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The five-year survival rate of lung squamous cell carcinoma is significantly lower than that of other cancer types. It is therefore
urgent to discover novel prognosis biomarkers and therapeutic targets and understand their correction with infiltrating
immune cells to improve the prognosis of patients with lung squamous cell carcinoma. In this study, we employed robust rank
aggregation algorithms to overcome the shortcomings of small sizes and potential bias in each Gene Expression Omnibus
dataset of lung squamous cell carcinoma and identified 513 robust differentially expressed genes including 220 upregulated and
293 downregulated genes from six microarray datasets. Functional enrichment analysis showed that these robust differentially
expressed genes were obviously involved in the extracellular matrix and structure organization, epidermis development, cell
adhesion molecule binding, p53 signaling pathway, and interleukin-17 signaling pathway to affect the progress of lung
squamous cell carcinoma. We further identified six hub genes from 513 robust differentially expressed genes by protein-protein
interaction network and 10 topological analyses. Moreover, the results of immune cell infiltration analysis from six integrated
Gene Expression Omnibus datasets and our sequencing transcriptome data demonstrated that the abundance of monocytes
was significantly lower in lung squamous cell carcinoma compared to controls. Immune correlation analysis and survival
analysis of hub genes suggested that three hub genes, collagen alpha-1(VII) chain, mesothelin, and chordin-like protein 1,
significantly correlated with tumor-infiltrating monocytes as well as may be potential prognostic biomarkers and therapy
targets in lung squamous cell carcinoma. The investigation of the correlation of hub gene markers and infiltrating monocytes
can also improve to well understand the molecular mechanisms of lung squamous cell carcinoma development.

1. Introduction

Lung cancer is the leading cause of cancer-related deaths
worldwide [1] that, even in the USA, still causes approxi-
mately 350 deaths each day [2]. Lung squamous cell carci-
noma (LUSC), a type of non-small-cell lung cancer
(NSCLC), is the second most common histological type of

lung cancer [3]. LUSC originates from the transformation
of the squamous cells lining the central part of the lung or
in the main airway, and it is more strongly associated with
smoking [4]. The five-year survival rate of NSCLC is 15%
[5], which is obviously unsatisfactory compared to other
leading types of cancer in this world [6–8]. So, it is impor-
tant to improve the survival rate and life quality of patients
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and discover new prognosis biomarkers and therapeutic tar-
gets for LUSC, and it will be beneficial to understand the
development of LUSC.

Tumor microenvironment (TME) was infiltrated with
multiple subtypes of immune cells, which could influence
the survival rate and clinical characteristics [9, 10]. Hence,
tumor-infiltrating immune cells (TICs) can be assumed to
be important indicators to estimate the prognosis and ther-
apeutic response [11, 12]. Cumulative evidences have indi-
cated the correlation of tumor-infiltrating immune cells
between hub genes involved in tumorigenesis [13, 14]. For
example, hub genes of COL1A1, COL4A1, COL12A1, and
PDGFRB were identified as potential prognostic biomarkers
associated with macrophage M2 infiltration in gastric can-
cer, which play crucial roles in the proliferation and invasion
of carcinoma cells [15]. Monocytes are mononuclear phago-
cytes [16], which play an important role in regulating
tumorigenesis and metastasis [17]. The abundance of mono-
cyte indicates clinicopathological characteristics and prog-
nostic quality in NSCLC [18]. Some hub genes were
significantly correlated with the scores of stromal, immune,
and tumor purity [19]; however, it is unknown which hub
genes were identified as potential prognostic biomarkers
associated with monocyte infiltration in LUSC.

Many transcriptome microarray datasets on LUSC have
accumulated in public databases, such as Gene Expression
Omnibus (GEO) [20], which can be used to discover
disease-related genes. Some scientists previously attempted
to use some datasets to identify hub genes of LUSC with
the knowledge from analyses [21, 22]. However, limited
sample sizes could give rise to biased outcomes. In order to
efficiently take advantage of mining GEO datasets, the
robust rank aggregation (RRA) method was used to analyze
more samples of multiple datasets [23], which could avoid
the sample heterogeneity and the biases derived from differ-
ent technology platforms [24, 25].

Herein, we integrated six GEO datasets with low errors
and noise and identified 513 robust differentially expressed
genes (DEGs) employing robust rank aggregation (RRA)
algorithms. Integrative bioinformatics analyses were exe-
cuted on robust DEGs to identify the molecular diagnosis
markers and pathogenesis mechanisms for LUSC. Finally,
COL7A1, MSLN, and CHRDL1 were considered potential
prognostic biomarkers associated with LUSC-infiltrated
monocytes, indicating the important roles of these hub genes
in the pathogenesis of LUSC.

2. Methods

2.1. Tumor Samples and RNA Sequencing. Five paired LUSC
and normal tissue samples were collected from patients by
surgical operation at Tianjin Medical University Cancer
Institute & Hospital. These tissue samples were snap-
frozen with liquid nitrogen and stored at -80°C. The studies
have been approved by the Ethics Committee of Tianjin
Medical University Cancer Institute & Hospital and have
signed informed consent from participants. The samples
were sequenced by Novogene company (Tianjin, China).
The matrices of count, FPKM, and TPM were used for fur-
ther analysis.

2.2. Data Availability and Processing. Six microarray data-
sets, GSE1987, GSE2088, GSE8569, GSE21933, GSE33479,
and GSE33532, were downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/geo). We collected a total of
203 samples consisting of 73 normal lung tissues and 130
LUSC tissues from the above 6 datasets. The detailed infor-
mation of each dataset is described in Table 1. The probe
names in each matrix file from six GEO datasets were
replaced with gene symbols of the corresponding platform
annotation document by Perl. Data normalization and
DEGs in each dataset were carried out using the “limma”
package in R software. Volcano plots of DEGs were dis-
played using the R package “ggplot2.” The cutoff criteria
were jlog 2 FCj > 1 and adjusted p value < 0.05.

2.3. Integrate Analysis through Robust Rank Aggregation
(RRA) Method. We employed the RRA method [23] to inte-
grate the above matrices, which could minimize the bias and
errors among 6 microarray datasets. First, the upregulated
and downregulated genes were categorized using the
“limma” package in each dataset. Then, the categorized
genes were conducted by the “RobustRankAggreg” package
to filtrate robust DEGs. A heatmap of the top 20 robust
DEGs were drawn using the “pheatmap” package. The cutoff
criteria were jlog 2 FCj > 1 and FDR < 0:05.

2.4. GO Function and KEGG Pathway Enrichment Analyses.
GO, KEGG, and DO analyses for robust DEGs were imple-
mented using R package “https://org.hs.eg/.db,” “enrich-
plot,” “DOSE,” “clusterProfiler,” and “ggplot2” to enrich
biological process (BP), cellular component (CC), molecular
function (MF), and signal pathways. The statistical signifi-
cance was considered with a q value < 0.05. Further, the

Table 1: Characteristics and DEGs of GEO LUSC datasets.

Datasets Platform
Characteristics of samples DEGs#

Noncancer Cancer Total Up Down Total

GSE1987 GPL91 9 17 26 215 255 470

GSE2088 GPL962 30 48 78 142 242 384

GSE8569 GPL5645 6 36 42 125 197 322

GSE21933 GPL6254 11 11 22 1683 1818 3501

GSE33479 GPL6480 13 14 27 250 180 430

GSE33532 GPL570 4 4 8 1330 1645 2975
#The cutoff criteria were jlog 2 FCj > 1 and adjusted p < 0:05 for DEGs analysis.
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important terms of GO and KEGG were investigated for
overlapping robust DEGs through the “GOplot” package.

2.5. Protein-Protein Interaction Network Construction and
Key Module Analysis. The robust DEGs were imported into
the STRING online database (http://www.string-db.org) to
construct the PPI network with confidence > 0:9 as cutoff
criteria. Then, the PPI network was visualized by Cytoscape
V3.80 [26]. An MCODE plugin was used to screen the key
modules from the whole PPI network.

2.6. Hub Gene Identification. The cytoHubba plugin of
Cytoscape including ten topological analysis algorithms,
MCC, DMNC, MNC, Degree, EPC, BottleNeck, EcCentric-
ity, Closeness, Radiality, and Betweenness, was employed
to determine the hub genes in the whole PPI network
[27]. The scores of each node in the whole PPI network
were calculated to screen out hub genes from the top
100 nodes. The upset plot of hub genes was plotted using
the “UpSetR” package.

2.7. Immune Cell Infiltration Prediction by CIBERSORT
Analysis. The CIBERSORT algorithm was a deconvolution
method based on the standardized gene expression profiles
to predict the relative components of 22 subtypes of immune
cells in tissue samples [28]. The standardized gene expres-
sion matrices from the six datasets were converted to the

22 types of immune cell matrices referred to the leukocyte
signature matrix (LM22). The cutoff criteria of p value <
0.05 for each sample indicates that the predicted proportion
of each infiltrating immune cell subtype is significantly accu-
rate and suitable for further analysis. The heatmap and vio-
lin plots of 22 subtypes of immune cells were drawn using
“pheatmap” and “vioplot” packages. Principal component
analysis (PCA) based on CIBERSORT-calculated results
was used to determine the difference between normal and
LUSC samples.

2.8. Correlation Analysis between the Hub Genes and
Immune Cell Infiltration. First, the mRNA expression of
hub genes was verified in TCGA and GTEx databases by
GEPIA2 (http://gepia2.cancer-pku.cn/). Then, the mRNA
expression of hub genes was further determined in RNA
sequencing data from collected tissue samples. Finally,
tumor-infiltrated monocytes were estimated by immune
deconvolution methods on Timer 2.0 to investigate the rela-
tionship with hub genes’ expression level [29].

2.9. Survival Analysis. To investigate the overall survival of
LUSC patients, TCGA-LUSC gene expression profiles and
corresponding clinical data were downloaded from TCGA
database (https://portal.gdc.cancer.gov/). Then, the ensembl
ID was converted to a gene symbol by Perl. Next, we con-
nected clinical data with the hub gene expression matrix.
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Figure 1: Schematic illustration of the bioinformatics analysis of multiple datasets.
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Finally, the values missing and normal samples were
removed from a matrix with 501 samples and achieved 495
patients to perform survival analysis using the R packages
“survminer” and “survival” according to the best cutoff
value. p values < 0.05 were recognized as a statistically signif-
icant difference.

3. Results

3.1. Identification and Functional Enrichment Analyses of
Robust DEGs for LUSC. To discover diagnostically and
therapeutically novel biomarkers for LUSC, integrated bio-
informatics strategies were employed to determine the bio-
logical characteristics of robust DEGs from six microarray
datasets (Figure 1). First, we investigated the characteris-
tics and DEGs in each dataset and demonstrated that the
data quality of six datasets is suitable for RRA analysis.
The six datasets included 203 samples consisting of 73
pericarcinomatous tissues and 130 LUSC tissues
(Table 1). The distribution of upregulated (red) or down-
regulated (green) genes is exhibited in volcano plots
(Figure 2(a)). We then integrated the six datasets with
minimal bias using the “RobustRankAggregation” package
to acquire the robust DEGs between normal and tumor
tissues. A total of 513 robust DEGs were identified includ-
ing 220 upregulated and 293 downregulated genes (Sup-
plementary Materials, Table S1). The cutoff criteria for
the DEGs were jlog 2 fold change ðFCÞj > 1 and FDR <

0:05. The top 20 upregulated and downregulated robust
DEGs are presented in a visualized heatmap (Figure 2(b)).

In order to explore the function of the robust DEGs in
LUSC development, we carried out GO and KEGG pathway
enrichment analyses. Nine hundred and one GO terms were
found with q value < 0.05 (Supplementary Materials,
Table S2). These robust DEGs were most significantly
enriched in the extracellular matrix and structure
organization, epidermis development, cell adhesion
molecule binding, and apical part of cells (Figure 2(c)).
The KEGG pathway enrichment analysis showed that
tyrosine metabolism, complement and coagulation
cascades, cell adhesion molecules, p53 signaling pathway,
and IL-17 signaling pathway were the most significantly
affected phases in LUSC (Figure 2(d); Supplementary
Materials, Table S3). Moreover, SPP1, COL7A1, JUP, and
GAL stood out in multiple GO and KEGG terms by
overlapping robust DEGs analyses (Figures 2(e) and 2(f)),
suggesting that they play important roles in LUSC
development.

3.2. Identification of Hub Genes through Protein-Protein
Interaction Network and Topological Analysis Algorithm
Analyses. To explore the hub genes in LUSC progression,
we first constructed a visualized PPI network of the robust
DEGs with a confidence > 0:9 and dismissed the discon-
nected nodes, which possessed 273 nodes and 1223 edges
(including 143 upregulated and 130 downregulated genes,
Figure 3(a)). Then, we evaluated the scores of each node in
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Figure 2: Identification and functional enrichment analyses of robust DEGs for LUSC. (a) Volcano plots of the DEGs profile in AD from 6
microarray datasets (GSE1987, GSE2088, GSE8569, GSE21933, GSE33479, and GSE33532), red dots represent the upregulated genes, and
green dots represent the downregulated genes; (b) heatmap of the top 20 DEGs identified using the RRA method. Red and green dots
represent the upregulated and downregulated genes, respectively; (c) GO enrichment analyses of robust DEGs in three parts: biological
process (BP), cellular component (CC), and molecular function (MF); (d) KEGG enrichment analyses of robust DEGs; (e) GO terms
enrichment analysis of overlapping robust DEGs; (f) KEGG pathway enrichment analysis of overlapping robust DEGs.
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the PPI networks with 10 topological analysis algorithms,
including MCC, DMNC, MNC, Degree, EPC, BottleNeck,
EcCentricity, Closeness, Radiality, and Betweenness, utiliz-
ing the Cytoscape plugin cytoHubba (Figure 3(b)). Six hub
genes, SPP1, COL7A1, GAL, JUP, MSLN, and CHRDL1,
came out of the top 100 genes in the whole network and
were considered the hub genes in LUSC progression. The
functions and information of the six hub genes are described
in Table 2. In addition, we employed the MCODE plugin to
identify two key modules associated with six hub genes from
the whole PPI network. One module (MCODE score = 12)
possessed 12 upregulated genes and 66 edges, containing

the JUP hub gene, which is mainly enriched in cornification,
epidermal cell differentiation, and epidermis development
pathways (Figure 3(c)). Another module has (MCODE
score = 8:24) 26 nodes and 103 edges, including SPP1,
COL7A1, GAL, MSLN, and CHRDL1 hub genes, enriched
chiefly in the extracellular matrix organization, endoplasmic
reticulum lumen, and chemokine-mediated signaling path-
ways (Figure 3(d)). These data indicated that the six hub
genes take part in the regulation of LUSC progress.

3.3. Correlation between Hub Genes and Tumor-Infiltrating
Monocytes. Since the tumor immune microenvironment
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Figure 3: Identification of hub genes through PPI network and key modules. (a) The whole PPI network of the robust DEGs. Red and green
nodes represent upregulated and downregulated genes, respectively; (b) Module 1 from the whole PPI network containing the JUP hub gene;
(c) Module 2 from the whole PPI network including SPP1, COL7A1, GAL, JUP, MSLN, and CHRDL1 hub genes; (d) identifying the hub
genes using 10 algorithms including MCC, DMNC, MNC, Degree, EPC, BottleNeck, EcCentricity, Closeness, Radiality, and Betweenness.
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plays an important role in tumorigenesis [9, 30], we identi-
fied the abundance ratios (p values of <0.05) of 22 types of
immune cells in normal and LUSC samples with the CIBER-
SORT algorithm. The results from six GEO datasets showed
that the fractions for T-cell CD8, T-cell CD4 memory rest-
ing, NK cells resting, monocytes, mast cells resting, and neu-
trophils in LUSC tissues were substantially lower than those
in normal controls, while the fractions for T-cell follicular
helper and macrophages M0 and M1 in LUSC tissues were
higher compared with those in normal controls
(Figures 4(a) and 4(b)). To further verify these above find-
ings, we performed RNA sequencing for five paired LUSC
and normal tissue samples and calculated the abundance
ratios of immune cell infiltration. The data also demon-
strated that the fractions of monocytes were significantly
lower in LUSC tissues than that in normal controls
(Figures 4(c) and 4(d)). The immune infiltrating abundance
of monocytes was further determined using the six GEO
datasets and RNA sequencing data. As shown in
Figure 4(e), there were significant differences between LUSC
patients and controls. Additionally, the results of PCA, based
on the CIBERSORT-calculated results from six GEO data-
sets and RNA sequencing data, indicated the substantial
individual difference between normal and LUSC patients
(Figure 4(f)).

We subsequently verified the expression profiles of six
hub genes in TCGA and GTEx datasets, as well as RNA
sequencing data from clinical samples. The expression
results of six hub genes, SPP1, COL7A1, GAL, and JUP were
upregulated, and those of MSLN and CHRDL1 were down-
regulated in LUSC compared to controls (Figure 5), similar
to the results from the integrated six GEO datasets
(Table S1). Furthermore, we employed Timer 2.0 to
explore the correlation between hub genes and tumor-
infiltrating monocytes. The results indicated that the
upregulated hub genes COL7A1 and JUP were negatively
correlated with tumor-infiltrating monocytes, while the
downregulated hub genes MSLN and CHRDL1 were
positively correlated with tumor-infiltrating monocytes,
with a p value < 0.05 (Figure 6).

3.4. Patient Survival Analysis of Hub Genes. To investigate if
there was any prognostic value for the identified hub genes,
we analyzed the clinical cases and gene expression profile
data of 595 LUSC patients in TCGA database. The patients
were divided into two groups according to the optimal cutoff
value of hub genes to determine their overall survival rate
(Supplementary Materials, Table S4). We observed that the
overall survival rates of LUSC patients were significantly
associated with the expression of SPP1, COL7A1, GAL,
MSLN, and CHRDL1, but not with JUP (Figure 7).
Combined with correlation analysis results, we found that
COL7A1, MSLN, and CHRDL1 were considered potential
prognostic biomarkers associated with LUSC-infiltrated
monocytes, indicating the important roles of these hub
genes in the pathogenesis of LUSC.

4. Discussion

Many LUSC datasets and GEO databases are not being
utilized very well because of small sizes and potential bias.
In this study, we integrated 6 microarray datasets with low
errors and noise to overcome the above shortcomings by
using the RRA method and identified 513 robust DEGs
including 220 upregulated and 293 downregulated genes.
GO term and KEGG pathway analyses showed that these
robust DEGs were significantly involved in the extracellu-
lar matrix and structure organization, epidermis develop-
ment, cell adhesion molecule binding, apical part of cell,
p53 signaling pathway, and IL-17 signaling pathway to
affect phases in LUSC [31, 32]. Three hub genes of
COL7A1, MSLN, and CHRDL1 were considered potential
prognostic biomarkers associated with LUSC-infiltrating
monocytes and played important roles in the pathogenesis
of LUSC.

Immunotherapy undoubtedly is a revolutionized treat-
ment for cancer [33]. Nonetheless, the performance in pro-
longed survival depends on the individual immune
microenvironment [34]. Tumor-infiltrating monocytes are
critical regulators in the tumor immune microenvironment,
modulating tumor growth and metastasis [35, 36]. The

Table 2: The information and functions of the 6 hub genes.

Gene Full name Synonyms Function

SPP1 Osteopontin
BNSP, OPN,
PSEC0156

Major noncollagenous bone protein, cell-matrix interaction, cytokine enhancer

COL7A1
Collagen alpha-
1(VII) chain

Squamous epithelial basement membrane protein, epithelial basement membrane
organization and adherence

JUP Junction plakoglobin CTNNG, DP3
Junctional plaque protein, alpha-catenin binding, cadherin binding, cell adhesion

molecule binding

GAL Galanin peptides
GAL1, GALN,

GLNN
Endocrine hormone of the central and peripheral nervous systems

MSLN Mesothelin MPF
Membrane-anchored forms may play a role in cellular adhesion, cell adhesion, cell-

matrix adhesion

CHRDL1
Chordin-like protein

1
NRLN1 Negative regulation of BMP signaling pathway, cell differentiation
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Figure 4: Immune cell infiltration analysis. (a) A violin plot of the differentially infiltrated immune cells in normal and LUSC lung tissues
from six GEO datasets; (b) the differences in immune cell infiltration between normal and LUSC lung tissues from six GEO datasets shown
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principal component analysis for the normal and LUSC lung tissues.
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activity depends on the plasticity of monocytes in response
to the stimuli of TME. The expression of hub genes in
tumorigenesis determines the profile of immune cell infiltra-
tion in TME [37]. Zhang et al. found that four hub genes,
LAPTM5, C1QC, CSF1R, and SLCO2B1, could regulate
immune cell infiltration of TME in LUSC [19]. Based on
the results of immune cell infiltration analysis from six
GEO datasets and RNA sequencing data of our clinical sam-
ple, we found that the fractions of tumor-infiltrating mono-
cytes were significantly lower in LUSC tissues than that in
normal controls. The expression of three hub genes,

COL7A1, MSLN, and CHRDL1, was significantly correlated
with tumor-infiltrating monocytes.

Collagen alpha-1(VII) chain encoded by the COL7A1
gene is a kind of stratified squamous epithelial basement
membrane protein [38]. It can form anchoring fibrils and
interact with extracellular matrix (ECM) proteins which
may contribute to epithelial basement membrane organiza-
tion and adherence [39]. The COL7A1 expression is corre-
lated with tumor invasion and prognosis in esophageal
squamous cell carcinoma [40]. The expression of COL7A1
showed a significant prognostic value for OS and distant
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Figure 5: The expression analysis of hub genes. (a–f) The expression analysis of hub genes through GEPIA2; (g–l) the expression analysis of
hub genes by RNA sequencing.
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metastasis in gastric cancer [41]. We found that the expres-
sion of COL7A1 was negatively correlated with tumor-
infiltrating monocytes which obviously may be considered
an indicator of the overall survival rates of LUSC patients.
Mesothelin (encoded by the MSLN gene) involves in cell
adhesion and cell-matrix adhesion as membrane-anchored
forms, which is also a target of CAR-T cells for treating gas-
tric cancer and ovarian cancer triple-negative breast cancer
[42–44]. In gastric cancer, MSLN-CAR-NK cells show
strong antitumor activity [45]. We also observed that MSLN
was a good prognostic biomarker, and its expression was
positively correlated with tumor-infiltrating monocytes,
which may possess the role of MSLN-specific CAR mono-
cytes in LUSC. Chordin-like 1 (another hub gene of

CHRDL1), an inhibitor of BMP, could participate in tumor-
igenesis [46]. It has been recently reported that CHRDL1
may regulate immune cell infiltration to facilitate immuno-
therapy. It might be a novel prognostic biomarker and ther-
apy target in LUAD [47]. However, there was no evidence
that it has been investigated in LUSC until now. Our study
demonstrated that CHRDL1 was negatively correlated with
tumor-infiltrating monocytes as well as may be a novel prog-
nostic biomarker and therapy target in LUSC. These facts
suggest that three hub genes of COL7A1, MSLN, and
CHRDL1 are important potential prognostic biomarkers
and therapy targets in LUSC.

There were two limitations in this study. External dataset
evaluation is needed to enhance the accuracy of diagnostic
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Figure 6: The correlation analysis with infiltrating monocytes for hub genes. (a–f) The correlation analysis of hub genes with infiltrating
monocytes via Timer 2.0.
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genes. Secondly, laboratory and clinical validation is impor-
tant and needs to be investigated for hub genes and infiltrat-
ing monocytes in the future.

5. Conclusion

In the study, we conduct RRA algorithms to identify 513
robust DEGs, including 220 upregulated and 293 downregu-
lated genes, from 203 samples in six LUSC-GEO datasets
with low errors and noise. Three hub genes, COL7A1,
MSLN, and CHRDL1, were identified from 513 robust DEGs
using a series of bioinformatics methods, which were signif-
icantly correlated with tumor-infiltrating monocytes as well
as effective indicators of prognostic outcomes for LUSC

patients. The research of these gene markers can improve
to well understand the molecular mechanisms of lung squa-
mous cell carcinoma development.
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