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ABSTRACT: Gangliosides play pivotal biological roles in the
animal cell membranes, and it is vital to develop fluorescent probes
for imaging them. To date, various artificial receptors for
ganglioside imaging have been developed; however, turn-on
fluorescence imaging for gangliosides with high contrast has not
been achieved. We developed a simple fluorescent probe on the
basis of a dansyl triarginine peptide for turn-on ganglioside imaging
on the liposome membrane. The probe bound to monosialyl
gangliosides and other anionic lipids with association constants was
105 M−1, which enhanced from 6-fold to 7-fold the fluorescence
intensity. Upon binding to monosialyl ganglioside-containing giant
liposomes, the turn-on probe selectively enhanced the fluorescence
intensity compared with the other anionic lipids. This simple
peptide probe for turn-on fluorescence imaging of gangliosides would provide a novel molecular tool for chemical biology.
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■ INTRODUCTION

Glycosphingolipids containing sialic acid residues, named
“gangliosides”, are essential components of all animal cell
membranes and are particularly abundant on the plasma
membranes of neurones.1 Gangliosides on the cell membrane
function as factors that control the immune system, nervous
system, metabolic system, and cancer progression.2,3 Changes
in the amount and structure of gangliosides play essential roles
in cancer infiltration, metastasis, and maintenance of cancer
hepatocytes.3 Additionally, gangliosides are involved in the
differentiation of nerve cells and protein folding of neuro-
degenerative diseases, such as Alzheimer’s.4 Some viruses and
pathogens exploit gangliosides as their receptors for infection
to the host cell.5

Imaging gangliosides on cell membranes is a critical
technique to understand and profile the function of ganglio-
sides at the molecular level.6 Fluorescence-labeled antiganglio-
side antibodies, lectins, and toxins were often used as probes
for ganglioside distributions on cell membranes.7−10 Since
these fluorescent probes have a larger molecular size than
gangliosides, there is a concern that accurate ganglioside
distribution cannot be detected. As another approach,
fluorescence-labeled synthetic gangliosides enabled single-
molecular imaging with high spatiotemporal resolution.11,12

However, this imaging is not for endogenous gangliosides, and
it is necessary to add a fluorescence-labeled ganglioside from
the outside.

Over the past two decades, various synthetic receptors with
small molecular sizes to bind sugars in aqueous media have
been developed.13−21 Davis developed “synthetic lectins” on
the basis of a water-soluble macrotricycle architecture, bound
to specific sugars via CH−π and hydrophobic interactions with
association constants on the order of 102 M−1 in aqueous
solution.13 Various molecular sensors have also been
developed by molecular design on the basis of the interaction
between phenylboronic acid and the cis-diol of sugars in
aqueous media.16,17 Mazik and co-workers developed acyclic
artificial receptors binding N-acetylneuraminic acid (a kind of
sialic acid) with association constants on the order of 103−105
M−1 in water−dimethyl sulfoxide solution.18,19 Davis and co-
workers developed a cationic receptor possessing 24
guanidinium units binding N-acetylneuraminic acids in an
aqueous solution.20 The fluorescence intensity of the cationic
receptor was decreased as binding N-acetylneuraminic acid,
and the analysis gave stepwise association constants K1, K2 =
1300, 790 M−1 in water. Matsubara and co-workers have also
developed artificial peptide receptors that recognize ganglio-
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sides.22−27 For example, a peptide receptor binding to
ganglioside monosialate 3 (GM3) with association constants
on the order of 105 M−1 was selected by the phage display

technique.25,26 They recently demonstrated that a GM1-
binding pentadecapeptide identified from a phage-displayed
library is available as a molecular probe for specific ganglioside

Figure 1. (A) Illustration of the fluorescence turn-on of dansyl-(Arg)3-OMe on monosialyl ganglioside micelles and GL of DOPC containing
monosialyl gangliosides. (B) Structure of lipids used in the study.

Scheme 1. Synthesis of Dansyl-(Arg)3-OMe
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nanoclustering sites in caveolae/membrane rafts on the cell
surface.27 Recently, fluorescence,28−33 magnetic resonance,34

and Raman imaging35 of gangliosides on cell surfaces have
been achieved by artificial receptors based on phenylboronic
acid. Sellergren and co-workers demonstrated that sialic acid-
imprinted fluorescent core−shell particles bound to cell
surfaces possessing sialic acids with association constants on
the order of 106 M−1.36

This study developed a novel, simple turn-on fluorescent
probe, dansyl-(Arg)3-OMe peptide, to bind monosialyl
gangliosides on giant liposomes (GLs) with relatively high
affinity (Figure 1). Generally, environment-responding fluo-
rescent chromophores, such as the dansyl group, enable high-
contrast turn-on fluorescent imaging for target proteins.37−39

Since the vicinity of the lipid bilayer membrane is a relatively
low-polarity environment, it is expected that the fluorescence
will turn on when a probe with a dansyl group binds to a
ganglioside-containing membrane. As a simple binding motif
to gangliosides on membranes, we employed triarginine
peptide bearing guanidinium side chains. To date, it has
been demonstrated that various artificial receptors possessing
guanidinium cations recognize anionic guest molecules via
electrostatic interactions and hydrogen bonds.40−42 Although a
1:1 interaction between the guanidinium cation and carbox-
ylate is weak (e.g., the lactate−guanidinium ion pair has a
stability of only Ka ≤ 6 M−1 in water), the multivalent
arrangement of guanidinium can enhance electrostatic
interactions and hydrogen bonds to anion guests.42 Addition-
ally, it has been demonstrated that hydrogen bonds and
electrostatic interactions are significantly enhanced on the lipid
bilayer rather than in bulk water.43 Therefore, we expected that
the dansyl-(Arg)3-OMe peptide can bind to monosialyl
gangliosides on a lipid bilayer with a sufficient affinity constant
to turn on the fluorescence.

■ RESULTS AND DISCUSSION
Dansyl-(Arg)3-OMe peptide was synthesized on 4-hydrox-
ymethylbenzoic acid (HMBA)-modified resin by standard
solid-phase Fmoc chemistry (Scheme 1). Fmoc-Arg(Pbf)-OH
(Pbf = 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulphonyl)
was esterified on HMBA-modified resin with condensation
reagents N,N′-dicyclohexylcarbodiimide (DCC), hydroxyben-
zotriazole (HOBt), and 4-N,N-dimethylaminopyridine
(DMAP). After deprotection of the Fmoc group with
piperidine, condensation of Fmoc-Arg(Pbf)-OH on the resin
with (1-cyano-2-ethoxy-2-oxoethyl idenaminooxy)-
dimethylamino-morpholino-carbenium hexafluorophosphate
(COMU) and N,N-diisopropylethylamine (DIPEA) was
repeated for two cycles. After the deprotection of Fmoc and
Pbf groups, dansyl chloride was reacted to the N-terminal
amino group of peptidyl resin. The peptide was cleaved from
the resin by methanolysis to afford the peptide methyl ester
(isolated yield: 4.9%). The low yield is due to hydrolysis as the
side reaction and insufficient deprotection of the Pbf group.
The peptide was purified by reverse-phase HPLC (Figure S1)
and confirmed by MALDI-TOF-MS, ESI-MS, and 1H NMR
(Figures S10−S12). Dansyl-Arg-OMe (isolated yield: 33%)
and dansyl-(Arg)2-OMe (isolated yield: 6.6%) peptides were
also synthesized by the same protocol.
We conducted a fluorescence titration experiment to

evaluate whether dansyl-(Arg)3-OMe works as a turn-on
fluorescent probe for monosialyl gangliosides. Figure 2A
shows that adding an increasing amount of ganglioside

monosialate 1 (GM1) to 1 μM dansyl-(Arg)3-OMe in 10
mM HEPES buffer (pH 7.0) significantly increased the
fluorescence intensity at 520 nm. Similarly, the increasing
addition of ganglioside monosialate 2 (GM2) and GM3 also
showed a significant increase in the fluorescence intensity of
dansyl-(Arg)3-OMe (Figure S2A,B). These monosialyl ganglio-
sides formed micelles up to 100 μM, as shown by dynamic
light scattering (Figure S4). Thus, it appears that dansyl-
(Arg)3-OMe binds to monosialyl ganglioside micelles to
enhance the fluorescence intensity because of the lower polar
environment. The normalized fluorescence intensity was
plotted against the concentration of lipids (Figure 2B), and
the curve was treated with the Langmuir equation to determine
the association constant Ka and the maximum increment of
normalized fluorescence intensity ΔImax/I0 as summarized in
Table 1 (see also Figure S3). Dansyl-(Arg)3-OMe showed a 6-
fold to 7-fold enhancement of the fluorescence intensity upon
binding to all monosialyl gangliosides (GM3, GM2, and
GM1). Interestingly, the association constants to monosialyl
gangliosides were on the order of 105, which are comparable
with that of sialylgalactose-binding peptides selected from a
phage library (Kd ∼10−6 order).26 These surprisingly large
association constants appear to be the cause of the enhanced
electrostatic interactions and hydrogen bonds at the lipid
assemblies.43 Other anionic lipids, sulfatide, and 1,2-dioleoyl-
sn-glycero-3-phospho-rac-(1-glycerol) (DOPG) were also
bound to dansyl-(Arg)3-OMe with a Ka of 10

5 order (Figure
2B, Figure S2C,D, and Table 1). The increment of
fluorescence intensity by adding sulfatide was smaller than
that of monosialyl gangliosides and DOPG. By contrast, adding

Figure 2. (A) Changes in fluorescence spectra (Ex = 330 nm) of 1
μM Dansyl-(Arg)3-OMe with an increasing addition of 0−9.2 μM
GM1 in 10 mM HEPES buffer (pH 7.0) at 25 °C. (B) Dependence of
the concentration of lipids on the normalized fluorescence intensity of
dansyl-(Arg)3-OMe at 520 nm in 10 mM HEPES buffer (pH 7.0) at
25 °C.
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a zwitterionic lipid, sphingomyelin (SM) or DOPC, did not
affect the fluorescence intensity of dansyl-(Arg)3-OMe (Figure
2B and Figure S2E,G). The addition of lactosylceramide
(LacCer), which is a sialic acid-deficient structure from GM3,
minimally affected the fluorescence intensity (Figure 2B and
Figure S2F). These results suggest that dansyl-(Arg)3-OMe
was selectively bound to anionic lipids via electrostatic
interaction.
We next questioned whether this fluorescence enhancement

of dansyl-(Arg)3-OMe was selective for anionic lipids but not
anionic polysaccharides. Figure 3 and Figure S5 show that

adding colominic acid (polysialic acid, Mw: 30 kDa) gently
increased the fluorescence intensity of dansyl-(Arg)3-OMe,
whereas heparin (Mw: 15 kDa) possessing sulfonate anions
minimally affected the fluorescence intensity. The Ka of
binding of colominic acid to dansyl-(Arg)3-OMe was
calculated to be (2.2 ± 0.3) × 102 M−1 using the molarity of
the sialic acid unit, and the ΔImax/I0 was 1.2 ± 0.1 (Figure
S5C). These control experiments support that dansyl-(Arg)3-
OMe was selectively bound to anionic lipids to enhance
fluorescence intensity. Both the anionic function and hydro-
phobic moiety are probably important for the strong binding
and enhancement of the fluorescence intensity of dansyl-
(Arg)3-OMe.

To confirm the effect of the number of arginine residues on
the turn-on sensing, we examined the changes in fluorescence
spectra of dansyl-(Arg)2-OMe and dansyl-Arg-OMe with the
increasing addition of monosialyl gangliosides (Figure 4 and

Figures S6 and S7). These dansyl-peptides required a higher
concentration (>50 μM) of monosialyl gangliosides than
dansyl-(Arg)3-OMe to increase the fluorescence intensity. As
some binding curves showed sigmoidal concentration depend-
ence, we treated the sigmoidal binding curves with the Hill
equation to determine the Ka and Hill coefficient n (Figure S8,
Table 1). These behaviors indicate that some kind of
cooperative effect was worked upon the binding to monosialyl
gangliosides, although it is difficult to explain clearly the cause.
The Ka of monosialyl gangliosides binding to these dansyl-
peptides was calculated to be approximately 103−104 M−1,
which was significantly smaller than that of dansyl-(Arg)3-OMe
(Table 1). These results indicate that dansyl-(Arg)3-OMe
enhanced the affinity to assemblies of anionic lipids by
multivalent binding between Arg and anionic groups. The
effect of the concentration of dansyl-(Arg)3-OMe on the
fluorescence intensity in the presence of 10 μM GM1 micelles

Table 1. Binding Parameters for the Interactions of Dansyl-(Arg)n-OMe (n = 1−3) with Lipids in 10 mM HEPES Buffer (pH
7.0) at 25°Ca

dansyl-(Arg)3-OMe dansyl-(Arg)2-OMe dansyl-Arg-OMe

lipids Ka/M
−1 ΔImax/I0 Ka/M

−1 ΔImax/I0 Ka/M
−1 ΔImax/I0

GM3 (2.3 ± 0.1) × 105 6.4 ± 0.1 (8.9 ± 0.6) × 103 (n = 3.7 ± 0.3) 4.2 (1.3 ± 0.2) × 104 (n = 3.6 ± 0.3) 5.1
GM2 (3.4 ± 0.3) × 105 7.6 ± 0.2 (2.0 ± 0.3) × 104 9.5 ± 0.5 (1.6 ± 0.3) × 104 (n = 3.7 ± 0.8) 4.8
GM1 (4.5 ± 0.6) × 105 6.8 ± 0.3 (4.1 ± 0.6) × 104 4.7 ± 0.3 (1.3 ± 0.2) × 104 (n = 2.8 ± 0.5) 6.1
sulfatide (4.4 ± 0.5) × 105 2.6 ± 0.7
DOPG (1.9 ± 0.2) × 105 6.3 ± 0.3

aThe Hill coefficient is indicated by n.

Figure 3. Dependence of the concentration of colominic acid and
heparin on the normalized fluorescence intensity of dansyl-(Arg)3-
OMe in 10 mM HEPES buffer (pH 7.0) at 25 °C.

Figure 4. Effect of number of Arg. Dependence of the concentration
of monosialyl gangliosides on the normalized fluorescence intensity of
dansyl-(Arg)2-OMe (A) and dansyl-Arg-OMe (B) in 10 mM HEPES
buffer (pH 7.0) at 25 °C.
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showed that the intensity was saturated at the concentration
above 5 μM (Figure S9). Thus, we employed 10 μM dansyl-
(Arg)3-OMe for a turn-on fluorescent probe for monosialyl
ganglioside imaging on GLs.
The monosialyl ganglioside-containing GL of 1,2-dioleoyl-

sn-glycero-3-phosphocholine (DOPC) was prepared via a
natural swelling method using D-glucose.44 An aqueous
solution of dansyl-(Arg)3-OMe in 10 mM HEPES buffer
(pH 7.0) was added for a final concentration of 10 μM to an
aqueous dispersion of monosialyl ganglioside-containing GLs
with a diameter of 3−10 μm. Then, the GLs were imaged by
confocal laser scanning fluorescence microscopy (CLSM).
Figure 5 shows CLSM images of GLs of DOPC containing 0−
40% monosialyl gangliosides or other lipids, stained with 10
μM dansyl-(Arg)3-OMe. The relative fluorescence intensity of
dansyl-(Arg)3-OMe on each GL was quantitatively estimated
from the CLSM images by subtracting the background
intensity and was plotted against the lipid contents in GL
(Figure 6A). When 10 μM dansyl-(Arg)3-OMe was added to
GLs consisting only of DOPC, no fluorescence was observed
(Figure 5A). Strong fluorescence of dansyl-(Arg)3-OMe was
observed on the surface of DOPC GLs containing GM3, GM2,
or GM1, depending on the ganglioside contents (Figures 5B−
D and 6A). The homogeneous fluorescent images on GL
indicate that phase separation of gangliosides was not induced
in the DOPC membrane. By contrast, GLs containing
zwitterionic SM hardly showed fluorescence by the addition
of dansyl-(Arg)3-OMe even at 40% contents (Figure 5G). GLs
containing LacCer, which is a sialic acid-deficient structure
from GM3, also showed slight fluorescence regardless of its
content (Figure 5H). The fluorescence intensity on GLs
containing other anionic lipids, sulfatide or DOPG, gradually
increased as lipid contents increased (Figure 5E,F), but these
intensities were lower than those of monosialyl gangliosides at
the same content amounts. These results indicate that dansyl-

(Arg)3-OMe recognized monosialyl gangliosides on GLs of
DOPC to work as turn-on fluorescent probes.
Figure 6B shows a box plot of the fluorescence intensity

distribution of dansyl-(Arg)3-OMe on GLs containing 40%
various lipids (N = 20 each), in which P-values were calculated
using a t-statistical test compared with data of GM3-containing
GLs. The broad distribution of fluorescence intensity may be
due to variations in size, morphology, and composition of GLs.
The fluorescence intensity distribution on sulfatide, DOPG,
SM, and LacCer-containing GLs showed a significant differ-
ence compared with GM3-containing GLs (P < 0.01).
Alternatively, no clear significant difference was found among
monosialyl ganglioside-containing GLs because P-values of
GM2 and GM1 are 0.0882 and 0.284 compared with that of
GM3, respectively. However, the fluorescence titration experi-
ment showed that dansyl-(Arg)3-OMe bound to DOPG,
similarly as monosialyl gangliosides (Figure 2B, Table 1), and
the binding ability of the probe on DOPG-containing GLs was
reduced compared with that on monosialyl ganglioside-
containing GLs. It might be due to the difference in local
microenvironments such as molecular packing, curvature, and
fluidity of lipid assembly. Probably, since DOPG is tightly
packed on the GL of DOPC, it might be difficult for the probe
to bind the phosphate anion of DOPG on GL.

■ CONCLUSION

We provided the first proof-of-concept that dansyl-(Arg)3-
OMe is a promising fluorescent probe for turn-on sensing and
imaging of monosialyl ganglioside on a liposome membrane.
Fluorescence titration showed that dansyl-(Arg)3-OMe bound
to monosialyl gangliosides and other anionic lipids with
association constants on the order of 105 M−1, which
accordingly enhanced from 6-fold to 7-fold the fluorescence
intensity. The probe minimally increased the fluorescence
intensity against anionic polysaccharides, indicating that both
anionic function and hydrophobic moiety are essential for

Figure 5. CLSM images (scale bar: 10 μm) of GLs of DOPC (A) containing 10−40% GM3 (B), GM2 (C), GM1 (D), sulfatide (E), DOPG (F),
SM (G), and LacCer (H), stained with 10 μM dansyl-(Arg)3-OMe in 10 mM HEPES buffer (pH 7.0) at 25 °C.
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strong binding and enhancement of fluorescence intensity. The
CLSM images revealed that the probe selectively enhanced the
fluorescence intensity on GLs containing monosialyl ganglio-
sides compared with the other anionic lipids. Although poor
selectivity among monosialyl gangliosides is an issue to be
solved soon, we expect that a proper design of the peptide
sequence of the probe provides high selectivity among
gangliosides. In addition, selective imaging for disialyl and
trisialyl gangliosides which are biologically important and
abundant in cell membranes is an issue that should be
challenged in the future.
This simple molecular design for fluorescence imaging of

ganglioside would provide a novel molecular tool for chemical
biology. Although the probe moderately turned on the
fluorescence on DOPG-containing GLs, the content of
DOPG on the cell membrane of animal tissue is low.45 The
gangliosides content used in this study (10−40%) is higher
than that on natural cell membranes,1 but the local
concentration of gangliosides in lipid rafts should be higher
than the average. We expect that dansyl-(Arg)3-OMe works as
a turn-on imaging probe selective to locally enriched
gangliosides in lipid rafts on living animal cell membranes.
Although the cell penetration ability of oligo-arginine
peptides46 should be considered, the application of the probe
for turn-on imaging on cell membranes is currently in progress.
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