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Abstract: Forages grown in temperate regions, such as alfalfa (Medicago sativa L.) and white clover
(Trefolium repens L.), typically have a high nutritional value when fed to ruminants. Their high protein
content and degradation rate result, however, in poor utilization of protein from the forage resulting in
excessive excretion of nitrogen into the environment by the animal. Proanthocyanindins (also known
as condensed tannins) found in some forage legumes such as birdsfoot trefoil (Lotus corniculatus L.),
bind to dietary protein and can improve protein utilization in the animal. This review will focus
on (1) the occurrence of proanthocyanidins; (2) biosynthesis and structure of proanthocyanidins;
(3) effects of proanthocyanidins on protein metabolism; (4) protein precipitating capacity of
proanthocyanidins and their effects on true intestinal protein adsorption by ruminants; and (5)
effect on animal health, animal performance and environmental emissions.

Keywords: proanthocyanidins; condensed tannins; flavonoid pathway; biosynthesis; molecular
structure; rumen and intestinal protein metabolism and adsorption

1. General Introduction

Forages, such as alfalfa, white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.)
are the major forages used in temperate regions because of their high yield and nutritive value. They are,
however, characterized by having a high protein content which is excessively degraded in the rumen,
resulting in poor protein use efficiency and excessive nitrogen excretion into the environment [1].
Proanthocyanidins, which are present at moderate levels in temperate/prairie forages such sainfoin
(Onobrychis viciifolia L.), birdsfoot trefoil (Lotus corniculatus L.), big trefoil (Lotus pendunculatus L.) and
sulla (Hedysarium coronarium L.) bind with dietary proteins in the rumen, which can improve protein
utilization in the ruminant animal. Of note, the beneficial effects of proanthocyanindin described in
this manuscript are relevant to forages with high protein concentrations (approximately over 18% of
feed dry matter (DM), but proanthocyanidin may not be, or less, beneficial in forages and diets with
adequate (12–18%) or low protein concentration relative to animal requirements.
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2. Proanthocyanidin Synthesis and Structure

Proanthocyanidins are oligomeric and polymeric linked flavonoid units synthesized in the
flavonoid pathway. The name proanthocyanidin comes from the red anthocyanidin formed after
polymer cleavage and acidic oxidation upon heating [2]. Monomeric flavonoids are synthesized in
the cytosol of the plant and are subsequently transported into the vacuole to form end-products like
proanthocyanidins and anthocyanins [3]. Proanthocyanidins are synthesised in the flavonoid pathway,
which starts with the condensation and subsequent cyclization of one molecule of 4-coumaroyl CoA
(synthesised in the phenylpropanoid pathway from phenylalanine via cinnamic acid and coumaric
acid) and three molecules of malonyl CoA (formed by carboxylation of acetyl CoA) to form chalcone
(Figure 1). Flavonoids, starting with chalcone, contain a 15-carbon backbone (C15) in a C6-C3-C6
skeleton, which contains two phenyl rings (an A ring, originating from 3×malonyl CoA cyclization and
a B ring, originating from phenylalanine) (Figure 2). These two rings are connected by a three-carbon
bridge to form a third ring (C3 ring) by isomerization in the next step of the pathway towards
naringenin. Dihydroflavonols and leucoanthocyanidin are formed in the next two steps of the pathway
by hydroxylation of the C3 ring and reduction of the C4 C ring, respectively [2,4,5]. The building
blocks of proanthocyanidins are flavan-3,4-diols (leucoanthocyanidins) which form a dimer with
either flavan-3-ols (e.g., (+)-catechin, (+)-gallocatechin and (+)-afzelechin) [4,6] or epi-flavan-3-ols
(e.g., (−)-epi-catechin, (−)-epi-gallocatechin and (−)-epi-afzelechin) (Figure 2). Anthocyanidins
(e.g., delphinidin and cyanidin) are the precursors for both epi-flavan-3-ols and anthocyanin [2,7].
Proanthocyanidin can be characterized in terms of total concentration of extractable and unextractable
fractions (sometimes further divided into protein- and fibre-bound) [8], molecular size in terms of
degree of polymerization (mDP, total flavanol units/terminal flavanol units) or molecular weight (MW),
prodelphinidin/procyanidin ratio (PD/PC; (galocatechin + epi-galocatechin)/(catechin + epi-categin)),
cis/trans ratio (orientation at C-ring; (epi-catechin + epi-galocatechin)/(categin + galocategin)) [9],
using protein precipitation capacity (PCC) assay [10] and in vitro or in vivo bio-assay with and without
polyethylene glycol (PEG) to deactivate the activity of proanthocyanidin [11].
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Figure 1. Biosynthetic pathway for anthocyanin and proanthocyanidin. Abbreviations for enzymes 
involved in the flavonoid pathway towards the synthesis of proanthocyanidin are as follows. CHS: 
chalcone synthase; CHI: chalcone isomerase; FS: flavone synthase; F3H: flavanone-3-hydroxylase; 
F′3H: flavonoid 3′ hydroxylase; F3′5′H: flavonoid 3′5′ hydroxylase; FLS: flavonoid synthase; UGT: 
UDP-dependent glucosyltransferase; RT: rhamnosyl transferase; DFR: dihydroflavonol 4-reductase; 
ANS: anthocyanidin synthase; ANR: anthocyanidin reductase; LAR: leucoanthocyanidin reductase; 
OMT: O-methyltransferase; GST: glutathione S transferase; MATE: multidrug and toxic compound 
extrusion-type transporter; AHA10: plasma membrane H+-ATPase; CE: condensing enzyme; and 
LAC: laccase-like flavonoid oxidase, ?: unknown. This figure was prepared with information obtained 
from Kleindt et al. [12] and Zhao et al. [13]. 

Figure 1. Biosynthetic pathway for anthocyanin and proanthocyanidin. Abbreviations for enzymes
involved in the flavonoid pathway towards the synthesis of proanthocyanidin are as follows. CHS:
chalcone synthase; CHI: chalcone isomerase; FS: flavone synthase; F3H: flavanone-3-hydroxylase;
F′3H: flavonoid 3′ hydroxylase; F3′5′H: flavonoid 3′5′ hydroxylase; FLS: flavonoid synthase; UGT:
UDP-dependent glucosyltransferase; RT: rhamnosyl transferase; DFR: dihydroflavonol 4-reductase;
ANS: anthocyanidin synthase; ANR: anthocyanidin reductase; LAR: leucoanthocyanidin reductase;
OMT: O-methyltransferase; GST: glutathione S transferase; MATE: multidrug and toxic compound
extrusion-type transporter; AHA10: plasma membrane H+-ATPase; CE: condensing enzyme; and LAC:
laccase-like flavonoid oxidase, ?: unknown. This figure was prepared with information obtained from
Kleindt et al. [12] and Zhao et al. [13].
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Figure 2. Structure of (epi)-flavan-3-ol and substitution patterns of proanthocyanidins found in legumes. 
This figure was prepared with information obtained from Marles et al. [2]. 

3. Occurrence of Proanthocyanidin in Temperate/Prairie Forages 

Proanthocyanidins are typically found in the leaves, stems, flowers and seeds of forage legumes 
[9,14]. Some forage legumes like sainfoin and birdsfoot trefoil contain proanthocyanidins in all parts 
of the plant [14], while in alfalfa, perennial ryegrass and tall fescue (Festuca arundinacea) they 
accumulate mainly in the seed coat [15,16] and in white clover and red clover (Trefolium pratense L.) 
mainly in the flowers [17,18]. However, trace concentrations of proanthocyanidin were detectable in 
areal parts of most temperate forages [19,20].  

In sainfoin leaves, proanthocyanidin concentrations were higher, with a higher mDP and higher 
prodelphinidin content (Figure 2), than in the stems [21,22]. During sainfoin leaf development, 
proanthocyanidin concentration, MW and mDP increase until the leaves start to unfold, after which 
the concentration of these compounds decreases until senescence [23,24]. Sainfoin proanthocyanidin 
concentration and structure were also affected by growth site, harvest number and single vs. multiple 

Figure 2. Structure of (epi)-flavan-3-ol and substitution patterns of proanthocyanidins found in legumes.
This figure was prepared with information obtained from Marles et al. [2].

3. Occurrence of Proanthocyanidin in Temperate/Prairie Forages

Proanthocyanidins are typically found in the leaves, stems, flowers and seeds of forage
legumes [9,14]. Some forage legumes like sainfoin and birdsfoot trefoil contain proanthocyanidins in
all parts of the plant [14], while in alfalfa, perennial ryegrass and tall fescue (Festuca arundinacea) they
accumulate mainly in the seed coat [15,16] and in white clover and red clover (Trefolium pratense L.)
mainly in the flowers [17,18]. However, trace concentrations of proanthocyanidin were detectable in
areal parts of most temperate forages [19,20].

In sainfoin leaves, proanthocyanidin concentrations were higher, with a higher mDP and higher
prodelphinidin content (Figure 2), than in the stems [21,22]. During sainfoin leaf development,
proanthocyanidin concentration, MW and mDP increase until the leaves start to unfold, after which
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the concentration of these compounds decreases until senescence [23,24]. Sainfoin proanthocyanidin
concentration and structure were also affected by growth site, harvest number and single vs. multiple
flowering types [25,26]. Sulla was found to have about seven times greater proanthocyanidin
concentrations in both leaves and flowers than in stems [27], while purple prairie clover had greater
proanthocyanidin concentrations in flowers than in leaves, which both had much greater concentrations
than stems [14,28]. Unlike for sainfoin, proanthocyanidin content was higher at more advanced states
of maturity in forage of birdsfoot trefoil, purple prairie clover (Dalea pupurea L.) and several Trifolium
species [29].

In addition to the stage of growth of the plant, the proanthocyanidin concentration is influenced
by the environmental conditions under which the plant is grown. Big trefoil accumulated more
proanthocyanidins when grown at 30 ◦C than at 20 ◦C in a growth cabinet [30]. The proanthocyanidin
content and PPC were higher in temperate and tropical legumes grown in low fertility soils compared
with high fertility soils [31–33] and were higher in the dry season than the wet season for a tropical
legume forage grown in Columbia [34]. In the western Canadian prairies, growing season did not
affect the proanthocyanidin content of temperate legumes [29]. Herbivores and insects foraging on
proanthocyanidin-containing plants caused wound-induced up-regulation of the flavonoid pathway
regulatory genes with concomitant increases in proanthocyanidin accumulation in aspen trees
(Populus termuloides Michx.) [35] and turtlegrass (Thalassia testudinum L.) [36].

4. Proanthocyanidin Release from the Plant

Proanthocyanidins are stored in the vacuole of plants in order to prevent interaction with
any enzymes involved in the metabolic processes of the plant. In forage legumes, the vacuoles
which contain proanthocyanidin are more abundant under the adaxial epidermis extending into the
mesophyll and more frequently around the stomata [21,37]. Microbes attach rapidly to any new feed
that enters the rumen. When proanthocyanidins are present in the plant cell, attachment of microbes to
the plant/feed tissue is much slower, which decreases the invasion of plant tissues (cells) by microbes
(Figure 3) [38]. Therefore, plant tissues which contain proanthocyanidins are ruptured more slowly and
less extensively than plant tissues that do not contain proanthocyanidins. This reduces the accessibility
of the cell contents and fibre components for microbial utilization [38,39].

When the vacuole is ruptured through chewing or microbial digestion, proanthocyanidins can
bind with surrounding proteins (mainly proteins from within the plant tissue), but also dietary, salivary
and microbial protein (Figure 3). The proanthocyanidin–protein complex is very resistant to digestion
and utilization by ruminal microbes [40,41].

During ingestive chewing in sheep, large amounts of soluble protein were released (ruptured)
from proanthocyanidin-free forages like alfalfa, perennial ryegrass and red clover, but not from
proanthocyanidin-accumulating forages like sainfoin. However, when PEG was added, approximately
60% of the soluble protein in sainfoin forage was released, indicating that the proanthocyanidins
in sainfoin forage were responsible for the lower release of soluble proteins compared with the
other forages tested [42]. Similar results were found in vitro in buffer, where adding PEG increased
nitrogen (N) solubility four-fold in fresh sainfoin forage, while PEG had no effect on the N solubility
of alfalfa [43]. Theodoridou et al. [9] also found increased N solubility of fresh sainfoin forage with
PEG addition and the magnitude in response to PEG was related to proanthocyanidin concentration.
A negative correlation was found for N solubility and protanthocyanindin concentration, PD/PC ratio,
mDP and cis/trans ratio for three sainfoin varieties at several harvests [44].
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Figure 3. Schematic flow chart of crude protein (CP) digestion from proanthocyanidin (PA)-
containing forage. Symbols between brackets represent the effect of PA-containing vs. PA-free forage 
on protein flow: + represents increased flow, − represents decreased flow and = represents similar 
flow. NAN: non-ammonia N. This figure was prepared with information from references [38,39,45–
47]. 
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frequently [3]. Proanthocyanidins can also bind to metals, essential amino acids, carbohydrates, 
digestive enzymes, and microbes, but with a lower affinity than that used to bind to dietary protein 
[49,50]. The composition of proanthocyanidin varies with the type of linkage between the flavonoid 
monomers (C4 to C6 or C4 to C8) and with stereochemical variation at carbons 2, 3 and 4 and the 
number of hydroxyl groups on the A and the B rings (Figure 2). These differences in 
proanthocyanidin composition affect their molecular structure and influence their capability to 
interact with other molecules such as protein.  

Factors that were found to increase PCC of proanthocyanidins include increasing 
proanthocyanidin concentration, increasing MW, larger mDP and increasing 
prodelphinidin:procyanidin ratio [51–54]. Nauman et al. [55] found that proanthocyanidin 
concentration, determined in nine warm season forages, correlated with PCC, while mDP (and MW) 
did not. Also, Huang et al. [56] found no clear effect of mDP on PCC and suggested that 
proanthocyanidin chemical structure could provide a better understanding of PPC. Aerts et al. [57] 
suggested based on their results that the MW of proanthocyanidin was relatively more important for 
PCC while monomer composition of proanthocyanidin was relatively more important in determining 
their interaction with microbes. Ropiak et al. [58] found that mDP of proanthocyanidin was the most 
important factor determining PCC, while monomer composition of proanthocyanidin was more 
important in explaining the interaction of proanthocyandin with protein in terms of hydrophobic 

Figure 3. Schematic flow chart of crude protein (CP) digestion from proanthocyanidin (PA)-containing
forage. Symbols between brackets represent the effect of PA-containing vs. PA-free forage on protein
flow: + represents increased flow, − represents decreased flow and = represents similar flow. NAN:
non-ammonia N. This figure was prepared with information from references [38,39,45–47].

5. Protein Precipitating Capacity as Affected by Proanthocyanidin Characteristics

Protein precipitation by proanthocyanidins is mostly based on hydrogen bonding between
the hydroxyl groups (–OH) of proanthocyanidin and the amino group (–NH) of peptides or other
substrates [48] or is due to hydrophobic interactions between the phenol ring of proanthocyanidin
and the carboxyl group (–COOH) of protein. Ionic interaction and covalent bonding occurs less
frequently [3]. Proanthocyanidins can also bind to metals, essential amino acids, carbohydrates,
digestive enzymes, and microbes, but with a lower affinity than that used to bind to dietary
protein [49,50]. The composition of proanthocyanidin varies with the type of linkage between the
flavonoid monomers (C4 to C6 or C4 to C8) and with stereochemical variation at carbons 2, 3 and
4 and the number of hydroxyl groups on the A and the B rings (Figure 2). These differences in
proanthocyanidin composition affect their molecular structure and influence their capability to interact
with other molecules such as protein.

Factors that were found to increase PCC of proanthocyanidins include
increasing proanthocyanidin concentration, increasing MW, larger mDP and increasing
prodelphinidin:procyanidin ratio [51–54]. Nauman et al. [55] found that proanthocyanidin
concentration, determined in nine warm season forages, correlated with PCC, while mDP (and
MW) did not. Also, Huang et al. [56] found no clear effect of mDP on PCC and suggested that
proanthocyanidin chemical structure could provide a better understanding of PPC. Aerts et al. [57]
suggested based on their results that the MW of proanthocyanidin was relatively more important
for PCC while monomer composition of proanthocyanidin was relatively more important in
determining their interaction with microbes. Ropiak et al. [58] found that mDP of proanthocyanidin
was the most important factor determining PCC, while monomer composition of proanthocyanidin
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was more important in explaining the interaction of proanthocyandin with protein in terms of
hydrophobic binding and changing protein secondary structure. Several studies compared the PCC
of proanthocyanidin fractions of different MW and all found that PCC increased with increasing
mDP [17,59–61]. Habertson et al. [62], however, suggested that mDP above eight would not further
improve PCC effectiveness. Molan et al. [63] found that in vitro degradation of small and large
subunits of Rubisco (Ribulose-1,5-bisphosphate carboxylase) decreased linearly when incubated with
dimers to pentamers of procyanidin, but this was similar for the incubation with pentamers and
purified birdsfoot trefoil proanthocyanidin (dominated by procyanidin). Ropiak et al. [58] found that
proanthocyanidin with an mDP of 7 had optimal PCC with bovine serum albumin (BSA) based on a
wide range of purified proanthocyanidins.

Jones et al. [52] found that PPC increased with increasing prodelphidin content when testing
several Trifolium species and big trefoil. Prodelphinidins have three phenolics at the B-ring compared
to two in procyanidin, which may explain [20] a higher PCC of proanthocyanidin with high PD/PC
ratios [64]. The PD/PC ratio was higher in fractions with higher mDP from proanthocyanidin
of big trefoil [65,66], birdsfoot trefoil [66], sainfoin [67] and to a lesser extent in sulla [68] and
Dorycium rectum [69] (Table 1). Ropiak et al. [58] did find, however, using a PCC with bovine serum
albumin (BSA) and a wide range of different types of purified proanhocyanidin with PD/PC ratios
ranging from 0/100 to 99:1, cis/trans ratios from 1/99 to 88/12 and MW from 1028 to 7580 Da, that MW
and mDP were the main parameters explaining PCC, while PD/PC ratio and cis/trans ratio did not
correlate with PCC. A similar result was found by Lorenz et al. [70] using purified proanthocyanidin
from sainfoin with a wide range of PD/PC and cis/trans ratios. However, interaction between
proanthocyanidin and protein in terms of hydrophobic binding and secondary structure determined
by tryptophan fluorescence quenching and circular dichroism, respectively, were mainly influenced by
procyanidin and prodephinidin content of the proanthocyanidin, respectively [58].

The PCC with Rubisco was similar among proanthocyanidin from birdsfoot trefoil, big trefoil,
sainfoin and sulla with between 25 and 75 µg of proanthocyanidin extract required to precipitate
10 µg Rubisco [19,54]. Rate of degradation of the rubisco large sub-unit was also similarly reduced
by purified proanthocyanidin from birdsfoot trefoil, big trefoil, sainfoin and sulla [40]. A negative
correlation was, however, found for fractional degradation rate of protein in the rumen and effective
ruminal protein degradability with increasing protanthocyanindin concentration, mDP, PD/PC ratio
and cis/trans ratio for three sainfoin varieties at several harvests [44]. Proanthocyanidin of leaves
from sainfoin were found to have a stronger PCC with BSA than for proanthocyanidin from stems,
likely due to differences in mDP of proanthocyanidin in leaves and stems [9]. Proanthocyanidin from
purple prairie clover were found to have a stronger PCC than of sainfoin [71] and PCC was weak
for temperate forages that contain trace concentrations of proanthocyanidin [19,54]. In summary,
concentration and mDP (or MW) appear as the main proanhocyanaidin characteristics that determine
their PCC with dietary protein.
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Table 1. Proanthocyanidin concentration, structure and protein precipitating capacity of several
temperate forage legumes.

Trait
Legume Species

Sainfoin Birdsfoot
Trefoil

Big
Trefoil Sulla Alfalfa White

Clover
Red

Clover

Forage

Proanthocyanidin (g/kg DM) 1

Extractable 44 7–36 61 35–84 0 ND 0.4
Protein-bound 38 9–13 14 9–31 0.5 ND 0.6
Fibre-bound 5 2–3 1 2–20 0 ND 0.7
Total 87 21–47 77 55–84 0.5 6–12 1.7

Forage Seed Flower

MW (DA) 2 2.0–5.1 1.8–4.4 2.2–3.9 - 3.6 - -
mDP 3 4–12 6–14 8–44 3–46 5–7 10 9
Main polymer 3 Pdelph Pcyanid Pdelph Pdelph Pcyanid Pdelph Pcyanid
PD (%) 3 36–93 40–66 80–84 73–89 - - -
Cis (%) 3 47–88 84–85 76–88 69–84 - - -

Extender unit (%) 3

Catechin 0 3–4 2–4 1–8 0 0 6
Epicatechin 11–27 27–67 13–19 9–18 92 0 81
Gallocatechin 7–19 5–7 6–16 14–23 0 39 6
Epigallocatechin 61–74 30–62 46–72 53–75 0 56 7

Terminal unit (%) 3

Catechin 8–23 61–82 46–51 24–32 92 0 95
Epicatechin 22–47 16–21 13–20 0–6 0 0 5
Gallocatechin 18–40 2–17 20–16 50–66 0 48 0
Epigallocatechin 14–35 2–4 10–14 7–22 0 52 0

PCC (µg/mg) 4

Alfalfa Rubisco 50 80 72 ND 108 ND ND
Bovine serum albumin 269 436 323 ND 348 ND ND

ND: not determined; 1 Values for sainfoin and birdsfoot trefoil from Scharenberg et al. [72], for birdsfoot trefoil
and big trefoil from Terrill et al. [8], for birdsfoot trefoil, alfalfa and red clover from Jackson et al. [20], and for
white clover from Burggraaf et al. [73]; 2 Molecular weight adapted from McAllister et al. [54], and Min et al. [74];
3 Values for sainfoin from Koupai-Abyazani et al. [75], for birdsfoot trefoil from Foo et al. [65,76], for big trefoil
from Foo et al. [65,77], for alfalfa seed coat from Koupai-Abyazani et al. [15], and for white and red clover from
Sivakumaran et al. [18]. 4 Protein precipitating capacity (µg proanthocyanidin needed to precipitate 1 mg of alfalfa
Rubisco protein or bovine serum albumin) adapted from McAllister et al. [54]. mDP: mean degree of polymerization;
Pdelph: prodelphidinin; Pcyanid: procyanidin; PCC: protein precipitation capacity; MW: molecular weight; PD:
prodelphinidin ratio.

6. Protein Precipitating Capacity of Proanthocyanidins as Affected by Protein Characteristics

The PCC of proanthocyanidin depends not only on the structure but also on characteristics of
protein they bind to [17,70]. Protein precipitating capacity was found to be weaker for BSA than for
alfalfa leaf protein (Rubisco) [17,54,70], rapeseed protein [70], and proline-rich protein (gelatine) [58],
but similar to the PCC with the enzyme lysozyme [17]. Results from Lorenz et al. [70] suggested
that high over low MW proteins were preferentially precipitated, however, this was more apparent
with rapeseed than Rubisco protein. The degradation of the large subunit of Rubisco in the rumen is
normally more rapid than the ruminal degradation of the small subunit of Rubisco [40,41]. The presence
of proanthocyanidins from sainfoin decreased the degradation of the large sub-unit of Rubisco more
than it affected the degradation of the small sub-unit of Rubisco [40,41]. However, proanthocyanidins
from sulla and big trefoil did not differ in their ability to reduce microbial degradation of the small or
large sub-unit of Rubisco [57]. This suggests that proanthocyanidins from different forage legumes
differ in their biological activity in ruminal Rubisco degradation. The quaternary structure of Rubisco
is relatively unstable compared to the quaternary structure of BSA, which might explain why Rubisco
is more readily precipitated by proanthocyanidin than BSA [17]. Proanthocyanidin might also more
readily bind with a mix of proteins, as is the case of Rubisco and rape seed protein, than with individual
proteins as for BSA [17,70]. Proteins with great proline content, such as gelatine, contain randomly
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coiled structures which offer more binding sites for proanthocyanidin than is the case for BSA [58]. The
protein secondary structures of BSA was found to change during the PCC assay with relative decreasing
α-helices and increasing β-sheets as the prodelphinidin content of the proanthocyanidin increased [58].
This suggests that protein with high α-helices might be more easily precipitated, although the protein
of alfalfa (consisting mainly of Rubisco) had a lower α-helices: β-sheets ratio [78,79] than BSA [58].

7. Effect of Proanthocyanidin on Rumen Microbes and Ammonia Formation

Excess protein released in the rumen above microbial requirement is mainly converted into
ammonia (NH3), and energy for the microbes, which is absorbed through the rumen wall and largely
excreted in urine as urea [1]. Reducing the degradation rate and extent of protein in the rumen
can decrease NH3 formation and urinary N excretion [1]. Sheep fed birdsfoot trefoil or big trefoil
forage had a lower ruminal NH3 and soluble protein concentration than sheep fed the same diet
plus PEG [45,46,80]. A linear decrease in rumen NH3 was found with increasing concentration
proanthocyanidin in the diet in a review of studies with animals fed temperate legumes [74] and
a meta-analysis of data from animals fed a wide range of proanthocyanidin sources [81]. These
could be the result of reduced dietary protein availability due to complexing with proanthocyanidin
(as described above), negative correlation between forage crude protein (CP) concentration and
proanthocyanidin concentration (reduces the direct oversupply of protein) [82–85], or overall reduced
proteolytic activity due to the direct effect of proanthocyanidin on proteolytic bacteria and protozoa in
the rumen [80] (Figure 3).

Proanthocyanidins that do not bind with protein are referred to as free proanthocyanidins.
During ingestive mastication of birdsfood trefoil and sulla (Hedysarium cornonarium L.) by sheep,
14 and 21 g/kg DM of extractable proanthocyanidins were converted into 11 and 12 g/kg DM
protein-bound and 3 and 6 g/kg DM protein-free proanthocyanidins, respectively [86,87]. The
proanthocyanidins that bind to protein are considered to be beneficial for the animal because
they increase the protein flow to the lower digestive tract [88,89] while free proanthocyanidins
are considered negative because they negatively affect fibre digestion, especially the digestion of
hemicellulose [88,90]. The proanthocyanidins which were still extractable after ingestive mastication
were probably located in plant cells that were not yet ruptured. For birdsfoot trefoil, 17% of the
original extractable proanthocyanidin was still present after ingestive mastication in contrast to the
31% observed for sulla [86,87], which might indicate that the plant tissue from birdsfoot trefoil is more
easily ruptured than that from sulla.

Free proanthocyanidins can interact directly with minerals, microbes and microbial enzymes
and reduce the overall proteolytic activity (protein degradation) in the rumen [19,40,80,91,92].
Proanthocyanidins inhibit fibrolytic, ureolytic and proteolytic enzyme activity by microbes and thereby
inhibit the growth of fungi, protozoa and some bacteria species [80,91,92]. Some proteolytic bacteria
species are affected by proanthocyanidins, while other species seem unaffected [80,92,93]. For example,
proanthocyanidin promoted the growth of proanthocyanidin-resistant gram-negative bacteria in the
rat gastrointestinal tract. Proanthocyanidin resistant microbes increased from <1% before feeding
proanthocyanidin in the diet to approximately 25% and 50% proanthocyanidin resistant microbes
after three weeks of offering a feed containing 0.7% and 2.0% proanthocyanindin, respectively [94].
Microbial growth in the presence of proanthocyanidins might be decreased because of the reduced
availability of essential nutrients (e.g., amino acids and minerals), reduced availability of total nutrients
(e.g., carbohydrates and protein), complexes formed with microbial membrane lipoproteins, and direct
interactions with the metabolism of microbial bodies [91]. Protozoa numbers are decreased by the
presence of proanthocyanidins in the diet [95,96]. Protozoa increase the overall digestibility of organic
matter, are highly proteolytic, degrade insoluble proteins, predate on bacteria (increasing ruminal-N
turnover) and reside in the rumen for a longer period of time than bacteria [97,98]. However, the total
flow of microbial-CP to the lower digestive tract is not decreased when proanthocyanidins are present
in a forage (Figure 3) [45,80]. In the latter study, proathocyanidin-resistant microbial growth and/or
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reduced protozoa number improved microbial efficiency. Defaunation of protozoa from the rumen on
its own was previously found to increase microbial protein flow to the lower digestive tract [97,98].

Sheep with a lower ruminal NH3 concentration have higher urea-N recycling and a higher
incorporation of recycled urea-N into microbial mass (Figure 3) [45,99]. This might be an
explanation of why the presence of proanthocyanidin in the diet does not decrease the overall
flow of microbial-CP to the lower digestive tract. Decreased ruminal NH3 concentrations in
cattle fed proanthocyanidin-containing forage decreased urinary-N output and increased faecal-N
output [100,101]. Faecal-N is less prone to volatilization as ammonia and nitrous oxide and leaching
as nitrate into ground water than urinary-N, thereby reducing the environmental impact of this N
excretion by ruminants [101,102].

8. Effect of Proanthocyanidin on Intestinal Amino Acid Absorption

Proanthocyanidins form stable complexes with proteins from different sources at a pH between
3.5 and 7.0 [103], a pH which occurs in the rumen [104] and ileum [105]. The total amount of dietary
protein escaping ruminal degradation into the lower digestive tract was found to be higher for
proanthocyanidin-containing forage without PEG than in the presence of PEG [45–47]. Protein is
released from the proanthocyanidin complex at a pH of <3 [103] which occurs in the abomasum [106,
107] and proximal duodenum [105] and at a pH of >8 which occurs with pancreatic secretions [90].
Min et al. [74] found, in their review, a linear increase in non-ammonia N flow as proportion of N
intake to the intestine with increasing proanthocyanidin concentration in the forage, while microbial N
flow remained largely constant.

The change in site of protein digestion due to dietary proanthocyanidin (compared to same feed
+ PEG) resulted in an increased digestion and absorption of amino acids in the small intestine of
sheep eating birdsfoot trefoil [46,89] and sulla [47], but not when sheep consumed big trefoil [45] and
sainfoin [47,108]. Kariuki and Norton [109] found that proanthocyanidin from Leucaena leucocephala L.
had a lower PCC with BSA but this complex had a higher true digestibility between abomasum
and distal ileum than when proanthocyanidin originated from Leucaena pallida L. The data in
Table 1 indicates a higher protein PCC with BSA and proanthocyanidin from sainfoin and big trefoil
than from birdsfoot trefoil. Based on the results of Kariuki and Norton [109], the lower PCC of
proanthocyanidin from birdsfoot trefoil might result in a higher digestibility of protein, which was
bound to proanthocyanidin between the abomasum and the distal ileum, than from sainfoin and big
trefoil. This might be an explanation why the amino acid absorption in the small intestine increased
(compared to same feed + PEG) when feeding birdsfoot trefoil and not when feeding sainfoin or big
trefoil. Big trefoil was found to have a proanhocyanidin fraction with high mDP of 44 that was not
detected in birdsfoot trefoil [66] which might explain difference in biological activity between the
two Lotus species. Sulla was, however, also found to have a proanthocyanidin fraction with high
mDP of 46 [68], like big trefoil. However, the particular proanthocyanidin fraction that had a high
mDP was different for big trefoil and sulla. In vitro results by McNabb et al. [19] suggested that
proanhocyanidin-rubisco complex of sainfoin was stable over a wider range of pH values than for
birdsfoot trefoil and sulla, but also than for big trefoil. This suggests that the proanhocyanidin–rubisco
complex might be less easily dissociated for sainfoin along the digestive tract.

9. Effect of Proanthocyanidin on Intestinal Parasites

Parasitic nematodes are a major factor impairing animal growth in temperate grazing
systems [110]. Feeding temperate legumes containing proanthocyanidin (e.g., birdsfoot trefoil, big
trefoil, sulla, sainfoin) were found to decrease nematodes in vitro [111] and in vivo [112,113] in terms
of reduced total counts, reduced numbers of eggs hatching and rate of larval development. The review
of Min et al. [74] found a linear reduction in faecal egg counts with increasing proanthocyanidin
concentration of different sources in the diet, with the effect being more apparent at proanthocyanidin
concentrations of over 4.5% in the diet DM. This might, however, depend on feed and proanthocyanidin
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source. For example, reductions in faecal egg counts have been more consistent with sulla than
with birdsfoot trefoil [112–114]. Several recent in vitro studies found that mDP and prodelphidinin
content in proanthocyanidins were important factors determining anti-parasitic activity [115–117].
Klongsiriwet et al. [115] found that there was a synergistic effect of using proanthocyanidin and
flavonoid monomers in increasing anti-parasitic activity, more so with procyanidin than with
prodelphinidin. Grazed proanthocyanidin plants also contain monomerc flavonoids and might
therefore be more effective against intestinal parasites than extracted fractions. Some caution is,
however, required as Waghorn et al. [118] found that Dorycnium rectum was a very potent anti-parasitic
agent in vitro, while the same forage grazed by sheep did not change anti-parasitic activity [119].
These authors therefore emphasized that in vitro anti-parasitic activity due to proanthocyanidin might
not be a good indicator for in vivo activity.

Indirect inhibition of intestinal parasites might also occur as a result of the improved protein
supply to the small intestine with proanthocyanidin, which might improve the host immunity against
parasites as reviewed previously [74,110].

10. Effect of Proanthocyanidin on Pasture Bloat

Pasture bloat arises from rumen microbial fermentation gases trapped in a viscous stable protein
foam, that prevent normal eructation, causing distention of the rumen and thereby exerting pressure
on organs which can lead to the death of the animal under severe conditions [1]. Many characteristic
bloat-free legumes contain proanthocyanidins [120,121]. The proanthocyanidin–protein complex
decreases the release of protein in the rumen. This reduces the amount of protein available at
the gas–liquid interface [40,57] and decreases foam formation and stability [122–124] and substrate
availability for ruminal microbes, with a consequent reduction in gas production [124,125]. Lysis of
protozoa and gram-negative bacteria in the rumen release foam-provoking materials and exotoxins
which may play a role in the formation of pasture bloat [126,127]. The numbers of protozoa
and gram-negative bacteria are decreased by proanthocyanidins as described above. Also, the
growth of the viscous slime-producing bacteria Streptococus bovis is impaired by the presence of
proanthocyanidins [128]. According to Li et al. [129], bloat-provoking legumes should contain a
proanthocyanidin concentration of approximately 0.5% of diet DM, or higher, in order to be bloat-safe.
Mixing dock in a ratio of 1:9 with alfalfa, resulting in a dietary proanthocyanidin concentration of
approximately 0.2% of DM, was sufficient to prevent bloat [130]. Proanthocyanidins in dock were
found to have a strong PCC [19,130] and high proportion (27%) of epicatechin gallate [131] which are
important antimicrobial properties [132].

11. Effect of Proanthocyanidin on Enteric Methane Emissions

Feeding forage that contained proanthocyanidins decreased methane emissions in sheep grazing
sulla, birdsfoot trefoil and big trefoil [133–135] and in dairy cows grazing sulla and birdsfoot
trefoil [136–138] compared with those grazing ryegrass-based pastures. Methane emissions were
also reduced in goats fed Sericea lespedeza (Lespedeza cuneate) compared to goats fed alfalfa [139].
A meta-analysis indicated that methane emissions reduce linearly, both in vitro and in vivo, with
increasing proanthocyanidin concertation (range of sources) [81]. The decreased methane emission
with proanthocyanidin-containing forage might be due to a reduction in the amount of forage
substrate fermented in the rumen (reduced digestion), a shift in fermentation end-products (reduced
H+-producing acetate and to a lesser extent butyrate, and more H+-utilizing propionate and
valerate), and/or direct inhibition of the growth of methanogenic bacteria, as well as a decrease
in symbiotic-associated protozoa numbers or a shift in microbial community composition [81,140].
In vitro methane production and concentration were found to decrease with proanthocyanidin fractions
of increasing MW and mDP from Leucaena [56] and with sainfoin ancestors with increasing mDP [141].
Methanogens were mainly inhibited with polymeric-proanthocyanidin fractions from big trefoil with
a mDP of approximately 12 and not by oligomeric-pronthocyanidin fractions with mDP < 6 [142].
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Methane emissions from beef cattle eating sainfoin were, however, in general not reduced
compared to those eating alfalfa-based forage [143–146], except in one out of three grazing
seasons [145,146]. Substituting 50% of grass silage with sainfoin silage in a total mixed ration for dairy
cows was found to reduce methane yield [147]. Up to 2% quebracho proanthocyanidin mixed in the
diet of beef cattle did also not lower methane emissions [148]. Proanthocyanidin of quebracho and
sainfoind incubated without PEG decreased, however, methane production and concentration in vitro
compared with incubations with PEG [9,141,149]. Therefore, not all proanthocyanidin sources may
have the same effectiveness in reducing methane emissions.

12. Absorption of Proanthocyandin and Health Benefits

Flavonoids from the lower part of the flavonoid pathway, including anthocyanidin and
proanthocyanidin, have antimicrobial activity on pathogenic gram-negative bacteria [150], as well as
strong anti-oxidant activity [50,151], anti-inflammatory activity [152] and the ability to change cell
signalling pathways [153]. Livestock consuming these flavonoids might therefore experience beneficial
effects important for the overall health of the animal. To experience these benefits at the metabolic level,
however, proanthocyanidin needs to be broken down and absorbed into the blood stream. Available
data suggests that proanthocyanidins are not broken down in the digestive tract of the ruminant and
that nearly all proanthocyanidins ingested are excreted in faeces [53,117,154]. However, building blocks
of proanthocyanidin present in all proanthocyanidin-accumulating forages are absorbed from the
digestive tract. Plasma and urine of rats were found to contain monomeric flavonoids and dimmer and
trimer procyanidin [155,156] and even up to pentamers of apple procyanidin [157]. In cows, however,
ruminal administration of green tea flavan-3-ols did not result in a rise of flavan-3-ols in plasma,
while post-ruminal administration did increase plasma flavan-3-ols in a dose-dependent manner [158].
Green tea flavan-3-ols appeared to be extensively metabolized in the rumen, which was confirmed
in vitro [158]. Di Trana et al. [159] found, however, a positive correlation between proanthocyanidin
intake and plasma antioxidant capacity, and plasma total polyphenol and milk total polyphenol
concentrations in dairy goat fed fresh sulla. Supplementation of quebracho proanthocyandin in the
diet of sheep also enhanced plasma and liver antioxidant capacity, however, no phenolic compounds
were detected in plasma, which suggests that none of the quebracho proanthocyandin were absorbed
from the digestive tract [160]. These authors discussed how proanthocyanidin as an antioxidant in
the digestive tract might improve overall animal antioxidant status. Huang et al. [161] found an
improved antioxidant status in serum of sheep fed purple prairie clover compared with sheep fed
alfalfa. The antioxidant status was, however, similar for purple prairie clover with and without
PEG [161], which suggests that the improved antioxidant status was not due to oligomeric and
polymeric proanthocyandin. Antioxidant activity of proanthocyanidin fractions in vitro increased
linearly up to fractions with mDP of 8–10, after which the activity levelled [162,163]. Therefore,
proanthocyanidin and their building blocks might act directly or indirectly as antioxidants in the
animal and might improve their health and product properties.

13. Effect of Proanthocyanidin on Animal Performance and Animal Product Quality

Comparative feeding value in terms of sheep live-weight gain ranked perennial ryegrass <
red clover < alfalfa < big trefoil < sainfoin < white clover in a summary by Ulyatt [164] and
perennial ryegrass < red clover < alfalfa < big trefoil < birdsfoot trefoil < sulla < white clover
in a summary by Waghorn et al. [165]. Comparative feeding value in terms of dairy cow milk
solids (g/d; fat + protein) production ranked birdsfoot trefoil and white clover similarly, with both
having higher feeding values than perennial ryegrass [165]. Therefore, the apparent feeding value
of temperate proanthocyanidin-containing legumes is in general higher than non-proanthocyanidin
(or trace)-containing perennial ryegrass, red clover and alfalfa, but similar to or lower than that of
white clover. The high feeding value of white clover indicates that proanthocyanidins are not required
for a high feeding value of legumes. The high feeding value of birdsfoot trefoil, big trefoil, sainfoin



Int. J. Mol. Sci. 2017, 18, 1105 13 of 23

and sulla is therefore likely only partly explained by the presence of proanthocyanidin in their forge.
Proanthocyanidin may, however, increase the feeding value as a result of improved energy efficiency
due to reduced methane (energy) emission or reduced energy cost for urea synthesis, increased amino
acid absorption in the small intestine, or improved overall animal health status. However, when the
proanthocyanidin concentration in birdsfoot trefoil and big trefoil increase over 5% of DM, animal
performance decreases due to decreased dry matter intake and/or excessively decreased digestion and
availability of nutrients along the entire digestive tract [100,166]. Sainfoin and sulla, however, seem
to be palatable forages which are preferred by ruminants even if they have a high proanthocyanidin
level [167–170].

Ruminant products are high in saturated fatty acids (FAs), due to extensive microbial
biohydrogenation of lipids in the rumen, which have been associated with health risks for human.
Therefore, decreasing saturated FA and increasing unsaturated FA in animal products is desired.
Feeding diets with proanthocyanidin have been found to decrease saturated FA proportion of lipids
in meat and milk [171,172], likely due to inhibition of the biohydrogenation processes by microbes
in the rumen [172,173]. However, the effect of proanthocyandin in the diet on milk and meat FA
has been variable, likely dependent on the level and type of proanthocyanidin in the diet [171,173].
Feeding proanthocyanidin-containing forages was also found to reduce negative odour compounds in
meat, like indole and skatole, which are normally high in meat from grazing sheep [174]. Indole and
skatole are end-products of protein fermentation in the rumen. Therefore, the precipitation of dietary
protein by proanthocyanidin and inhibition of proteolytic bacteria, as described above, are the likely
mechanisms for the reduced indole and skatole formation. Reduction in indole and skatole formation
were found to be greater at higher dietary proanthocyanidin concentrations [174].

Faeces of ruminants are the major source of Escherichia coli O157:H7, which can contaminate
carcasses, and therefore meat, during slaughter. Ingestion of meat contaminated with E. coli can result
in foodborne illness (food poisoning) in humans. Reducing E. coli O157:H7 shedding in faeces of
ruminants will likely reduce meat contamination [175]. Phlorotannins from seaweed were found
to inhibit E. coli in vitro [176] and in vivo [177] and to a greater extent than the proanthocyanidin
from quebracho [176]. Proanthocyanidin from sainfoin had minimal effect on E. coli in vitro and
in vivo [178], while proanthocyanidin from purple prairie clover reduced E. coli greatly both in vitro
and in vivo [71,161,179]. The greater E. coli-reducing properties of proanthocyanidin from purple
prairie clover than from sainfoin were thought to be due to the much greater PCC with both Rubisco
and BSA, and increased outer membrane permeability and cell aggregation of E. coli due to purple
prairie clover proanthocyanidin [71].

14. Summary

Proanthocyanidins from temperate/prairie forages bind preferentially with dietary proteins in
the rumen, which can be disassociated in the acidic environment of the abomasum. This reduces the
rate and extent of protein turnover in the rumen and may improve protein absorption in the small
intestine and reduces N excretion into urine. The bioactivity of proanthocyanindins in forages to
complex with dietary protein appears to be mainly related to their total concentration in the diet
followed by molecular weight/mean degree of polymerization (increasing in activity up to 6–10 units)
of the proanthycanidin. Dietary proanthocyanidin concentration should be sufficiently high (~>2%
of DM in temperate forages) before positive effects can be detected, while too-high concentrations
will impair feed digestion, intake (especially in Lotus species) and animal performance. Molecular
makeup, orientation and bonds in the polymer chain appear to have little effect on the protein
precipitating capacity of proanthocyanidin, but might be important in the binding strength in the
protein complex and for their effect on microbes in the gut of the animal. Also, presence of high
molecular weight proanthocyanidin fractions in feed, presence of gallated proanthocyanidin, and
high protein precipitating capacity appear to be indicators for biological activity on gut microbes.
Feeding mixed proanthocyanidins–flavonoids appears to function synergistically in increasing the
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biological activity of proanthocyanidin, at least against parasites in the gut. The high feeding value of
proanthocyanidin-containing legumes could be the result of improved energy efficiency due to reduced
methane (energy) emission, reduced energy cost for urea synthesis, increased amino acid absorption
in the small intestine, or improved overall animal health status. The agronomic performance of
these proanthocyanidin-containing legumes is, however, inferior to commonly used alfalfa, perennial
ryegrass and white clover, which still prevents their uptake by farmers.
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