorial representation of the short-, mid-, and long-range
interaction regimes. The dashed line represents the transition between
the short-range part modeled by the KS-DFT functional (blue) and
the long-range (yellow) regimes modeled by the DNN-MBDQ
dispersion correction where the introduced quadrupoles improve the
modeling of midranges near equilibrium distances. Smaller β
parameters required by dispersionless functionals have the effect of
pushing the yellow zone toward shorter ranges.
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their approach the coupled quantum harmonic oscillators
modeling many-body dispersion are parametrized by a mixed
approach based on both the Tkatchenko−Scheffler polar-
izability rescaling and Johnson’ exchange dipole model.49 This
differs substantially from our approach where quadrupole
polarizabilities are obtained recursively from dipole ones, in
turn derived from our DNN-based volume-rescaling scheme.
Table 3 directly compares the MBD+Q@rsSCS and our DNN-

MBDQ model based on the complete S66x8 data set, the
S66x7 subset where the shortest intermolecular distances are
disregarded as well as the S66 data set for both the PBE and
PBE0 functionals. In the data sets considered, and for both
PBE and PBE0 cases, the DNN-MBDQ exhibits lower MAE
and MARE compared to MBD+Q@rsSCS, except for the
S66x7 where the MBD+Q@rsSCS model exhibits a lower
MARE. In both models, the removal of the shortest
intermolecular distance (S66x7) involves a lowering of the
errors compared to the full S66x8 set and this denotes the
challenge related to modeling mid- to short-range intermo-
lecular distances where dispersion models smoothly turn into
local electron correlation governed by the semilocal density
functionals. The overall lower errors exhibited by the DNN-
MBDQ model can be explained in terms of the differences
between two models. In fact, we note that while in the DNN-
MBDQ multipole dependent damping functions are employed,
the MBD+Q@rsSCS model relies on a single damping

function for the different multipole-interaction tensors. At
shorter intermolecular distances this may not be optimal as the
interaction among higher multipole moments, such as
quadrupole−quadrupole grows 2 orders of magnitude faster
than the dipole−dipole ones and a consistent differentiation of
their damping functions is required. While the choice of a
multipole-dependent damping functions is essential for multi-
pole interaction tensors obtained from the differentiation of
the 1/R Coulomb term (Eq. 18), it becomes less crucial if the
intrinsically damped erf(R/σ)/R term characterizing the
interaction of Gaussian-distributed charge densities of width
σ is differentiated instead as assumed in the MBD+Q@rsSCS
model.19 This explains the possibility of using a single Fermi
damping function in connection to the MBD+Q@rsSCS
model that, although not reaching the accuracy of the DNN-
MBDQ model, provides chemically accurate interaction
energies.
The dipole contribution to dispersion interactions domi-

nates the long-range asymptotic limit while inclusion of
quadrupole contributions improves the description at medium
ranges near equilibrium distances. The S66x8 is an optimal
data set to optimize the range-separation parameters as it is not
biased toward equilibrium distances; however, in virtue or its
wide range of intermolecular distances, it does not represent a
fully optimal set to investigate the effects of quadrupole terms.
In that regard, results on the S22 data set, which is composed
of model complexes at equilibrium distances, are a better judge
of the accuracy of our model since S22 includes more
interactions in the full quadrupole (and mixed dipole−
quadrupole) operational regime. The S22 validation set thus
enables us to better understand the effects of the added
quadrupole terms as well as to investigate the transferability of
the DNN-MBDQ model by employing the same range-
separation parameters reported in Table 1. Table 4 shows the

performances for some of the dispersion correction models
reported in Table 2 for which results relative to the S22 set are
available in literature. Compared to the S66x8, the MAE values
reported in Table 4 for the DNN-MBDQ model coupled to
the chosen DFT functionals are higher (although abundantly
below the chemical accuracy threshold), however, this is in line
with the fact that no β optimization was carried out this time.
All the PBE, PBE0, and B86bPBE functionals coupled to the

Table 2. MAE (kcal/mol) and MARE (%) Relative to the
S66x8 Data Set for Our Density Free DNN-MBD and DNN-
MBDQ Models, As Well As Few Other Dipole-Only MBD
Models Coupled with the PBE and PBE0 Functionals.a

Model MAE(kcal/mol) MARE (%)

PBE 1.55 65
PBE/D347 0.44 n.a.
PBE/MBD@rsSCS13 0.32 10.6
PBE/MBD@rsSCS/FI14 0.28 9.0
PBE/DNN-MBD18 0.25 9.0
PBE/DNN-MBDQ 0.24 10.5
PBE0 1.48 65
PBE0/MBD@rsSCS13 0.30 9.2
PBE0/DNN-MBD18 0.23 6.9
PBE0/DNN-MBDQ 0.22 8.3
B86bPBE 2.01 82
B86bPBE/DNN-MBD 0.31 9.9
B86bPBE/DNN-MBDQ 0.19 7.6

aBy virtue of its popularity and thus relevance, Grimme’s D3
correction is also included. MAE and MARE are computed.

Table 3. MBD+Q@rsSCS and DNN-MBDQ Methods
Compared in Terms of Mean Absolute Errors (kcal/mol),
while MARE Are Reported in Parentheses for the S66,
S66x7, and S66x8 Datasetsa

Model S66 S66x7 S66x8

PBE/MBD+Q@rsSCS 0.45 (9.3%) 0.27 (7.6%) 0.34 (12.0%)
PBE/DNN-MBDQ 0.25 (5.9%) 0.22 (10.3%) 0.24 (10.5%)
PBE0/MBD+Q@rsSCS 0.28 (11.8%) 0.22 (7.1%) 0.37 (8.3%)
PBE0/DNN-MBDQ 0.23 (4.5%) 0.19 (7.8%) 0.22 (8.3%)
aIn the MBD+Q@rsSCS model, two parameters are optimized the
number in the damping function against the S66x8 set while for the
DNN-MBDQ method a single parameter is optimized.

Table 4. MAE (kcal/mol) and MARE (%) Relative to the
S22 Data Set50,51 for Some Dipole-Only Based MBD
Models, As Well As for Our DNN-MBDQ Modela

Model MAE (kcal/mol) MARE (%)

PBE 2.66 58
PBE/D31 0.48 9.9
PBE/MBD@rsSCS 0.49 8.9
PBE/DNN-MBD 0.41 6.6
PBE/DNN-MBDQ 0.27 6.0
PBE0 2.44 55
PBE0/MBD@rsSCS 0.55 8.5
PBE0/DNN-MBD 0.43 5.6
PBE0/DNN-MBDQ 0.32 5.9
B86bPBE 3.29 72
B86bPBE/DNN-MBD 0.50 10.4
B86bPBE/DNN-MBDQ 0.39 9.7

aFor the MBD-based models, the range-separation parameter was
optimized against the S66x8 dataset.
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DNN-MBDQ model exhibit markedly reduced MAE values
compared to the already accurate DNN-MBD dipole-only
model while MARE values are not significantly affected. If the
DNN-MBD model is compared directly to the MBD@rsSCS
model coupled with the PBE and PBE0, the MAE decreases by
45% and 42% respectively. These noteworthy performances
stem certainly from the additional quadrupolar terms as this is
readily observed by a direct comparison between the DNN-
MBD and DNN-MBDQ models. The pleasant recursive
relation for quadrupole polarizabilities, eq 13, benefits from
the DNN model’s AIM volumes accuracy arising from the
MBISA volumes’ data used in the training process whose
advantages, compared to the common Hirshfeld partitioning,
have been discussed profusely in references and previously
recalled in this work.18,29

Among MBD-based models, the DNN-MBDQ coupled with
the functionals here considered provides one of the lowest
errors for the S22 set without an ad hoc parameter
optimization. This is rather significant considering that the
model fully relies on ab initio quantities. The accuracy
performances of the DNN-MBDQ model could be potentially
increased further by adding an extra parameter in the Fermi
damping function (eq 18), as well as by performing a complete
optimization for the choice of the lMM′ terms and future efforts
will be spent in this direction.
We propose the DNN-MBDQ model where the density-

free/deep learning-aided many-body dispersion model is
extended to quadrupolar polarizability terms thanks to a
Random Phase Approximation formalism. Quadrupole polar-
izabilities are recursively retrieved from free-atom dipole
polarizabilities and atom-in-molecule volumes modeled via
the accurate and transferable neuronal network recently
proposed.18 The described strategy can be readily applied to
MBD model based on the volume rescaling polarizability
partitioning as it does not require any additional electron
density-derived quantity. The density-free DNN-MBDQ
model implemented in the Tinker-HP package exhibits
improved accuracy compared its dipole-only DNN-MBD
counterpart, as well as reference MBD-based models. In
particular, for the widely used S22 data set of dimers placed at
equilibrium intermolecular distances, the DNN-MBDQ shows
a remarkable improvement compared to dipole-only reference
MBD models.
In addition to the common and successful PBE and PBE

semilocal functionals, the DNN-MBDQ model is also coupled
with the B86bPBE one, to explore the possibility of employing
dispersionless functionals, preventing double counting dis-
persion, especially at shorter ranges. For this case, the errors
are abundantly below the chemical accuracy threshold and
similar (in some cases even lower) to the ones obtained for the
PBE/PBE0 case.
We believe that the high accuracy exhibited by the DNN-

MBDQ model coupled with semilocal and dispersionless
functionals will be beneficial in pushing Kohn−Sham Density
Functional Theory a step closer to post-Hartree−Fock
reference standards which, due to their high computational
cost cannot be employed to explore larger systems of relevance
in bio- and material modeling. Further work will be, therefore,
dedicated to the evaluation of possible couplings of the DNN-
MBDQ approach with existing modern DFT functionals
toward generalized chemical accuracy. Such a strategy opens
the door to designing accurate, large-scale, energies databases
toward various machine learning applications. Finally, the

DNN-MBDQ energy correction can be directly added as an a
posteriori term to pure KS-DFT energies in virtue of the
model’s density-free features arising from the transferable deep
neuronal network employed.

■ APPENDIX
An analytical connection between the Starkschall−Gordon rule
and the quantum Drude oscillator (QDO) expression is
nontrivial to obtain; however, to verify the consistency of the
two expressions, it is possible to evaluate the C8/C6
proportionality factor for the hydrogen atom, for which αQ,
αμ, ⟨r2⟩, and ⟨r4⟩ are analytically available.30,52

We start by taking the QDO expression for the C8 coefficient
where we introduce = C4

3 ( )
6

2 . The resulting expression is the

QDO-analogue of the Starkschall−Gordon rule, see equation
below where the second equality represents the unscaled
Starkschall−Gordon rule for hydrogen.
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It is now possible to evaluate f QDO and f SG from the analytical
αQ, αμ and ⟨r2⟩, ⟨r4⟩ expressions respectively to get f QDO =
22.22 and f SG = 22.5 (atomic units). The ≈1% difference
among the two factors denotes a marked consistency of the
two formulations while the scaling version of the Starkschall−
Gordon rule simply improves the results for light elements as
discussed by Carter-Fenk and Herbert et al. in connection to
their XSAPT+MBD scheme.33
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(15) Bucǩo, T.; Lebeg̀ue, S.; Hafner, J.; Ángyán, J. G. Improved
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Matrix Formulation of Correlation Energies in the Random Phase
Approximation: Inclusion of Exchange Effects. J. Chem. Theory
Comput. 2016, 12, 2191−2202.
(39) Lagarder̀e, L.; Jolly, L.; Lipparini, F.; Aviat, F.; Stamm, B.; Jing,
Z. F.; Harger, M.; Torabifard, H.; Cisneros, G. A.; Schnieders, M. J.;
Gresh, N.; Maday, Y.; Ren, P. Y.; Ponder, J. W.; Piquemal, J. P.
Tinker-HP: a massively parallel molecular dynamics package for
multiscale simulations of large complex systems with advanced point
dipole polarizable force fields. Chem. Sci. 2018, 9, 956−972.
(40) Poier, P. P.; Lagarder̀e, L.; Piquemal, J.-P. O(N) stochastic
evaluation of many-body van der Waals energies in large complex
systems. J. Chem. Theory Comput. 2022, 18, 1633−1645.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.2c03722
J. Phys. Chem. Lett. 2023, 14, 1609−1617

1616

https://doi.org/10.1021/acs.chemrev.5b00533?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jcc.20078
https://doi.org/10.1002/jcc.20078
https://doi.org/10.1063/1.473089
https://doi.org/10.1063/1.473089
https://doi.org/10.1021/acs.jpcb.9b10903?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.9b10903?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz400226x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz400226x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz402663k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz402663k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz402663k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/science.aae0509
https://doi.org/10.1126/science.aae0509
https://doi.org/10.1126/sciadv.aax0024
https://doi.org/10.1126/sciadv.aax0024
https://doi.org/10.1016/S0022-3697(71)80015-X
https://doi.org/10.1016/S0022-3697(71)80015-X
https://doi.org/10.1063/1.2337283
https://doi.org/10.1063/1.4865104
https://doi.org/10.1063/1.4865104
https://doi.org/10.1021/acs.jctc.6b00925?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b00925?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b00925?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400694h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400694h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400694h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevLett.124.146401
https://doi.org/10.1103/PhysRevLett.124.146401
https://doi.org/10.1103/PhysRevLett.124.146401
https://doi.org/10.1103/PhysRevA.81.062708
https://doi.org/10.1103/PhysRevA.81.062708
https://doi.org/10.1021/acs.jpclett.2c00936?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.2c00936?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0051604
https://doi.org/10.1063/5.0051604
https://doi.org/10.1103/PhysRev.126.413
https://doi.org/10.1103/PhysRev.126.413
https://doi.org/10.1103/PhysRev.129.62
https://doi.org/10.1103/PhysRev.92.609
https://doi.org/10.1103/PhysRev.92.609
https://doi.org/10.1063/1.4789814
https://doi.org/10.1063/1.4789814
https://doi.org/10.1063/1.4789814
https://doi.org/10.1063/1.465038
https://doi.org/10.1063/1.2139668
https://doi.org/10.1063/1.2139668
https://doi.org/10.1103/PhysRevLett.102.073005
https://doi.org/10.1103/PhysRevLett.102.073005
https://doi.org/10.1103/PhysRevLett.102.073005
https://doi.org/10.1063/1.4961643
https://doi.org/10.1063/1.4961643
https://doi.org/10.1103/PhysRevLett.128.070602
https://doi.org/10.1103/PhysRevLett.128.070602
https://doi.org/10.1021/acs.jctc.6b00456?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b00456?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.1677610
https://doi.org/10.1063/1.1677610
https://doi.org/10.1063/1.1677610
https://doi.org/10.1063/1.3382344
https://doi.org/10.1063/1.3382344
https://doi.org/10.1063/1.3382344
https://doi.org/10.1103/PhysRevB.87.144103
https://doi.org/10.1103/PhysRevB.87.144103
https://doi.org/10.1103/PhysRevB.87.144103
https://doi.org/10.1021/acs.jpclett.9b01156?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.9b01156?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.9b01156?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.432569
https://doi.org/10.1063/1.432569
https://doi.org/10.1063/1.432569
https://doi.org/10.1063/1.432569
https://doi.org/10.1103/PhysRevLett.108.236402
https://doi.org/10.1103/PhysRevLett.108.236402
https://doi.org/10.1063/1.447150
https://doi.org/10.1063/1.447150
https://doi.org/10.1063/1.447150
https://doi.org/10.1063/1.3442749
https://doi.org/10.1063/1.3442749
https://doi.org/10.1063/1.3442749
https://doi.org/10.1021/acs.jctc.5b01129?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b01129?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b01129?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C7SC04531J
https://doi.org/10.1039/C7SC04531J
https://doi.org/10.1039/C7SC04531J
https://doi.org/10.1021/acs.jctc.1c01291?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c01291?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c01291?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.2c03722?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(41) Price, A. J. A.; Bryenton, K. R.; Johnson, E. R. Requirements for
an accurate dispersion-corrected density functional. J. Chem. Phys.
2021, 154, 230902.
(42) Becke, A. D.; Johnson, E. R. A density-functional model of the
dispersion interaction. J. Chem. Phys. 2005, 123, 154101.
(43) Becke, A. D.; Johnson, E. R. Exchange-hole dipole moment and
the dispersion interaction revisited. J. Chem. Phys. 2007, 127, 154108.
(44) Johnson, E. R. In Non-covalent Interactions in Quantum
Chemistry and Physics; de la Roza, A. O., DiLabio, G., Eds.; Elsevier,
2017; pp 169−194.
(45) Jensen, F. Unifying general and segmented contracted basis
sets. Segmented polarization consistent basis sets. J. Chem. Theory
Comput. 2014, 10, 1074−1085.
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