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Abstract. RNA modifications have recently become the 
focus of attention due to their extensive regulatory effects 
in a vast array of cellular networks and signaling pathways. 
Just as epigenetics is responsible for the imprinting of envi‑
ronmental conditions on a genetic level, epitranscriptomics 
follows the same principle at the RNA level, but in a more 
dynamic and sensitive manner. Nevertheless, its impact in the 
field of cardiovascular disease (CVD) remains largely unex‑
plored. CVD and its associated pathologies remain the leading 
cause of death in Western populations due to the limited 
regenerative capacity of the heart. As such, maintenance of 
cardiac homeostasis is paramount for its physiological func‑
tion and its capacity to respond to environmental stimuli. In 
this context, epitranscriptomic modifications offer a novel 
and promising therapeutic avenue, based on the fine‑tuning 
of regulatory cascades, necessary for cardiac function. This 
review aimed to provide an overview of the most recent find‑
ings of key epitranscriptomic modifications in both coding and 
non‑coding RNAs. Additionally, the methods used for their 
detection and important associations with genetic variations in 
the context of CVD were summarized. Current knowledge on 

cardiac epitranscriptomics, albeit limited still, indicates that 
the impact of epitranscriptomic editing in the heart, in both 
physiological and pathological conditions, holds untapped 
potential for the development of novel targeted therapeutic 
approaches in a dynamic manner.
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1. Introduction

In recent years, great technological leaps in sequencing tech‑
nologies have enabled the in‑depth investigation of the genetic 
basis of a multitude of human disorders, and they have paved 
the way for a new era of personalized medicine (1,2). Such 
breakthrough developments in sequencing technologies have 
substantiated the deep complexity of associations between 
genotype and phenotype and revealed unexpected cases, 
such as those of identical twins carrying the same disease 
mutations, but exhibiting different clinical features, such as 
balance problems and the development of blindness (3). Such 
discrepancies can be attributed to epigenetic and/or epitran‑
scriptomic differences. The term epigenetics, first introduced 
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by C.H. Waddington in 1942, refers to the study of the mecha‑
nisms and molecules that can perpetuate variable gene activity 
states in the context of the same DNA sequence (4). Epigenetic 
mechanisms include DNA methylation, chromatin remodeling, 
histone modifications, gene activity regulation by non‑coding 
RNA (ncRNA) molecules and protein‑protein interactions (5). 
These mechanisms, which include a vast array of different 
molecules and pathways, regulate genomic structure and tran‑
scriptional activity in response to the ever‑changing profiles of 
cell‑intrinsic, cell‑cell and cell‑extrinsic signals (6).

Epigenetic regulation has been increasingly gaining interest 
due to its strong relationship with environmental adaptation. 
As new insights are gained, novel distinctions are also formed, 
leading to the emerging field of epitranscriptomics. Instead 
of encompassing all epigenetic regulation, epitranscriptomics 
focuses on modifications at the RNA level (7). Due to the vast 
array of effects that coding and ncRNAs exert in regulating 
the differential response of organisms to environmental 
stimuli, as well as homeostasis maintenance, epitranscrip‑
tomics has turned into an explosive field of research. Several 
different RNA modification databases have been established 
throughout the years in an effort to catalogue the plethora 
of RNA modifications that are continuously being detected. 
These include databases such as Modomics (https://iimcb.
genesilico.pl/modomics/) (8‑11), RMBase v2.0 (http://rna.sysu.
edu.cn/rmbase/) (12), DARNED (https://darned.ucc.ie/) (13), 
the RNA Modification Database (https://mods.rna.albany.
edu/) (14) and REDIportal v2.0 (http://srv00.recas.ba.infn.
it/atlas/) (15), encompassing >172 RNA modifications to date.

Epitranscriptomic changes induced by such mechanisms 
have been implicated in various diseases and most of them 
display reversible chemistry, making epitranscriptomics a prom‑
ising candidate for providing novel therapeutics (16). As such, 
a number of reviews have already been published discussing 
the ever‑expanding field of epitranscriptomic modifications, 
with a limited number focusing on their effects under the 
prism of cardiovascular disease (CVD). Most notable reviews 
have focused on N6‑methyladenosine (m6A) modifications, as 
the most prevalent epitranscriptomic modification and its role 
in CVD (17,18). Although, Kumari et al (17) featured a section 
about m6A readers, Chen et al (18) also discussed the potential 
for m6A modification to influence CVD risk factors. Focusing 
more on clinical trials investigating epigenetic‑sensitive drugs 
for heart failure (HF), Napoli et al (19) also outlined the 
discovery of epigenetic biomarkers and signatures of cardiac 
remodeling. On the other hand, Fischer and Vondriska (20) 
focused their discussion on epigenetic changes occurring in 
CVD, but did not expand into RNA modifications, as was 
also the case for Schiano et al (21), who discussed epigenetic 
mechanisms underlying the various pathologies encompassed 
by the CVD umbrella‑term. Although the authors mentioned 
CVD epitranscriptomics as an emerging layer of epigenetic 
regulation in CVD, they also highlighted the need for further 
research that covers this subject matter.

In the present review, the most prevalent epitranscriptomic 
modifications that have been shown to be involved in the field 
of CVD have been outlined (22), in an effort to extensively 
cover the area of RNA modifications, without focusing on 
a single one. This study also briefly discussed the mode of 
action of each modification and then explored their respective 

effect on both coding and ncRNAs, including microRNAs 
(miRNAs/miRs) and long ncRNAs (lncRNAs), in the context of 
CVD. Furthermore, the current methods of RNA modification 
detection that have been on the forefront of epitranscriptomic 
research were also explored in brief. Finally, available data on 
genetic associations of RNA modifications, as well as thera‑
peutic implications of epitranscriptomic approaches, in the 
heart were discussed.

2. Prevalence of epitranscriptomics in CVD and their ac-
tivity

CVD is currently the leading cause of death worldwide, 
accounting for almost half the total number of deaths (23). CVD 
encompasses a wide array of heart and vessel‑related patholo‑
gies, including, but not limited to HF, coronary heart disease, 
hypertension, hypertrophic and dilated cardiomyopathy, as 
well as congenital heart disease (24). Accumulating data have 
shown that cardiovascular risk factors may alter epigenomic 
patterns and that several cardiovascular biomarkers are asso‑
ciated with epigenetic modifications (25). DNA methylation 
appears to contribute to processes underlying CVDs, such 
as atherosclerosis, hypertension and inflammation (26‑28). 
Moreover, epidemiological studies imply that methylation 
of repetitive sequences such as long‑interspersed nucleotide 
repetitive elements‑1 (LINE‑1) and Alu elements are associated 
with CVD (26). Specifically, patients with prevalent ischemic 
heart disease (IHD) and stroke displayed lower blood LINE‑1 
methylation, while elevated methylation of Alu elements was 
associated with CVD and obesity in Chinese individuals (26). 
Histone modifications have also been implicated in processes, 
such as hypertension and atherosclerosis, while histone deacet‑
ylase 4 overexpression following myocardial infarction (MI) 
has been shown to increase myocardial fibrosis and cardiac 
hypertrophy, eventually leading to cardiac dysfunction (29). 
Although epigenetic regulation has been the focus of attention, 
RNA modifications have only recently started becoming the 
focus of CVD researchers.

Epitranscriptomic regulation manifests through the 
action of different enzymes. Enzymes that modify the RNA 
itself are called ‘writers’, while the ones that recognize and 
remove modifications are termed ‘erasers’. Finally, ‘readers’ 
are the group of enzymes that bind the modifications them‑
selves (30,31). These different modifications are classified into 
groups based on their different characteristics. These groups 
include classification into reversible and non‑reversible (where 
erasers are lacking), substitutional and non‑substitutional (32), 
cap (where the modifications happen to the 5'‑end of the RNAs) 
or internal modifications [where the modifications occur 
within the 5'‑ or 3'‑untranslated regions (UTRs) or within 
transcript introns] (33), and finally, modifications on coding or 
ncRNAs (34). NcRNAs have now been studied extensively and 
have been proven to have important regulatory effects in both 
physiological and pathological conditions. The term ncRNAs 
encompasses a large array of RNA molecules, including, but 
not limited to the major classes, such as miRNAs, lncRNAs and 
circular RNAs (circRNAs), as well as transfer RNAs (tRNAs), 
ribosomal RNAs (rRNAs), small nucleolar RNAs (snoRNAs), 
small nuclear RNAs (snRNAs) and others (35). ncRNA regu‑
latory roles extend from interacting with RNA/DNA‑binding 
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proteins, being part of complex structures, interacting with 
messenger RNA (mRNA) molecules to participating in 
translation and guiding chemical modifications (35). Through 
post‑transcriptional modifications, ncRNAs display discrete 
temporal and spatial expression patterns, reflecting a precise 
regulation of their expression (36).

Epitranscriptomic editing of ncRNAs is quite prevalent 
during physiological, but also pathological conditions (37). 
miRNA editing is capable of creating alternative miRNAs, 
known as isomiRs (38). isomiR Bank, a database inte‑
grating >300,000 detected isomiRs (https://mcg.ustc.edu.
cn/bsc/isomir/) (39), gives an estimate of the extent of 
additional layers of regulation that this editing process can 
generate. Although, isomiRs were first dismissed as artifacts, 
follow‑up research has shown that almost half of miRNA tran‑
scripts are edited, and these edited transcripts can be loaded 
into the RNA‑induced silencing complex and exert their regu‑
latory activity (40). miRNA modifications happen either in 
the 3'‑end or in the 5'‑end sequences. Although, 3'‑end editing 
is more prevalent (41), it mostly influences miRNA stability 
and activity. 5'‑end editing, on the other hand, introduces 
modifications in the seed sequence, altering the target set of 
the miRNA and regulating new pathways (42‑45). Moreover, 
circRNA efficiency and translation have been shown to be 
subject to regulation by distinct RNA modifications, such 
as m6A, 5‑methylcytosine (m5C) and pseudouridylation (Ψ) 
modifications (46), as was also the case for numerous lncRNAs, 
which have been found to have roles in various CVD‑related 
pathways, such as atherosclerosis and pulmonary hyperten‑
sion (47).

In the present study, the epitranscriptomic modifica‑
tions are classified into three major categories. The most 
prevalent form of epitranscriptomic modification, as in 
epigenetics, is RNA methylation (Fig. 1), which can affect 
adenosines in different positions [N1‑methyladenosine (m1A), 
m6A, 2'‑O‑methylation (Nm)], cytosines [m5C, 5‑hydroxy‑
methylcytosine (hm5C)] or guanosines [7‑methylguanosine 
(m7G)] (48). The second group encompasses substitutional 
modifications (Fig. 2), which include A‑to‑I and C‑to‑U RNA 
editing (49,50). Finally, the third group of modifications 
includes all epitranscriptomic changes that do not fall into any 
of the previous two categories [such as Ψ (51) and 8‑oxogua‑
nine (8‑OxoG)], but nevertheless, have a proven or implied role 
in CVD (52) (Fig. 3).

3. RNA methylation modifications

m6A. One of the most extensively studied RNA modifica‑
tions in general is the m6A modification. First discovered in 
1974 (53,54), m6A modification comprises the most common 
chemical addition to eukaryotic RNA. During m6A modifi‑
cation, a methyl group (‑CH3) is added to the N6 site of the 
adenosine residue (m6A) (55). This event can be detected in 
snoRNAs, tRNAs, rRNAs and other ncRNAs, and eventu‑
ally represents 0.2‑0.6% of all adenosine in mammalian 
mRNA (56). Specifically, 80% of the methylation that the 
total transcriptome undergoes is through the m6A modifica‑
tion (57). In terms of localization, the distribution of m6A 
follows a specific pattern in RNA, located mainly near the stop 
codons and the 3'‑UTR (55,58). Several studies have shown 

the importance of m6A modifications in both mRNA and 
ncRNA stability (59), mRNA translation (60,61), in secondary 

Figure 1. RNA methylation modifications along with their corresponding 
writers and erasers. (A) m6A modification, (B) m1A modification, (C) m3C 
modification, (D m5C modification, (E) hm5C modification, (F) m7G 
modification and (G) Nm (where N stands for any nucleotide) modification. 
m6A, N6‑methyladenosine; m1A, N1‑methyladenosine; m3C, 3‑methylcytosine; 
m5C, 5‑methylcytosine; hm5C, 5‑hydroxymethylcytosine; m7G, 7‑methyl‑
guanosine; Nm, 2'‑O‑methylation; METTL1/2/6/8/14, methyltransferase 
1/2/6/8/14; WTAP1, Wilms tumor‑associated protein‑1; KIAA1429, vir like 
m6A methyltransferase associated; ALKBH5, RNA demethylase ALKBH5; 
NML, nucleomethylin; TRMT6, tRNA methyltransferase 6 non‑catalytic 
subunit; TRMT10C, tRNA methyltransferase 10 homolog C; ALKBH3, 
α‑ketoglutarate‑dependent dioxygenase alkB homolog 3; ALKBH1, nucleic 
acid dioxygenase ALKBH1; NSUN, NOP2/SUN RNA methyltransferase; 
DNMT2, DNA methyltransferase‑2; TET, methylcytosine dioxygenase; 
Trm7, tRNA [cytidine(32)/guanosine(34)‑2'‑O]‑methyltransferase.
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structure formation (mRNA and lncRNA) (62,63), in polyad‑
enylation (56,64‑66), in circadian clock regulation (67), as well 
as in the response pathways to ultraviolet (UV)‑induced DNA 
damage (68). The extent of m6A‑modified RNA is both dynamic 
and reversible. m6A modification is carried out and reversed by 
effector proteins, called m6A writers and erasers (31). Writer 
proteins include methyltransferase 3 (METTL3)3 and meth‑
yltransferase 14 (METTL14) (69,70), Wilms tumor‑associated 
protein‑1 (71) and vir like m6A methyltransferase associ‑
ated (72), which form a methyltransferase complex in mammals 
with its catalytic center located within METTL3 (72,73), 

responsible for the deposition of m6A. Additional m6A readers 
include YTH domain‑containing family (YTHDF) proteins, 
such as YTHDF1, YTHDF2, YTHDF3 and YTHDC1, as 
well as heterogeneous nuclear ribonucleoproteins (HNRNPs), 
including heterogeneous nuclear ribonucleoproteins C1/C2 
(HNRNPC) (17). Conversely, for the reversal of m6A modi‑
fication, RNA demethylase ALKBH5, an RNA demethylase, 
acts as an activation and deactivation regulator (74).

m6A modification is involved in various physiological and 
pathological aspects in the context of CVD, including cardio‑
myocyte remodeling, cardiac hypertrophy and regulation 

Figure 2. Substitutional RNA modifications and the two main mechanisms of RNA editing. (A) A‑to‑I editing and (B) C‑to‑U editing are presented. 
ADAR, adenosine deaminase acting on RNA; APOBEC1, apolipoprotein B mRNA editing enzyme catalytic subunit 1; APOBEC3A, apolipoprotein B mRNA 
editing enzyme catalytic polypeptide‑like 3A.

Figure 3. Other RNA modifications. Additional epitranscriptomic mechanisms that do not feature methylation or RNA editing, such as (A) pseudouridylation 
and (B) 8‑OxoG modification. 8‑OxoG, 8‑oxoguanine; TRUB, TruB PUS family member; PUS1, pseudouridine synthase 1; PUSL1, pseudouridine synthase 
like 1; RPUSD, RNA pseudouridylate synthase domain; ROS, reactive oxygen species; OGG1, 8‑oxoguanine glycosylase.
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of mitogen‑activated protein kinases (MAPKs). Since its 
extensive role in CVD has been thoroughly reviewed else‑
where (17,18,75‑77), we will only briefly mention some of the 
most prevalent findings, while updating information where 
necessary. Of heightened interest is the METTL3‑mediated 
modification, which has been heavily implicated in cardiac 
function and homeostasis (78). METTL3 has been shown to be 
upregulated in mouse hearts following ischemia/reperfusion, 
acting in a negative feedback loop with transcription factor 
EB, which controls the expression of autophagy and lyso‑
somal genes (79‑82). In failing hearts, m6A hypermethylation 
of mRNA encoding for myosin regulatory light chain 2 led 
to lower protein levels compared with healthy controls (83). 
Overexpression of METTL3 led to a hypertrophic response 
both in vitro and in vivo, while cardiac‑specific deletion of 
METTL3 caused signs of HF accompanied by functional 
and morphological changes (78). All of the above, indicate a 
central role for METTL3‑mediated modification in cardiac 
homeostasis as well as the development of HF. During the 
development of HF, m6A methylation has also been impli‑
cated in the regulation of calmodulin‑1 translation, a member 
of the calcium/calmodulin‑dependent protein kinase II 
signaling pathway (84). Last, but not least, when examining 
obesity as a risk for the development of CVD, fat mass and 
obesity‑associated protein (FTO), which was the first identi‑
fied m6A demethylase, appears to play a crucial role in obesity 
development, evidenced by the reduction effect on weight 
and adipose tissue after FTO knockdown (85). Aside from 
obesity, the FTO protein also appears to be decreased in the 
failing heart, leading to an increase in the content of m6A, in 
a state of hypoxia (86). By contrast, the correlation between 
the FTO protein and changes in calcium dynamics have been 
documented, resulting in changes of cardiomyocyte contrac‑
tion and arrhythmic events (87). This serves to show that CVD 
can be influenced by m6A modification events from a variety 
of sources or comorbidities, directly or indirectly related to its 
development, while this modification has also been shown to 
play a pivotal role in CVD‑related risk factors, such as inflam‑
mation, obesity, insulin resistance and adipogenesis, whose 
disruption increases the risk of atherosclerosis (18).

m6A methylation is also capable of influencing miRNA 
biogenesis and activity. Specifically, heterogeneous nuclear 
ribonucleoproteins A2/B1, an m6A‑binding protein, reads 
m6A modifications in primary miRNAs (pri‑miRs) and 
promotes DICER‑mediated processing. This process affects 
miRNA‑mRNA binding strength by influencing non‑canonical 
base pairing (88). In angiogenesis, m6A modification of the two 
vasoactive pri‑miRNAs, pri‑miR‑126 and ‑222 by METTL14 
and METTL3, respectively, accelerated their maturation, 
while it correlated with poor prognosis in patients with bladder 
cancer (89,90). miRNA regulation has been extensively studied 
in the cardiovascular field and such miRNA epitranscriptomic 
events, further expand the complexity of the miRNA regula‑
tory effects.

m6A methylation has additionally been found to 
affect the stability of circRNAs and subsequently the 
circRNA‑miRNA‑mRNA network, activating the Wnt 
and FoxO pathways and promoting pulmonary hyperten‑
sion (91,92). X‑inactive specific transcript (XIST), a lncRNA 
that is important in X‑chromosome inactivation during 

female development, has been shown to also act as a sponge 
for miR‑101a‑3p, promoting apoptosis during MI (93). Of 
note, XIST is highly methylated via two m6A components, 
RNA binding motif protein 15 and RNA binding motif 
protein 15b (94). Metastasis associated lung adenocarcinoma 
transcript 1 (MALAT1), another lncRNA associated with 
cardiomyopathy and MI (95), was also found to contain a 
number of m6A editing sites (96). Such modifications led to 
conformational changes and increased binding by a number of 
RNA binding proteins (RBPs) (97). In this context, a nuclear 
RBP that connects single‑stranded poly‑U tracts and has a 
role in RNA processing and maturation is HNRNPC (63). 
This RBP is an m6A switching factor and its binding capacity 
depends on the methylation of METTL3 or METTL14. This 
modification favors single‑stranded RNA binding sites that 
are necessary for the interaction of HNRNPC with RNA 
molecules such as MALAT1 (63). Finally, another MALAT1 
interacting protein is METTL16, a methyltransferase that 
adds m6A to single‑stranded U6 snRNAs (98). METTL16 is 
essential for embryonic development (99) and regulates the 
splicing of S‑adenosylmethionine synthase isoform type‑2, 
thus controlling the levels of methyltransferase substrate 
S‑adenosyl methionine, as well as interacting with the 3' triple 
helix region of MALAT1, however the underlying mechanism 
of this process is not yet known (98,100). In conclusion, it is 
evident that m6A modifications have a vast array of effects in 
both coding and ncRNAs, while acting at multiple different 
levels of cardiac homeostasis and CVD development.

m1A. The m1A modification is one of the oldest detected RNA 
modifications, involving the methylation of the N1 site of the 
adenosine residue (101). Alongside 3‑methylcytosine (m3C) 
and m7G, it is the most common methylation modification 
encountered in physiological conditions (102). m1A modifica‑
tions are found in both mitochondrial and nuclear‑encoded 
mRNAs, as well as rRNAs and tRNAs (103), catalyzed by a 
variety of enzymes, such as nucleomethylin in the case of rRNA 
methylation (104) or tRNA methyltransferase 6 non‑catalytic 
subunit (TRMT6)/61A, TRMT61B and TRMT10C for 
tRNAs (105‑107). It reversibly methylates adenosine at posi‑
tions 9, 14 and 58 of tRNA, while multiple sites exist within 
coding RNA transcripts and lncRNAs (108). The main erasers 
of m1A modification are nucleic acid dioxygenase ALKBH1 
(ALKBH1) and α‑ketoglutarate‑dependent dioxygenase alkB 
homolog 3 (ALKBH3) (109). A study by Li et al (110) showed 
that the majority of the methylation sites in mitochondrial tran‑
scripts were found in either the 5'‑UTR, where they increased 
transcription efficiency, or in the coding sequence region 
where they inhibited translation (110). Furthermore, a 3'‑UTR 
site was also detected, leading to implications of potential 
miRNA specificity effects. Although no studies to date have 
directly correlated m1A modifications with CVD, their impact 
on mitochondrial transcription cannot be overlooked. The 
heart is heavily reliant on mitochondria, due to its high energy 
demands. As such, dysregulated mitochondria have been asso‑
ciated with a number of cardiac diseases, including, among 
others, cardiac hypertrophy, HF and ischemia‑reperfusion, as 
has already been reviewed elsewhere (111,112). Of note, inferred 
m1A methylation levels of mitochondrial‑tRNA (mt‑tRNA), as 
well as mt‑RNR2 and mt‑ND5 transcripts, have been observed 
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in the cardiac left ventricle and the atrial appendage, as shown 
in a study by Ali et al (113). Nevertheless, further research is 
required to elucidate potential specific effects of m1A editing 
events in the context of CVDs.

m3C. m3C is a relatively under‑investigated modification 
in CVD. Although it has been known as an RNA modifica‑
tion in yeast for some time, it was only recently detected in 
mammalian mRNA, in a study by Xu et al (114). Even though 
METTL2 and METTL6 are responsible for m3C modification 
of tRNA in mice and human (114), these only account for ~50% 
of the total m3C tRNA methylation levels, suggesting a role 
for yet undiscovered methyltransferases. As far as mRNA 
m3C modification is concerned, METTL8 was shown to be 
the sole detected ‘writer’ enzyme (114). Some eraser enzymes 
that have been associated with this process are ALKBH1 and 
ALKBH3 (115,116). Even though these methyltransferases 
have not been implicated in CVD, METTL2 has been shown 
to form a complex with DALR anticodon binding domain 
containing 3 (DALRD3) in humans, while a patient with a 
mutated DALRD3 exhibited mild congenital heart disease, 
which resolved spontaneously (117). Since m3C modifications 
are only now starting to garner attention, further research is 
required to identify their potential impact in CVD.

m5C. Cytosine m5C, another common type of RNA modifi‑
cation, occurs in both mRNA and ncRNAs, such as tRNA, 
rRNA and lncRNA (118,119). Research in both humans and 
mice has shown that the m5C sites are ~100 nucleotides down‑
stream of the translation initiation site, as well as present in the 
UTRs (120,121). Two main groups of m5C protein writers have 
been found. The first group consists of seven members of the 
NOP2/SUN RNA methyltransferase (NSUN) family (122) and 
includes methylate tRNA (NSUN2, NSUN6), rRNAs (NSUN1, 
NSUN5), mRNAs (NSUN2), ncRNAs (NSUN2), mt‑rRNAs 
(NSUN4) and mt‑tRNA (NSUN3) (122‑128). The second group 
comprises only DNA methyltransferase‑2 (DNMT2) (129), 
previously speculated to be DNA specific, but has previ‑
ously been found to also act on tRNA (130). Although, to 
date, eraser proteins of m5C modifications have not been 
identified, a previous study suggested a role for m5C in RNA 
transport (118). The Aly/REF export factor, an mRNA export 
adaptor protein identified as m5C binding (reader) protein, is 
involved in this process (118).

Notably, mutations in both m5C writer groups have been 
associated with adverse effects in various diseases, such as 
cancer and intellectual disability (131‑134). According to 
an in vitro study, where the DNMT2 gene was examined, 
a total of >60 somatic mutations have been identified, with 
variable DNMT2 methylation activity (135). Mice lacking 
the NSUN4 gene, a mitochondrial m5C methyltransferase, 
did not survive birth, while NSUN4 cardiac conditional 
deletion resulted in mitochondrial dysfunction and cardiomy‑
opathy (126). DNMT2‑deficient mice have also been shown 
to develop cardiac hypertrophy, possibly via the dysregulation 
of the interaction between positive transcription elongation 
factor b (P‑Tefb), a transcription regulator, and RNA compo‑
nent of 7SK nuclear ribonucleoprotein (Rn7sk), a ncRNA (136). 
Decreased levels of m5C methylation in DNMT2‑deficient 
hearts suggested disruption of P‑Tefb/Rn7sk association (136). 

Luo et al (137) were able to show, both in vitro and in vivo, 
that NSUN2‑mediated methylation of intercellular adhesion 
molecule 1 increased vascular inflammation, while its knock‑
down led to the development of atherosclerosis (137). In an 
atherosclerotic plaque mice study, increased IL‑17A transla‑
tion was observed as a result of m5C methylation of the IL‑17A 
mRNA coding region (138).

In regards to m5C methylation of ncRNAs a study by 
Yuan et al (139) showed that m5C editing was present during 
miR‑125b biogenesis, a miRNA also heavily implicated in 
atherosclerosis (140,141). NSUN2‑mediated methylation 
inhibited the function of miR125b, by repressing its processing 
in all maturation stages, including pri‑miR, precursor miRNA 
(pre‑miR) and mature miRNA both in vitro and in vivo (139). 
The previous findings regarding m5C editing events of coding 
RNAs, imply extensive roles for m5C methylation in multiple 
levels of the complex atherosclerosis network (137,142). 
Antisense ncRNA in the cyclin‑dependent kinase inhibi‑
tors (INK4) locus (ANRIL), a lncRNA which has been 
previously identified in patients with MI as a poor prognostic 
marker for cardiac function, has also been shown to undergo 
m5C modification, although the extent of this lncRNAs influ‑
ence in cardiac function remains unknown (47,121). The 
pathophysiological conditions resulting from the deregula‑
tion of the system of m5C modifications demonstrate the 
importance of these modifications in controlling the fate and 
function of RNAs (143).

hm5C. Although the epigenetic importance of hm5C DNA 
modification in mammals has long been established, the 
potential of such an editing event in RNA remains unclear. 
In a study by Fu et al (144), it was found that the same family 
of enzymes that catalyzes this modification in DNA, the 
ten‑eleven translocation family, was able to catalyze the forma‑
tion of 5‑hydroxymethylcytosine (5‑hmrC) in RNA in vitro and 
in vivo (144). They also determined that the ratio of conversion 
from 5‑mrC to 5‑hmrC was roughly 0.02%. Of note, out of 
all the tissue types tested, the highest levels of 5‑hmrC were 
detected in the cardiac tissue, with 3.9 modifications per 
106 ribonucleotides (144). Even though the relative levels of 
this modification in RNA are lower than in DNA, it is still 
unknown whether this is a stable or transient oxidation effect. 
Furthermore, in a study by Fang et al (145), it was observed 
that cardiac‑specific deletion of methylcytosine dioxygenase 
TET2 and TET3 had adverse effects on DNA hydroxymeth‑
ylation dynamics during embryonic heart development, while 
leading to a reduction in cardiomyocyte numbers and the 
emergence of non‑compaction cardiomyopathy. In light of the 
aforementioned studies, it would be of interest to investigate 
the effects of cardiac deletion of TET family genes in RNA 
hydroxymethylation dynamics.

m7G. m7G, one of the most conserved modifications of nucleo‑
sides that make up eukaryotic mRNA, plays an essential role in 
regulating protein synthesis, pre‑mRNA splicing and the export 
of mRNA (146). m7G is additionally present at defined internal 
positions, within other classes of RNAs, such as tRNAs and 
rRNAs (147). One of the most extensively described enzymes 
that mediate internal m7G methylation, METTL1, has been 
shown to mediate m7G modification in miRNAs (148). More 
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specifically, it has been documented that METTL1‑mediated 
methylation led to an increase in lethal‑7 (let‑7) miRNA 
processing (148). The family of let‑7 miRNAs has been exten‑
sively studied in various diseases and participates in regulating 
cell differentiation (149,150). Members of this miRNA family 
have been implicated in CVD, as evidenced by a study in 
which the inhibition of let‑7c miRNA was shown to prevent the 
deterioration of cardiac infarction, in vitro and in vivo (151). 
A study by Yang et al (152), which focused on angio‑
tensin II‑treated hearts and isolated cardiomyocytes, reported 
upregulation of several let‑7 miRNA members, indicating their 
possible role in cardiac hypertrophy, while let‑7i expression 
was downregulated in patients with dilated cardiomyopathy 
and correlated with poor clinical outcomes (153). The effects 
of m7G modification in the context of CVD thus remain largely 
unexplored, but the implications of let‑7‑mediated effects hint 
to regulatory levels of potentially high importance.

Nm. Nm (N meaning any nucleotide in this case) is a 
modification of RNA occurring co‑transcriptionally or 
post‑transcriptionally, where a methyl group is added to the 
2'‑hydroxyl of the ribose moiety (154). This type of modifica‑
tion is recurrent and observed in numerous RNA classes, such 
as sncRNAs, mRNA and tRNA (154). This modification can 
be carried out by stand‑alone methyltransferases (155), such as 
tRNA [cytidine(32)/guanosine(34)‑2'‑O]‑methyltransferase or 
by the fibrillarin enzyme, which requires guiding by box C/D 
snoRNAs (156). Loss of snoRNA‑guided Nm modifications on 
snRNAs reportedly leads to significant defects in the splicing 
of cardiac mRNA and the development of the heart (157,158). 
In cardiometabolic disease, small nucleolar RNA C/D 
Box 32A, a subtype of ncRNA from the Rpl13a locus, was 
found to target the mRNA of peroxidasin for Nm, indicating 
a role in the functional altering of peroxidase activity in the 
heart (159). As in the case of m7G modifications, research in 
this modification area is still limited, but cardiovascular effect 
implications exist, capable of driving future research avenues.

4. Substitution modifications

A‑to‑I editing. A‑to‑I RNA editing is the most common form 
of substitutional RNA editing in mammals (160). During 
this process, two conserved mammalian enzymes, adenosine 
deaminase acting on RNA (ADAR)1 and 2, hydrolyze the 
adenosine residues into double‑stranded RNA regions (mRNAs 
and ncRNAs) in order to convert them into inosines (161). Due 
to the similar chemical content inosines share with guanines, 
they are misread by the endogenous translational complex 
during reverse transcription and thus pair with cytosines (162). 
A‑to‑I editing has been shown to be indispensable both for 
physiological development and the emergence of pathological 
conditions in the heart, while an average of ~80,000 A‑to‑I 
editing sites have been identified in human cardiac tissue (163).

ADAR1 has been shown to edit cathepsin S (CTSS), a 
cysteine protease associated with atherosclerosis and angiogen‑
esis (164‑166). The editing event occurred in the 3'‑UTR region 
of CTSS mRNA, enabling the recruitment of ELAV like RNA 
binding protein 1, which in turn regulated the mRNA expres‑
sion and stability of CTSS. Of note, both ADAR1‑mediated 
editing and CTSS mRNA expression were elevated in blood 

samples from patients with coronary artery disease (167). In 
mice, ADAR1 was increased during oxidative stress in neonatal 
cardiomyocytes (168), while a knockout study in the developing 
heart showed that ADAR1 cardiac deletion is associated with 
embryonic lethality, establishing the importance of A‑to‑I RNA 
editing during cardiac embryonic development for both prolif‑
eration and survival (169). Additionally, El Azzouzi et al (170) 
were able to bypass embryonic lethality and knock out ADAR1 
in adult cardiomyocytes by using an inducible knockout 
method under the control of the α‑myosin heavy chain 
promoter, which is specifically expressed in cardiomyocytes. 
Their results showed increased lethality in Adar1‑null mice, 
accompanied by a decrease in global miRNA expression, 
worsening of cardiac function and severe ventricular remod‑
eling, via a pathway involving miR‑199a‑5p and the unfolded 
protein response (170). In a study by van der Kwast et al (44), 
an edited version of miR‑478b‑3p, a miRNA present in smooth 
muscle cells, fibroblasts and vascular endothelial cells, was 
responsible for neovascularization in response to ischemia. The 
A‑to‑I modification of miR‑478b‑3p was located in the seed 
sequence and modified its target set by enriching for proangio‑
genic pathways (44). Moreover, Filamin A (FLNA) mRNA has 
been previously shown to be one of the substrates for ADAR2 
editing (171). In a study by Jain et al (172), mice with impaired 
FLNA editing developed left ventricular hypertrophy and 
cardiac remodeling, accompanied by elevated blood pressure. 
Additionally, FLNA mRNA editing in patients with CVD was 
found to be decreased by up to 50%, making ADAR2‑mediated 
FLNA mRNA editing one of the first studies to highlight an 
editing event associated with cardiac disease in humans (172). 
In terms of occurrence, there is limited information about 
A‑to‑I modifications in lncRNAs. Nevertheless, ANRIL, a 
lncRNA acting as a regulator of coronary heart disease, was 
shown to undergo A‑to‑I editing at the site of its Alu motifs, 
potentially affecting its interaction with chromatin and its 
downstream effects (47).

C‑to‑U editing. C‑to‑U editing is another editing mechanism 
acting in mammals (173,174). It is regulated by a family of 
evolutionarily conserved cytidine deaminases called APOBEC, 
in a highly specific manner with a preference for cytidines in 
AU‑rich regions (175). First observed regulating the expression 
of apolipoprotein‑B48 in a tissue‑dependent manner, C‑to‑U 
modification in the liver produces a truncated apolipoprotein, 
via the introduction of a stop codon in the gene transcript, 
resulting in the hepatic‑specific apolipoprotein‑B100 expres‑
sion (176). The APOBEC1 complementation factor (ACF), an 
RNA‑binding cofactor, integral in editing apolipoprotein B 
is one of the two minimal elements for a functional C‑to‑U 
editing complex (177,178). Of note, CUGBP Elav‑like family 
member (CELF)2, another RBP that has been shown to also 
modulate C‑to‑U editing by recruiting ACF (179), is mainly 
expressed in the heart, alongside another member of the CELF 
family, CELF1 (180). The activity of CELF1 ranges from 
RNA editing to polyadenylation and alternative splicing, while 
CELF1 depletion can cause neonatal cardiac dysfunction with 
repression effects in ion‑transport and circadian gene expres‑
sion (181).

Although the activity of APOBEC1 is responsible for 
editing apolipoprotein B, it has been previously reported that 
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another member of the subfamily, APOBEC2, is exclusively 
expressed in the heart and skeletal muscle, and maintains low, 
but definite deaminase activity (182). Meanwhile, APOBEC3A 
is capable of C‑to‑U editing under hypoxic conditions (183), 
while its overexpression induced editing, among others, of 
primary pulmonary hypertension genes in an in vitro experi‑
ment (184). All of the above imply a yet undiscovered potential 
for RNA editing of cardiac‑specific transcripts in a C‑to‑U 
editing manner, similar to the one observed for apolipoprotein 
modifications in the liver.

5. Other modifications

Ψ. 5‑Ribosyluracil/Ψ, an isomer of the conventional RNA 
nucleoside uridine (185) is overall the most common RNA 
modification. It has been found in mRNA, as well as tRNA, 
rRNA, snRNA, snoRNA and ncRNA (186). This modification 
is observed in almost all tRNA molecules, as the TΨC loop 
is characteristic of tRNAs (187). One of the Ψ functions is 
to enhance the ability of RNA to stack bases by making the 
sugar‑phosphate backbone more rigid (188,189). Additionally, 
it participates in the classic Watson‑Crick base coupling with 
adenosine, such as unmodified uridine isomer, but presents 
a stronger pairing with the other four bases (190). A total of 
13 pseudouridine synthases (PUS) have been identified in 
humans, acting both in an RNA dependent and independent 
manner (191).

In a previous study by Safra et al (192), a member of the 
TruB PUS family member 1 (TRUB1) family, also known as 
PUS4 and PUS7, was shown to combine ~60% of all reproduc‑
ible Ψ detected sites in mRNA in three human cell datasets. 
These datasets consisted of fibroblasts and HEK293 cells, 
HeLa cells grown under wild‑type or serum‑starved conditions 
and HEK293 cells grown under a range of conditions/pertur‑
bations, respectively. A consensus motif (GUUCNANNC) 
for Ψ by TRUB1 has been identified, while its catalytic 
activity is mainly located in the nucleus (192). It is worth 
noting that several other PUS, such as PUS1, pseudouridine 
synthase‑like 1, TRUB2, RNA pseudouridine synthase domain 
containing 3 (RPUSD3) and RPUSD4, have been predicted 
or found to be mitochondrial RNAs (mtRNAs), resulting in a 
number of mtRNAs being modified by PUS enzymes (193,194).

As in the previous modifications, the mutations in PUS are 
related to various diseases, such as cancer and mitochondrial 
myopathy (195,196). Of note, the absence of eraser proteins 
for the Ψ modifications, coupled with the inactivity of the 
C‑C bond between the base and the sugar (Ψ), suggest that 
this is a potentially irreversible modification (188). Analysis of 
TRUB1 levels in human tissue revealed its high expression in 
the heart and skeletal muscle, with still unexplored modifica‑
tion potential mainly in tRNAs (197). Moreover, during both 
Ψ and Nm methylation modifications, snoRNAs have been 
found to act as guides for the modification process (159,198). A 
special class of guide RNAs concentrated in the Cajal body are 
responsible for guiding spliceosomal U modifications, these 
snRNAs are termed scaRNAs (199). In this regard, scaRNAs 
are responsible for regulated alternative splicing, with exten‑
sive implications for response to variable environmental 
conditions (158). Notably, in a study by Nagasawa et al (200), 
infants born with a common congenital cardiac defect 

termed Tetralogy of Fallot, were shown to have decreased 
spliceosomal pseudouridylation levels in their right ventricle, 
which in turn depended on scaRNA1 levels, as exhibited in 
an in vitro experiment in primary cardiomyocytes (200). 
These findings imply that spliceosomal pseudouridylation 
depends on scaRNA levels in human tissue, revealing a novel 
potential regulatory mechanism for the alternative splicing of 
genes important in embryogenesis and cardiogenesis. KCNQ1 
overlapping transcript 1, a lncRNA and a biomarker for MI, 
has also been shown to be able to be modified by Ψ (201). 
Establishing studies with a larger number of samples and the 
examination of additional RNA modifications and epigenetic 
factors is necessary for deeper investigation into the cardio‑
vascular effects of pseudouridylation.

8‑OxoG. Finally, 8‑OxoG is conventionally formed through the 
interaction of the guanine base in DNA molecules with reac‑
tive oxygen species, under conditions of oxidative stress (202). 
Repair of this type of base lesion is executed by the enzyme 
8‑OxoG glycosylase (OGG1), which excises 8‑OxoG (203). A 
study by Shah et al (204) documented the detrimental effects 
of 8‑OxoG on the function of vascular smooth cells, reporting 
a reduction of human atherosclerotic plaque development 
when the activity of 8‑OxoG glycosylase was restored. By 
sequencing oxidized miRNAs in rat models, 8‑OxoG modi‑
fications at specific positions in miR‑1 were found to promote 
cardiac hypertrophy (205). Additionally, 8‑OxoG DNA 
glycosylase 1 overexpression was found to lower cardiac mito‑
chondrial levels of DNA 7,8‑dihydro‑8‑OxoG (8‑oxo‑dG) in 
mouse models (206). The same study evidenced the decrease 
in transverse aortic constriction‑induced cardiac fibrosis in 
a state of OGG1 overexpression, suggesting that increased 
repair of 8‑oxo‑dG in mtDNA leads to decreased cardiac 
pathology (206). In a study by Noren Hooten et al (207), 
8‑oxo‑dG levels were found to be associated with clinical 
cardiovascular risk factors, such as high sensitivity C‑reactive 
protein, systolic blood pressure, IL‑23 levels and body/mass 
index. Moreover, strong association between 8‑oxo‑dG and the 
levels of systolic blood pressure have been documented (207). 
Although there are implications for important regulatory 
effects mediated by 8‑oxo‑dG modification in the cardiac 
tissue, this field of research remains in its infancy.

6. Tools of epitranscriptomic modification research

In the past decade, dramatic advances in the development of 
powerful sequencing technologies have facilitated transcrip‑
tomic investigation in a faster, more efficient and more in‑depth 
manner than ever before. Such advances have also assisted 
greatly in the study of epigenetics and epitranscriptomics. 
The use of RNases constitutes one of the earliest methods of 
mapping mRNA modifications and still exhibits the highest 
sensitivity for m6A mapping (208). In the same manner, the 
more recent MAZTER‑seq (209) and m6A‑REF‑seq (210) 
technologies exploit the discovery of methylation‑blocked 
endoRNases. Another method, termed site‑specific cleavage 
and radioactive‑labeling followed by ligation‑assisted extrac‑
tion and thin‑layer chromatography, also known as SCARLET, 
utilizes site‑specific cleavage and splint ligation and has also 
been extensively used to detect m6A modifications in both 
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coding RNA and lncRNAs (211). Furthermore, antibody incor‑
porating techniques have been established for the detection 
of RNA modifications. These include the m6A‑LAIC‑seq or 
m6A‑level and isoform‑characterization sequencing method, 
which uses immunoprecipitation in total RNA samples (56), as 
well as the widely used MeRIP‑Seq technology, which maps 
m6A‑methylated RNA through the use of m6A‑specific anti‑
bodies (212). Combining the aforementioned technique with 
Ab cross‑linking, allowed the enhancement of the resolution of 
the technique, giving rise to methylation individual‑nucleotide 
resolution UV cross‑linking and immunoprecipitation (124). 
Applications of the same principle of cross‑linking include 
PA‑m6A‑seq (213), but also m1A‑MAP (110) in the case of m1A 
modification mapping.

Alternative methods for the detection of RNA modifica‑
tions take advantage of chemical reactions that are limited 
to a certain type of RNA modification, combining them 
with short‑read sequencing. RNA‑BisSeq, aimed toward 
the mapping of m5C, involves the chemical deamination of 
cytidines except for m5C (118). Modern library preparation 
protocols, yield RNA fragments with nucleotide modifications 
at the 5'‑ or 3'‑end, which can be used for the enrichment of the 
RNA fragments in RNA seq libraries (214,215). The Nm‑Seq 
and RibOxi‑Seq techniques used to map internal Nm modi‑
fications entail the treatment of RNA fragments with NaIO4 
oxidation, which along with additional steps, leads to the 
enrichment of 3'‑Nm‑containing fragments and improvement 
of the final transcriptome‑wide RNA analysis (166,216). Using 
the same principle, RiboMethSeq is based on the protection 
of the phosphodiester bond in RNA when Nm occurs at the 
5'‑neighboring ribose (217). Following alkaline hydrolysis, 
library preparation and 5'‑ and 3'‑extremity counting, the 
aforementioned protection is translated into a signal.

Mass spectrometry (MS) has also been an invaluable tool 
for RNA modification analysis. State‑of‑the‑art MS methods 
are being employed for the detection and quantification of 
chemical modifications in RNA, yielding different types of 
information based on the type of MS analysis (218). Top‑down 
MS analysis can identify and localize mass‑altering RNA 
modifications in undigested RNA, while also allowing de novo 
sequencing to be performed. Nevertheless, non‑altering 
mass modifications, such as m1A, m6A and mass‑silent 
modifications, such as pseudouridine, remain a major chal‑
lenge (219,220). Bottom‑up MS is conducted for the mass 
mapping of partially hydrolyzed RNA, and MS approaches 
can generate oligonucleotides and sequencing ladders that can 
be subsequently interpreted into RNA sequences and localiza‑
tion of the modifications (221). Another MS‑based method is 
nucleoside MS, which is performed on complete RNA hydro‑
lysates, followed by liquid chromatography separation of the 
nucleoside mixtures. While highly accurate for the detection 
of chemical modifications, it cannot provide sequence infor‑
mation or localization of the modification (222). Still, each 
method's advantages can be combined to overcome limita‑
tions and drawbacks on high‑throughput RNA modification 
mapping, while appropriate software for MS data processing 
should always be incorporated (223).

A‑to‑I modifications are either investigated via the tradi‑
tional method of screening for A‑to‑G mismatches in reverse 
transcribed RNAs (224), by the use of the more recently 

developed inosine chemical erasing (ICE) methods, or by the 
use of transgenic mice where ADAR knockdown is followed 
by deep‑sequencing. In the case of ICE, reverse transcrip‑
tion is blocked by the formation of N1‑cyanoethylinosine 
after acrylonitrile processing. This method combined with 
deep‑sequencing gave rise to ICE‑seq, for high‑throughput 
investigation of A‑to‑I modifications (225). In the case of 
Ψ modification profiling, several high‑throughput sequencing 
techniques are utilized, wherein treatment with N‑cyclohe xyl‑
N'‑(2‑morpholinoethyl)‑carbodiimide‑metho‑p‑toluenesul‑
fonate specifically modifies Ψ, G and U residues on RNA. 
Although the G and U modifications are later removed, the 
chemically induced modification on Ψ is stable and blocks 
reverse transcription (226). Such methods include Ψ‑seq (227), 
PSI‑seq (228), Pseudo‑seq (229) and CeU‑seq (230).

Novel sequencing approaches enable direct RNA 
sequencing without amplification or cDNA conversion. The 
rapidly developing technology of nanopore sequencers, such 
as the one created by Oxford Nanopore Technologies (ONT), 
includes the use of a synthetic membrane with embedded 
nanopores in an ionic solution (231). As an ionic current 
passes through the nanopore, an individual read is recorded 
by a sensor and the corresponding data is acquired by the 
sequencer's implemented software. Characteristic changes in 
the current reads during the movement of a nucleic acid strand, 
as it traverses the nanopore from one chamber to the other, 
enable the identification of the strand's nucleic acid sequence, 
in a process known as ‘base‑calling’ (232). Nucleotide modi‑
fications in ONT reads can be determined with the use of 
specialized software, such as Nanopolish and the ONT inte‑
grated CpG‑methylation calling software (233).

7. Epitranscriptomic genetic variation and CVD

High‑throughput sequencing techniques have not only 
promoted the field of epitranscriptomic profiling, but have, 
through Genome‑wide Association Studies (GWAS), facilitated 
the identification of single nucleotide polymorphisms (SNPs) 
in a variety of diseases, including CVD (234). These studies 
have led to the identification of >5,000 associations with CVD 
(https://www.ebi.ac.uk/gwas/) (235), exhibiting the importance 
of SNPs in CVD emergence. Several databases have also been 
developed in an effort to catalogue disease‑associated poly‑
morphisms that affect epitranscriptomic modifications. These 
databases include m6Avar (236) and m6ASNP (237), both of 
which catalogue m6A‑related polymorphisms, m7GHub (238) 
focusing on m7G‑related SNPs, RMDisease encompassing 
>200,000 human SNPs that affect m6A, m1A, m6Am, m5U, 
m7G, Ψ and Νm modifications (239) and the RNA Framework, 
which is a rounded toolkit for the analysis of post‑transcrip‑
tional modifications (240).

In terms of epitranscriptomic genetic variation, research 
remains at an early stage. As expected due to the greater 
emphasis given so far on m6A‑related modifications, in the 
context of CVD, a number of m6A‑related SNPs have been 
recognized as genetic variants associated with CVD. Multiple 
GWAS studies by Mo et al (241) have paved the way in this 
field and associated m6A‑SNPs with a variety of CVD factors. 
More specifically, m6A‑SNPs were shown to be associated 
with coronary artery disease (241) and have a potential role 
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in the regulation of blood pressure (242), as well as in the 
regulation of lipid metabolism (243). Furthermore, several 
m6A‑related SNPs were found to affect the expression of 
multiple disease‑causing genes, with potential adverse effects 
for ischemic stroke in humans (244). In this context, the genetic 
variant rs12286, which is strongly associated with coronary 
artery disease, was shown to be able to affect ADAMTS7 
expression, by regulating the upstream m6A methylation (241). 
Ali et al (113) analyzed the levels of m1A/G methylation in 
mitochondrial‑encoded RNA across multiple tissue types, 
followed by the identification of overlaps between peak asso‑
ciated nuclear variants and disease‑associated variants with 
significance on a genome‑wide level. Nuclear genetic vari‑
ants (rs13874, rs1084535), which are associated with inferred 
methylation levels at mt‑RNR2 and several mt‑tRNA P9 sites, 
were in linkage disequilibrium (LD) with rs34080181, which 
has been linked to atrial fibrillation (245). Furthermore, the 
intronic variant in polyribonucleotide nucleotidyltransferase 1 
mitochondrial (rs2627773) that is associated with inferred 
methylation levels of mt‑RNR2, is in LD with rs1975487, which 
is associated with diastolic pressure (246). Franzén et al (247) 
mapped A‑to‑I RNA editing quantitative trait loci (edQTLs) 
in order to identify clinical features associated with RNA 
editing. Subsequently, they evaluated the disease relevance 
of RNA editing by intersecting the edQTLs with GWAS 
data (247). More specifically, the authors intersected edSNPs 
with lead SNPs from published GWAS data. Of note, the 
rs10847434 SNP, which is associated with coronary artery 
disease (248) had an edQTL with an editing site in the 3' exon 
of apolipoprotein C1 pseudogene 1, a locus that has been 
linked to coronary artery disease (249). Additionally, the SNP 
rs4739066, a polymorphism associated with MI (250), was also 
found to have two edQTLs with editing sites in the 3'‑UTR of 
the α‑tocopherol transfer protein gene, a gene associated with 
the level of severity of atherosclerotic lesions in the area of 
the proximal aorta (251). Taken together, the aforementioned 
studies suggest that there is still a large unexplored area of 
genetic variation related to CVD pathogenesis, especially in 
regards to epitranscriptomic modifications.

8. Therapeutic implications of epitranscriptomics in CVD

Although the field of epitranscriptomics is still in its infancy, 
there are already efforts being made to utilize such new regu‑
latory knowledge for the development of novel therapeutic 
approaches, both for epigenetic and epitranscriptomic modi‑
fications in the context of CVD (19). As previously discussed, 
most epitranscriptomic research in CVD has so far been focused 
on m6A modifications and, as such, methods have focused on 
identifying ways to manipulate m6A methylation levels in the 
context of various therapeutic approaches. In a seminal study 
by Lu et al (252), it was established that curcumin was able to 
attenuate the effects of lipid metabolism disorder and increase 
total cholesterol in the liver, via the increase of m6A methyla‑
tion, suggesting a protective role for this modification against 
hyperlipidemia. Recently, a large scale epitranscriptomic study 
has been established to identify IHD biomarkers in circula‑
tion, termed the IHD‑EPITRAN study. This study is expected 
to include 200 patients, split into two cohorts of IHD and 
non‑IHD patients, focusing on the identification of m6A and 

A‑to‑I modification biomarkers (253). Additionally, limited 
approaches have also been taken in an effort to modulate m6A 
demethylation. Inhibition of demethylation was selectively 
blocked by the use of meclofenamic acid (MA) in vitro (254), 
while using the recently developed CRISPR‑Cas13b tech‑
nology, Li et al (255) attempted to manipulate m6A modified 
transcripts and specifically demethylate m6A marks. In a 
similar manner, Cox et al (256) developed the RNA Editing 
for Programmable A to I Replacement system, also utilizing 
CRISPR‑Cas13b technology, to address disease‑causing muta‑
tions. Although such tools are still outside the reach of clinical 
practice, as multiple technical and ethical concerns remain 
unaddressed, they pave the way for the development of future 
personalized CVD therapeutics.

9. Conclusions

The field of epitranscriptomics has been rapidly emerging, 
as the focus regarding disease development, environmental 
adaptation and homeostasis maintenance, shifts from the rigid 
genomic structure to the much more dynamic transcriptomic 
landscape. Although there have been major advances in tran‑
scriptomic profiling, understanding the mechanisms in which 
the transcriptome itself is differentially regulated through 
modifications, will allow for the development of novel and 
precise pharmacological interventions. The additional level of 
regulatory sensitivity that epitranscriptomic modifications are 
shown to offer, corresponds to the increased level of specificity 
required for any successful therapeutic intervention. To date, 
epitranscriptomic modifications are nearing 200, but not all of 
them have been thoroughly evaluated, nor do they all appear 
with equal frequency. Although epitranscriptomic research 
progresses rapidly in the fields of cancer and neurodegenera‑
tive disorders (257,258), in the context of CVD the number of 
modifications that have a significant impact are just beginning 
to be elucidated (Table I). However, their biological and clin‑
ical significance cannot be denied, as shown by the plethora 
of studies published in the past couple of years, showing the 
effect of RNA modifications in CVDs (Fig. 4).

Regarding RNA methylations, undoubtedly m6A has 
garnered the most attention. Although coding RNA modifica‑
tions have been the focus of most m6A studies in the heart, 
a number of publications have emerged, pinpointing the 
importance of various RNA methylations in multiple levels 
of non‑coding regulation in the heart. These events occur in 
multiple miRNA maturation stages, including primary‑miRNA, 
pre‑miR and mature miRNA levels. Coupled with recently 
emerging implications regarding methylation modifications in 
circRNAs and lncRNAs, such as XIST, in the context of CVD, 
it is becoming evident that this type of epitranscriptomic modi‑
fication is paramount for physiological non‑coding regulation 
and offers an additional regulatory level of gene expression, 
sensitive to environmental factors. Nevertheless, methylations 
are only one of the available modifications in the RNA modi‑
fication toolset. Substitutional modifications have also been 
gaining attention in the cardiovascular field, especially with 
the emergence of recent studies exhibiting the importance 
of ADAR1 for cardiac development, homeostasis, as well as 
physiological cardiac function in adult mice (169,170,259). 
What is noteworthy is that the ADAR1‑mediated modification, 
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Figure 4. Schematic representation of RNA modifications and their role in CVDs. CVD, cardiovascular disease; METTL3, methyltransferase 3; FTO, fat mass 
and obesity‑associated protein; m6A, N6‑methyladenosine; Myl2, myosin regulatory light chain 2 ventricular/cardiac muscle isoform; circRNAs, circular RNAs; 
m1A, N1‑methyladenosine; TET, methylcytosine dioxygenase; NCC, non‑compaction cardiomyopathy; m5C, 5‑methylcytosine; NSUN4, NOP2/SUN RNA 
methyltransferase 4; DNMT2, DNA methyltransferase‑2; NSUN2, NOP2/SUN RNA methyltransferase 2; miR/miRNA, microRNA; METTL1, methyltrans‑
ferase 1; let‑7, lethal‑7; snoRNA, small nucleolar RNA; Nm, 2'‑O‑methylation; snRNA, small nuclear RNA; Snord32A, small nucleolar RNA C/D Box 32A; 
ADAR1, adenosine deaminase acting on RNA 1; CELF1, CUGBP Elav‑like family member 1; OGG1, 8‑oxoguanine glycosylase; OxoG, 8‑oxoguanine.
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Table I. Epitranscriptomic modifications in CVDs.

A, Methylation

  Pathologies associated ncRNAs Pathologies associated
Modification Coding RNAs influenced with coding RNAs influenced with ncRNAs

m6A 6PGD, MAP3K6, MAP4K5,  Cardiac remodeling,  miR‑126, H/R‑induced injury,
 MAPK14, p53, TFEB,  atherosclerosis, heart failure, miR‑221/222, atherosclerosis,
 CCNA2, CDK2,   congenital heart disease,  XIST myocardial infraction
 PNPLA2, p65, p38,  CVD‑related risk factors, 
 SERCA2a, KLOTHO,   cardiac fibrosis, myocardial
 SIRT1, p16, infraction, myocardial ischemia,
 FBLN5, TNC stroke, aortic dissections,
  cardiac hypertrophy, dilated
  cardiomyopathy, diabetic
  cardiomyopathy, chemotherapy
  induced cardiotoxicity

m1A N/A N/A mt‑tRNAs, Coronary artery disease, 
   rRNAs cardiac remodeling,
    hypertrophic,
    cardiomyopathy
    dilated cardiomyopathy,
    diabetic cardiomyopathy, 
    atherosclerosis,
    chemotherapy‑induced
    cardiotoxicity

m3C DALRD3 Mild congenital heart disease,  N/A N/A
  developmental delay
  and early‑onset epileptic
  encephalopathy

m5C P‑Tefb, ICAM‑1,  Cardiac hypertrophy, vascular Rn7sk, Cardiac hypertrophy, 
 IL‑17A inflammation, atherosclerosis miR‑125b atherosclerosis

hm5C TET genesa Non‑compaction N/A N/A
  cardiomyopathy

m7G N/A N/A let‑7  Myocardial infraction, 
    cardiac hypertrophy,
    dilated
    cardiomyopathy

Nm Peroxidasin  Altered peroxidase activity N/A N/A
  in the heart

B, Substitutions

  Pathologies associated ncRNAs Pathologies associated
Modification Coding RNAs influenced with coding RNAs influenced with ncRNAs

A‑to‑I CTSS, FLNA  Atherosclerosis, severe   miR‑199a‑5p, Severe ventricular
  ventricular remodeling, miR‑478b‑3p remodeling,
  cardiac remodeling, left  ischemia response
  ventricular hypertrophy

C‑to‑U CELF1,  Neonatal cardiac
 APOBEC3A dysfunction, editing of
  primary pulmonary
  hypertension genes
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in this case, involved miR‑199a‑5p, exhibiting the intricate and 
dynamic regulation that such modifications offer in tandem with 
ncRNA regulation. This fact is further highlighted by studies by 
van der Kwast et al (44,260), where A‑to‑I editing of miR‑478b‑3p 
created an isomiR with a completely different targetome and 
extensive angiogenic pathway effects, further establishing 
the relationship between epitranscriptomic modification and 
miRNA‑mediated regulation. Alongside A‑to‑U editing events, 
C‑to‑U editing offers a much more delicate regulation network, 
with increased specificity. Although cardiac‑specific effects 
in vivo have yet to be reported in relation to C‑to‑U editing, the 
expression of the tissue‑specific APOBEC‑2 deaminase in the 
heart, coupled with the capacity of APOBEC3A to edit hyper‑
tension genes under hypoxic conditions in vitro, point to still 
unexplored events, similar to the editing of apolipoprotein in the 
liver, in a tissue‑specific manner.

In this context, cardiac aging has recently emerged as 
an exciting new field, exploring among others, the possible 
connection between RNA modifications and the various 
morphological and biomolecular changes that take place 
during the cardiac aging process. Increased cardiac fibrosis, 
left ventricular hypertrophy and valvular degeneration are 
just some of the main physiological changes that occur 
during human cardiac aging (261). Of note, cardiac fibrosis 
emergence has been linked to changes in RNA modifications, 
such as m6A and inosine (262), while cardiomyocyte aging 
has been found to be affected by RNA methylation (263). 
Cardiomyocyte hypertrophy, responsible for the thickening 
of the left ventricle walls during cardiac aging, has also been 
linked to m6A methylation. More specifically, in vitro and 
in vivo experiments have shown that m6A RNA methylase 
METTL3 could promote cardiomyocyte hypertrophy, whereas 
METTL3 inhibition inhibited the hypertrophic potential of 
cardiomyocytes (78). All of the above provide just a glimpse 
of the still unexplored effects that epitranscriptomic regulation 
may potentially have during cardiac aging.

Finally, a large number of modifications have also been 
detected in mitochondria. Due to the importance of mito‑
chondria for physiological cardiac function, these editing 
events can have severe implications for both homeostasis and 
disease emergence. HF, despite its various complications, 
has historically been studied as a left ventricular disease. 
As such, m1A modifications in mitochondrial 16s rRNA, as 
well as tRNAs, but also components of the mitochondrial 
complex I (such as mt‑ND5) in the left ventricle, can have 
severe implications for both HF and various other CVDs. 
Additionally, NSUN4‑mediated mitochondrial m5C meth‑
ylation is required for physiological function, as shown by the 
emergence of cardiomyopathy, after NSUN4 cardiac‑specific 
deletion. While examining mitochondrial RNA methylation, 
Van Haute et al (264) demonstrated NSUN3 as a novel human 
m5C RNA methyltransferase, specializing in mitochondrial 
tRNAMet. Mutations of NSUN3 caused reduced methylation 
and absence of formulation of cytosine residues at position 34 
of the mitochondrial tRNAMet, leading to reduced mito‑
chondrial translation and the development of mitochondrial 
disease. Thus, mitochondrial RNA methylation seems to affect 
mitochondrial function as well as the translation of mitochon‑
drial proteins, leading to the emergence of pathology (264). 
Even though other mitochondrial RNA modifications have not 
been implicated in CVD, it is safe to assume that we are only 
starting to scratch the surface, as various more mitochondrial 
modifications have been described, such as Ψ modifications. 
As already reviewed by Bohnsack and Sloan (265), the mito‑
chondrial epitranscriptome is rapidly gaining interest as a key 
regulator of dynamic, efficient and accurate responses to meta‑
bolic needs. Mutations in mitochondrial RNase P protein 2, a 
mitochondrial RNase P subcomplex cofactor, participating in 
m1A and m1G mt‑tRNA modifications, were shown to cause 
cardiomyopathy (106,266). Last, but not least, a few RNA 
modifications, such as C‑to‑U editing by APOBEC3A or m6A 
modification of the FTO protein were shown to be manifesting 

Table I. Continued.

C, Other

 Coding RNAs Pathologies associated ncRNAs Pathologies associated
Modification influenced with coding RNAs influenced with ncRNAs

Ψ N/A N/A KCNQ1OT1  Myocardial infraction
8‑OxoG Differences in  CVD‑related risk  miR‑1  Cardiac hypertrophy
 OGG1 levels factors, cardiac
  fibrosis, blood
  pressure levels

aDeletion of TET genes. CVD, cardiovascular disease; m6A, N6‑methyladenosine; 6PGD, 6‑phosphogluconate dehydrogenase; MAP3K6, mitogen‑
activated protein kinase kinase kinase 6; MAP4K5, mitogen‑activated protein kinase kinase kinase kinase 5; MAPK14, mitogen‑activated protein 
kinase 14; TFEB, transcription factor EB; CCNA2, cyclin A2; PNPLA2, patatin‑like phospholipase domain containing 2; SERCA2a, sarco/endoplasmic 
reticulum Ca2+‑ATPase 2a; FBLN5, fibulin; 5KLOTHO, klotho β‑glucuronidase; TNC, tenascin C; H/R, hypoxia/reoxygenation; miR, microRNA; 
ncRNA, non‑coding RNA; XIST, X‑inactive specific transcript; m1A, N1‑methyladenosine; tRNA, transfer RNA; rRNA, ribosomal RNA; m3C, 3‑meth‑
ylcytosine; m5C, 5‑methylcytosine; hm5C, 5‑hydroxymethylcytosine; m7G, 7‑methylguanosine; Nm, 2'‑O‑methylation; DALRD3, DALR anticodon 
binding domain containing 3; P‑Tefb, positive transcription elongation factor b; ICAM‑1, intercellular adhesion molecule 1; Rn7sk, RNA component 
of 7SK nuclear ribonucleoprotein; TET, methylcytosine dioxygenase; let‑7, lethal‑7; CTSS, cathepsin S; FLNA, Filamin A; CELF1, CUGBP Elav‑like 
family member 1; APOBEC3A, apolipoprotein B mRNA editing enzyme catalytic polypeptide‑like 3A; Ψ, pseudouridylation; KCNQ1OT1, KCNQ1 
opposite strand/antisense transcript 1; OGG1, 8‑oxoguanine glycosylase; OxoG, 8‑oxoguanine.
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during hypoxic conditions. Taking into account the extensive 
role of hypoxia in metabolic regulation, mitochondrial biogen‑
esis and cardiac remodeling, such modifications further cement 
the role of epitranscriptomic regulation in the adaptation to 
ever‑changing environmental stimuli both in physiological, 
but also in pathological conditions.

This new knowledge is now paving the way towards a new 
chapter in personalized medicine (267), where an in‑depth 
understanding of epitranscriptomic modifications could not only 
enable more accurate patient classification based on epitran‑
scriptomic ‘profiles’ or specific epitranscriptomic biomarkers, 
but, more importantly, allow for early predictions of response 
to treatment. Early evidence in this direction stems from the 
area of oncology, where specific RNA modifications (e.g. m6A) 
appear to be associated with therapeutic response and/or resis‑
tance (268). Significant promise also lies in the development 
of novel targeted epitranscriptomic therapies against CVD. 
The fine mapping of the role of epitranscriptomic changes in 
different aspects of CVD development, is likely to unveil a 
multitude of promising therapeutic targets, that could subse‑
quently be modulated by targeted approaches, such as small 
molecule inhibitors. A number of such approaches are currently 
being pursued against FTO in the milieu of cancer (269). For 
example, the US Food and Drug Administration‑approved 
nonsteroidal anti‑inflammatory drug ethyl ester form of MA, 
MA2, was found to be an FTO inhibitor, which led to elevated 
levels of m6A modification in mRNAs in glioblastoma cells, 
suppressing tumor progression and prolonging the lifespan 
of glioblastoma stem cell‑grafted mice (270). MO‑I‑500 was 
developed to selectively inhibit the m6A demethylase activity 
of FTO and was found to successfully inhibit the survival 
and/or colony formation of a triple‑negative inflammatory 
breast cancer cells (271,272). R‑2HG was found to bind directly 
to FTO and inhibit m6A demethylase activity leading to the 
inhibition of leukemic cell growth/survival and leukemia 
progression (273). FB23‑2 was also effective in inhibiting the 
progression of human AML in xenotransplantation mice, by 
achieving the potent inhibition of FTO (274). In an effort to 
expedite the discovery of such inhibitors different predictive 
in silico approaches are also employed (275‑279). The majority 
of the aforementioned approaches are based on conventional 
pipelines on databases' data management (280,281). However, 
at present in the post‑genomic era, state‑of‑the‑art approaches 
based on artificial intelligence are being employed, thus 
providing novel and radical solutions for the management and 
analysis of high amounts of data, where algorithms and convo‑
lutional networks not only decipher information by removing 
noise and reducing dimensionality, but also produce new 
knowledge and associations (282). The tremendous clinical 
potential of these advancements is supported by the early estab‑
lishment of multiple companies focusing on epitranscriptomics, 
such as Accent, Gotham and Storm Therapeutics. It is only a 
matter of time before similar avenues are explored in the field 
of CVD, as evidenced by recent studies on epitranscriptomic 
modification‑based therapy solutions.

All of the above serve to show we currently stand at the 
shore of cardiac epitranscriptomic research, where a vast 
ocean of information still remains unexplored. We still have to 
understand the relationship between the number of modifica‑
tions that each coding or ncRNA carries, to their respective 

effect, or the methods of action for tissue‑specific RNA modi‑
fications in response to physiological or pathological stimuli. 
As we delve deeper into CVD epitranscriptomics, we are sure 
to come closer to the ‘holy grail’ of personalized medicine and 
targeted therapeutics.
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