
Research Article
A Modified Dragonfly Optimization Algorithm for Single- and
Multiobjective Problems Using Brownian Motion

Çiğdem İnan Acı 1 and Hakan Gülcan2

1Mersin University, Department of Computer Engineering, Mersin 33343, Turkey
2Mersin University, Department of Electrical-Electronics Engineering, Mersin 33343, Turkey

Correspondence should be addressed to Çiğdem İnan Acı; caci@mersin.edu.tr

Received 6 February 2019; Accepted 6 May 2019; Published 2 June 2019

Academic Editor: Roman Bartak

Copyright © 2019 Çiğdem İnan Acı and Hakan Gülcan. .is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

.e dragonfly algorithm (DA) is one of the optimization techniques developed in recent years. .e random flying behavior of
dragonflies in nature is modeled in the DA using the Levy flight mechanism (LFM). However, LFM has disadvantages such as the
overflowing of the search area and interruption of random flights due to its big searching steps. In this study, an algorithm, known
as the Brownian motion, is used to improve the randomization stage of the DA. .e modified DA was applied to 15 single-
objective and 6 multiobjective problems and then compared with the original algorithm. .e modified DA provided up to 90%
improvement compared to the original algorithm’s minimum point access. .e modified algorithm was also applied to welded
beam design, a well-known benchmark problem, and thus was able to calculate the optimum cost 20% lower.

1. Introduction

.e fact that the real-life problems have increased from the
past to the present led the scientists to produce more ef-
fective solutions by using optimization algorithms. .e
search for these effective solutions brought about the un-
derstanding of the behaviors of swarms in nature. Scientists
have developed various algorithms by following the be-
havior, experiences, and reactions of swarms in nature.
.ese algorithms are known as swarm-inspired optimization
algorithms.

So far, swarm-inspired optimization algorithms have
successfully solved a lot of real-world problems: In 2013, the
artificial bee colony (ABC) algorithm was used for data
collection in wireless sensor networks [1], and the ant colony
optimization (ACO) algorithm was used for multi-
compartment vehicle routing problems [2]. In 2015, the
ABC algorithm was used for brain tumor segmentation in
MRI images [3], and the ACO algorithm was used in job
scheduling [4], in economic dispatch problems [5] and for
task-scheduling problems in cloud computing [6]. In 2017,
the multilevel image thresholding problem was solved with

the elephant herding optimization (EHO) algorithm [7], and
the ACO algorithm was used in estimating transportation
energy demand in Turkey [8]..e dragonfly algorithm (DA)
was used in the synthesis of concentric circular antenna
arrays by Babayigit [9], and the EHO algorithm was used in
support vector machine parameter tuning [10]. Lastly,
Debnath et al. [11] made an important study on access point
planning for disaster scenarios by using the DA in 2018.

As a result of the modification of nature-inspired op-
timization algorithms and combining them with other op-
timization algorithms or methods, hybrid optimization
algorithms, which provide better results than the original
ones, were developed. Hybrid optimization algorithms also
solved many problems in previous studies: In 2010, the ACO
algorithm for solving a complex combinatorial optimization
problem was modified by Yang and Zhuang [12], and the
particle swarm optimization (PSO) for nonconvex economic
dispatch problems was improved by Roh et al. [13]. In 2011,
Yu et al. [14] improved the ACO algorithm for the multi-
depot vehicle routing problem, and the ACO algorithm for
constrained optimization problems was modified [15]. In
2012, the ACO algorithm on real-parameter optimization

Hindawi
Computational Intelligence and Neuroscience
Volume 2019, Article ID 6871298, 17 pages
https://doi.org/10.1155/2019/6871298

mailto:caci@mersin.edu.tr
http://orcid.org/0000-0002-0028-9890
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/6871298

was improved [16], and Ishaque et al. [17] hybridized the
PSO with the maximum power point tracking method for
the photovoltaic system. In 2015, Forsati et al. [18] modified
the ACO algorithm for document clustering. In 2016, Salam
et al. [19] proposed a hybrid DA with an extreme learning
machine for prediction, and lastly, a memory-based DA for
numerical optimization problems was proposed in 2017
[20].

Random motion (randomization) is one of the most
fundamental features in optimization algorithms to solve
problems effectively. Random mobility ensures that there is
no single way to solve the problem..e solution found during
optimization suggests that even if it is the closest to the
optimum and even optimal, random behavior can always be a
better solution. .is recommendation often prevents the best
solution from getting stuck in the local best of problems.
Another important benefit of randommotion is the success of
leaving no scanned space in the search space. If there is no
random action, the optimization can only be installed in one
region of the designated search space and may never see the
results in other regions. Random motion increases the ca-
pacity of the algorithm to reach every field in the search space.

.e classical random motion which is randomization
based on a random number to be generated by the processor
is commonly used in optimization algorithms. However, the
occasional inadequacy of this classic randomness solution
has led researchers to find new solutions. One of the new
solutions to hybridize optimization algorithms with a ran-
dom flight method is the Levy flight mechanism (LFM). .e
LFM also has a random number to be generated by the
processor, but the mechanism is based on a statistical
mathematical formula. .ere are many examples in the
literature using LFM for randomization: In 2007, Pavlyu-
kevich [21] used LFM in his research to theoretically validate
and justify a new stochastic algorithm for global optimi-
zation. In 2008, Barthelemy et al. [22] used the LFM to
optimize transmission and transmission of light. In 2009,
Yang and Deb [23] implemented the LFM into the cuckoo
search algorithm which is based on the obligate brood
parasitic behavior of some cuckoo species in combination
with the LFM behavior. Yang [24] worked on the firefly
algorithm to adapt LFM, and the numerical results of his
study proved that the proposed algorithm is superior to
existing metaheuristic algorithms. In 2010, Lin et al. [25]
proposed a bat algorithm with LFM for parameter esti-
mation in nonlinear dynamic biological systems. Hakli and
Uǧuz [26] implemented the PSO algorithm with LFM in
2014. In that study, an improvement was achieved with LFM,
and successful results were obtained due to the problem of
early convergence of the agents during the optimization and
localization of the agents. In 2017, Heidari and Pahlavani
[27] adapted LFM to the gray wolf optimization. Similarly to
the problem in PSO, they predicted that the lack of location
of the wolves caused local minimization and solved this
problem with the LFM.

.e DA developed by Mirjalili [28] with the LFM was
used to model the search process for the optimal solution of
dragonflies when there is no neighborhood solution. Nev-
ertheless, the randommotion of dragonflies is intermittently

interrupted by LFM and the step control mechanism within
the algorithm. .e LFM’s very large searching steps caused
interruption, and dragonflies could extend beyond the
search space. In order to prevent overflowing, a step control
mechanism was applied to the original algorithm. However,
the step control mechanism is contrary to the original
movement of the dragonflies and disrupts the nature of
swarm behavior.

.e main objective of this study is an adaptation of the
Brownian motion to DA instead of LFM and its application
to benchmark functions as available in the literature [29].
.e goal of our study is to improve the performance of the
DA and overcome the interruption problem caused by LFM.
.e reason for choosing the Brownian motion method is
that its isotropic approach (completely independent of di-
rection) increases the discovery capability. On the contrary,
the sizes of the steps, both controllable size and time-based
random form, prevent the outgoing of the search space,
providing continuity of motion. In addition, there is only
one study in which the Brownian motion has been used so
far in the area of optimization: An optimization method was
developed by using the Brownian motion of gas molecules in
nature and very successful results were obtained in the study
[29]. .ese results were compared with those of well-known
heuristic algorithms such as PSO and genetic algorithm
(GA). Within the scope of Abdechiri et al.’s [29] study, there
are two aims to be achieved: (i) to increase the effect of
random motion in metaheuristic algorithms and (ii) to
present the contribution of the Brownian motion to swarm
intelligence algorithms. Given the ease of implementation
and the results of the previous study, the Brownian motion
has a high potential to improve the performance of swarm-
inspired optimization algorithms.

In this study, the randomization stage of DA is improved
by means of the Brownian motion. .e modified DA was
compared with the original DA and tested in the optimi-
zation of single-objective and multiobjective benchmark
functions. .e results obtained from single-objective opti-
mization functions were compared to the minimum point
found, and the average values were calculated from 200
separate solutions of the benchmark functions. As a result of
these comparisons, 11 of 15 benchmark functions managed
to find better minimum points than the original DA. In
multiobjective optimization, 5 of 6 benchmark functions
achieved better results than the original DA in graphical
results obtained from 100 iterations. .e modified DA was
finally applied to the welded beam design problem, which is
a well-known real-life problem in the optimization field.
According to the results, the modified DA found 20% better
optimal cost than the original one. .e rest of the paper is
organized as follows: Section 2 presents detailed information
about the materials and methods used in the study, Section 3
outlines the test methods and results of the study, and
Section 4 concludes the paper.

2. Materials and Methods

2.1. Dragonfly Algorithm (DA). .e DA was developed by
Mirjalili at Griffith University in 2016 [28]. .is technique,

2 Computational Intelligence and Neuroscience

which is a metaheuristic algorithm based on swarm in-
telligence, is inspired by the static and dynamic behaviors of
dragonflies in nature. .ere are two main stages of opti-
mization: exploration and exploitation. .ese two phases
were modeled by dragonflies, either dynamically or statically
searching for food or avoiding the enemy.

.ere are two cases where swarm intelligence emerges in
dragonflies: feeding and migration. Feeding is modeled as a
static swarm in optimization; migration is modeled as a
dynamic swarm. According to Craig and Hart [30], the
swarms have three specific behaviors: separation, alignment,
and cohesion. Here, the concept of separation means that an
individual in the swarm avoids static collision with his
neighbor (equation (1)). Alignment refers to the speed at
which the agents are matched with the neighboring in-
dividuals (equation (2)). Finally, the concept of cohesion
shows the tendency of individuals towards the centre of the
herd (equation (3)).

Two additional behaviors are added to these three basic
behaviors in DA: moving towards food and avoiding the
enemy. .e reason for adding these behaviors to the algo-
rithm is that the main purpose of each swarm is to survive.
.erefore, when all individuals are moving towards food
sources (equation (4)), they must avoid the enemy in the
same time period (equation (5)). Each of these behaviors is
mathematically modeled as follows:

Si � −
N

j�1
X−Xj, (1)

Ai �

N
j�1Vj

N
, (2)

Ci �

N
j�1Xj

N
−X, (3)

Fi � X
+ −X, (4)

Ei � X
−

+ X. (5)

In the above equations, X represents the instantaneous
position of the individual, while Xj represents the in-
stantaneous position of the jth individual. N represents the
number of neighboring individuals, while Vj represents the
speed of the jth neighboring individual. X+ and X− represent
the location of the food source and enemy source,
respectively.

In order to update the position of artificial dragonflies in
the search space and simulate their motions, two vectors are
considered: step (ΔX) and position (X). .e step vector,
which can also be considered as speed, indicates the di-
rection of dragonfly motions (equation (6)). After calcu-
lating the step vector, the position vector is updated
(equation (7)):

∇Xt+1 � sSi + aAi + cCi + fFi + eEi(+ w∇Xt, (6)

Xt+1 � Xt + ∇Xt+1, (7)

where the values of s, a, and c in equation (6) represent
separation, alignment, and cohesion coefficients, re-
spectively, and f, e, w, and t values represent the food factor,
enemy factor, inertia coefficient, and iteration number, re-
spectively. .is coefficient and the mentioned factors enable
to perform exploratory and exploitative behaviors during
optimization. In the dynamic swarm, dragonflies tend to
align their flight. In the static motion, the alignment is very
low, while the fit to attack the enemy is very high. .erefore,
the coefficient of alignment is high and the cohesion co-
efficient is low in the exploration process; in the exploitation
process, the coefficient of alignment is low and the co-
efficient of cohesion is high.

2.2. Levy Flight Mechanism (LFM) and Dragonfly Algorithm.
LFM derives its name from the French mathematician Paul
Levy. Technically, this mechanism has an infinite variance
(possible length). Figure 1 shows the simulation of LFM in
the first 1000 steps.

In order to improve the randomness, the probabilistic
behavior, and the discovery of artificial dragonflies, a ran-
dom walk (LFM) solution is reached when there is no
neighborhood solution. Accordingly, the position of artifi-
cial dragonflies is updated as follows:

Xt+1 � Xt + Levy(d) × Xt, (8)

Levy(x) � 0.01 ×
r1 × σ

r2

1/β , (9)

σ �
τ(1 + β) × sin(πβ/2)

τ((1 + β)/2) × β × 2((β−1)/2)

1/β

, (10)

τ(x) � (x− 1)!, (11)

where d in equation (8) indicates the size of the position
vector, r1 and r2 in equation (9) are random numbers in the
range [0, 1], and β is a constant value.

In LFM used in DA, a multiplication, not included in the
original mathematical formula of the flight method, was
taken..is multiplication was obtained by taking 1% of LFM
size as seen in equation (9). .e aim here was to control the
step size. .is multiplication defines the value of a solution,
which states the amount of the best individual deviation after
LFM (position of the best individual). .e 1% deviation
value can be set according to the range of variables in the
application. For example, if the range of variables in the
application is [−10e6, 10e6], the multiplication value of 1%
can be set to 1.

Although LFM raises the performance of DA to a certain
extent, it is disadvantageous in that very long steps may
occur depending on the characteristics of the mechanism
(Figure 1)..ese major steps are tried to be controlled in two
ways in the algorithm: .e first one is that if a long step is
taken, the agents have to go outside the search space and a
new step vector is produced. However, it is not certain that
this solution will always give correct results. .e new step to

Computational Intelligence and Neuroscience 3

be produced may take the general operation back. .e
second one is to take 1% of the step size as seen in equation
(9) or a different percentage according to the variable range
in the application. .is solution method is better than the
first solution. However, the step size control is contrary to
the nature of LFM.

2.3. Brownian Motion. Another one of the random motion
mechanisms is the Brownian motion [31]. .is method is
inspired by the motion of free liquid/gas molecules. .e
introduction to the literature was done, thanks to Ingen-
housz, observing the random motion of the coal and dust
particles in 1779 while they were swimming in alcohol. .e
motion was discovered by the botanical scientist Robert
Brown in 1828. .e Brownian motion is defined as one of a
variety of physical phenomena where a quantity continu-
ously passes through small, random fluctuations. .e
Brownian motion is the random motion of particles sus-
pended in a liquid (or a gas) resulting from collisions with
fast moving molecules in the fluid. .e Brownian motion is
considered to be a Markov process with a Gaussian process
and a continuous path that occurs continuously over time.
Figure 2 shows an example of the Brownian motion in 1000
steps.

.ere are some basic differences between the LFM and
the Brownian motion. Mathematically, a random walk can
be defined as

XN+1 � XN + WN, (12)

where XN is the solution that exists in step N and WN is a
random vector generated from a known probability distri-
bution. If WN is produced from the Gaussian distribution,
random walking is isotropic. In this case, the motion takes
the form of normal diffusion and is called the Brownian
motion. .e expected step size can be modeled with square
root scaling as follows:

R(N)∝
��
N

√
. (13)

If the steps (WN) are obtained from a predetermined
tailed probability distribution, such as the Levy distribution
or the Cauchy distribution, the diffusion becomes abnormal.
In this case, the expected step size becomes

R(N)∝N
q
, q> 0. (14)

If q≥ 1/2, the diffusion is called superdiffusion. Both the
Levy distribution and the Cauchy distribution for step sizes
may have some of the major steps leading to superdiffusion.
.is means that the average distance increases faster than
that for normal diffusion.

2.4. Improvement of Dragonfly Algorithm with Brownian
Motion. Modification of DA by the Brownian motion is
expressed as follows:

Xt+1 � Xt + h∗ rand()∗Pg, (15)

h �

��
T

N

, (16)

N � 100∗T, (17)

Pg �
1

h
���
2π

√ exp −
(dimension− agents)2

2h2 . (18)

In equation (16), the term T represents the motion time
period in seconds of an agent (dragonfly). In this study, the T
value is taken as 0.01. .e term N in equation (17) gives the
number of suddenmotions (change in the path) for the same
agent in proportion to time. Unlike the LFM, the Brownian
motion steps are chosen based on the normal (Gaussian)

–40

–30

–20

–20 –10 0 –10 –20

–10

0

10

Figure 2: Simulation of the first 1000 steps of the Brownian
motion.

–300
–200 –100

100

0

–100

–200

4003002001000

Figure 1: Simulation of the first 1000 steps of LFM.

4 Computational Intelligence and Neuroscience

distribution instead of the dominant tailed distribution. .e
periodic motion of the dragonflies was spread over time with
a normal distribution, and sudden jumps and random
motions were made in the form of vibrations. .e equation
was modified by the size and number of agents in the al-
gorithm, and the Brownian motion was finalized (equation
(18)).

.e modified DA has been adapted for both single- and
multiobjective problems. Pseudocodes of the modified DA
for single- and multiobjective problems are given in Fig-
ures 3 and 4. Figure 5 shows the flowchart of the modified
DA for single-objective problems. .e optimization is
started by randomly placing dragonflies in the search space
and identifying step vectors. .en, the current position is
sent as a parameter to the comparison function. After that,
the best and the worst solutions are determined. Following
these solutions, the number of neighborhoods for each
dragonfly is examined. If each dragonfly has at least one
neighbor, the velocity vector is calculated with the co-
efficients determined at the beginning of the algorithm and
the position vector is updated. If the dragonflies have no
neighborhoods, the Brownian motion solution is used and
the position vector is updated accordingly. .en, it is
checked whether the dragonflies are in the search space. If
the control is positive, it is checked whether the criterion is
fulfilled. If the control is negative, then the neighborhood is
solved. .en, again, it is checked whether the criterion of
completion is achieved and the optimization is terminated.

.e flowchart of the modified DA for multiobjective
optimization is shown in Figure 6. Multiobjective optimi-
zation starts with placing dragonflies randomly in the search
space and identifying step vectors. .en, the maximum
archive size and the number of segments (hyperspheres) are
defined. .e instantaneous locations of the dragonflies are
sent as a parameter to the comparison function, and the
solutions that cannot be dominated by each other are
produced. If the archive is full, some solutions are eliminated
with the roulette wheel mechanism and new solutions are
added to the archive. If any of the added solutions are left out
of the hypersphere, the hypersphere is updated to cover all
solutions. Following these processes, the best and the worst
solutions in the archive are assigned as the source of nu-
trients and enemies, respectively. .e neighborhood control
is performed, and from there on, the algorithm works in the
same way as the single-objective problem optimization.

3. Test Results and Discussions

In this section, the experimental evaluation of the modified
DA is presented. .e MATLAB [32] software was used for
the solution of single-objective and multiobjective problem
optimizations and the application of the welded beam design
problem. In all cases, the computer used in simulations is
configured with 2.2GHz Intel Core i7 CPU and 6GB DDR3
RAM. 15 benchmark functions were used for the optimi-
zation of the single-objective problems and 6 for the mul-
tiobjective problems. .e results are compared and
discussed with those of the original DA in terms of mini-
mum point achieved and average performance.

3.1. Benchmark Functions. Test functions are useful for
evaluating convergence rate, precision, robustness, and
overall performance characteristics of optimization algo-
rithms. Here, some test functions are presented to give an
idea of different situations in any optimization algorithm
that can be encountered when dealing with such problems.
Only a general form of equality, limits of object variables,
and global minimum coordinates are given here. Tables 1
and 2 show the benchmark functions used for single-
objective and multiobjective problems.

3.2. Single-Objective Problem Optimization Results. .e
modified DA was tested by using 15 benchmark functions
for single-objective problem optimization, and the mini-
mum value for each test was compared with LFM results in
the DA (the original DA). .e Brownian motion in the
modified algorithmwas calculated separately by taking 1% of
the original form and the calculated step size expressed in
Section 2.3..e average value that is taken from 200 separate
iterations of the original DA was compared with that of the
two different versions of the modified DA: the Brownian
motion and step size-controlled Brownianmotion (SSCBM).
.e numerical results are shown in Table 3, and the graphical
representation of the results is presented in Figures 7 and 8.
When the results are evaluated in terms of minimum and
average values, the following inferences can be made:

(i) In terms of minimum values, when the Brownian
motion and SSCBM (the modified DA) are con-
sidered at the same time, they both gave better
results than LFM (the original DA) in 11 of 15
benchmark functions. While one function did not
change (F14) and one function reduced (F12), the
worst (0.63%) and the best (99.98%) improvements
were taken from F8 and F11, respectively.

(ii) In terms of minimum values, the results of the
Brownian motion showed performance between
0.63% and 86.05% in 11 of 15 benchmark functions.
In total, three functions (F3, F11, and F12) failed,
while there was no improvement in a function
(F14). When two functions (F2 and F10) with the
greatest success are observed, the Brownian motion
is effective enough to exceed 80% success in
problems with sharp boundaries. When the worst
three functions are considered, the Brownian mo-
tion is not an appropriate solution for global or
especially early convergent problems.

(iii) When the results obtained from the modified DA
with SSCBM were examined, they were better than
those of the Brownian motion in 9 of 15 benchmark
functions in terms of minimum values. SSCBM
achieved over 99% success (F6 and F11) in
benchmark functions that were clearly affected by
step size control.

(iv) In terms of average values, 10 of 15 benchmark
functions showed better results than LFM for both
versions of the modified DA. When the perfor-
mance results were examined without step size

Computational Intelligence and Neuroscience 5

control, progression was observed in 12 of 15
benchmark functions between 0.50% and 88.62%.
.e three functions (F1, F6, and F10) could not
show the desired average success after 200
iterations.

(v) .e biggest success was obtained from F7 with
88.8% in terms of average values using SSCBM. It
can be said that the local minimum is quite high and
SSCBM is more successful than LFM in this type of
function. When the worst three functions (F1, F3,
and F4) are examined in this manner, it can be seen
that although the minimum point in global func-
tions is more optimal than LFM, this optimality is
caused by random motion because these three
functions are similar and there was a decline
according to the average of 200 separate results.

(vi) Finally, the Brownian motion randomization (with
or without step size control), in accordance with its

nature, proved its success by giving better results
than LFM in most of the benchmark functions.

3.3. Multiobjective Problem Optimization Results. .e
modified DA was applied to multiobjective problems given
in Table 2, and 12 minimum values were obtained from 6
well-known benchmark functions used in the comparison.
In the modified DA, the results were obtained from 100
iterations over 100 solutions which did not dominate each
other after applying the Brownian motion step. .e nu-
merical f1 and f2 results are shown in Table 4, and graphical
results are shown through Figures 9–14.

When the results are analyzed numerically, f1 values are
mostly better in the original DA. .is is because f1 mini-
mization corresponds to the x1 position of artificial drag-
onflies in 5 of 6 problems. In the f2 minimization, the
expected difference is observed. .is is the phase where the

while the end condition is not satisfied
Calculate the objective values of dragonflies
Update the food source, enemy source, motion weights, and neighboring radius
if there is at least one neighbor of a dragonfly

Update velocity and position
if there is at least one dragonfly in the search space
finish
else
go to neighboring condition
end if

else
Apply the Brownian motion
Go to search space condition
end if

end while

Figure 3: Pseudocode of the modified DA for single-objective problems.

Initialize the dragonfly population and step vectors
Define the number of segments and archive size
while the end condition is not satisfied

Calculate the objective values of all dragonflies
Find the pareto optimal nondominated solutions and update the archive
while the archive is full

Run roulette wheel and insert the new solution to the archive
end while
while any of the solutions are not in the segment

Update the segments to cover all solutions
end while
Select food source and enemy source from archive
if there is at least one neighbor of a dragonfly

Update velocity and position
if there is at least one dragonfly in the search space
finish
else
go to neighboring condition
end if

else
Apply the Brownian motion
Go to search space condition
end if

end while

Figure 4: Pseudocode of the modified DA for multiobjective problems.

6 Computational Intelligence and Neuroscience

Yes

Yes

Yes

No

No

No

Initialize the
dragonfly

population and
step vectors

Calculate the objective values of
the dragonflies and update the food

source, enemy source, motion
weights, and neighboring radius

Is there any
neighbor of
a dragonfly?

Update velocity
and position

Apply the
Brownian motion

Are there any
dragonflies in

the search
space?

Is the end
condition
satisfied?

Start

End

Figure 5: Flowchart of the modified DA for single-objective problems.

Yes

No

Yes

No

No

Yes

No

Yes

Yes

No

Initialize the dragonfly
population and step

vectors

Define the number of
segments and
archive size

Is there any
neighbor of a

dragonfly?

Find the pareto optimal
nondominated solutions and

update the archive

Update the segments to
cover all solutions

Are any of
the

solutions
out of the
segment?

Calculate the objective values
of all dragonflies and update the

food source, enemy source,
motion weights, and
neighboring radius

Run roulette wheel and
insert the new solution to

the archive

Select food source and
enemy source from

the archive

Update the velocity and
position

Apply the Brownian motion

Are there any
dragonflies in

the search
space?

Is the
archive

full?

Is the end
condition
satisfied?

Start

End

Figure 6: Flowchart of the modified DA for multiobjective problems.

Computational Intelligence and Neuroscience 7

Table 1: Benchmark functions for single-objective problem optimization.

Function Dimension Range
F1(x) �

n
i�1x

2
i 10 [−100, 100]

F2(x) �
n
i�1|xi| +

n
i�1|xi| 10 [−10, 10]

F3(x) �
n
i�1(

I_

J−1XJ)2 10 [−100, 100]

F4(x) � maxi |xi|, 1≤ i≤ n 10 [−100, 100]

F5(x) �
n−1
i�1 [100(xi+1 −x2

i)2 + (xi − 1)2] 10 [−30, 30]

F6(x) �
n
i�1([xi + 0.5])2 10 [−100, 100]

F7(x) �
n
I_�1ix

4
i + random[0, 1) 10 [−1.28, 1.28]

F8(x) �
n
i�1−xi sin(

���
|xi|

) 10 [−500, 500]

F9(x) �
n
i�0[x2

i − 10 cos(2πxi) + 10] 10 [−5.12, 5.12]

F10(x) � −20 exp(−0.2
����������
(1/n)

n
i�1x

2
i

)− (exp(1/n)

n
i�1cos(2πxi)) + 20 + e 10 [−32, 32]

F11(x) � (1/4000)
n
i�1x

2
i −

n
i�1cos((xi/

�
i

√
) + 1) 10 [−600, 600]

F12(x) � (π/n) 10 sin(πy1) +
n−1
i�1 (yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2

+
n
i�1u(xi, 10, 100, 4)yi � ((xi + 1)/4)u(xi, a, k, m) �

k(xi − a)m xi > a

0 −a<xi < a

k(−xi − a)m xi <−a

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

10 [−50, 50]

F13(x) � 0.1 sin2(3πx1) +
n
i�1(xi − 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1 + sin2(2πxn)]

+
n
i�1u(xi, 5, 100, 4)

10 [−50, 50]

F14(x) �
n
i�1x

2
i 10 [−5, 5]

F15(x) �
n
i�1((x2

i)/(4000)i)
2 −

n
i�1cos((xi/

�
i

√
) + 1) 10 [−5, 5]

Table 2: Benchmark functions for multiobjective problem optimization.

Problem Definition

Zitzler–Deb–.iele 1

Minimize f1(x) � x1

Minimize f2(x) � g(x) xh(f1(x), g(x))

where g(x) � 1 + ((9/(N− 1))
N
i�2xi)

h(f1(x), g(x)) � 1−
���������������
((f1(x))/(g(x)))

, 0≤ xi ≤ 1, 1≤ i≤ 30

Zitzler–Deb–.iele 2

Minimize f1(x) � x1
Minimize f2(x) � g(x) xh(f1(x), g(x))

where g(x) � 1 + ((9/(N− 1))
N
i�2xi)

h(f1(x), g(x)) � 1− ((f1(x))/(g(x)))2, 0≤xi ≤ 1, 1≤ i≤ 30

Zitzler–Deb–.iele 1
(with linear pareto front)

Minimize f1(x) � x1
Minimize f2(x) � g(x) xh(f1(x), g(x))

where g(x) � 1 + (9/(N− 1))
N
i�2xi

h(f1(x), g(x)) � 1− ((f1(x))/(g(x))), 0≤xi ≤ 1, 1≤ i≤ 30

Zitzler–Deb–.iele 3

Minimize f1(x) � x1
Minimize f2(x) � g(x) xh(f1(x), g(x))

where g(x) � 1 + (9/29)
N
i�2xi

h(f1(x), g(x)) � 1−
�������������
(f1(x))/(g(x))

− ((f1(x))/(g(x)))sin(10πf1(x)), 0≤xi ≤ 1, 1≤ i≤ 30

Zitzler–Deb–.iele 4

Minimize f1(x) � x1
Minimize f2(x) � g(x) xh(f1(x), g(x))

where g(x) � 1 + 10(N− 1) +
N
i�2(x2

i − 10 sin(4πxi))

h(f1(x), g(x)) � 1−
�������������
(f1(x))/(g(x))

, 0≤xi ≤ 1, 1≤ i≤ 30

Zitzler–Deb–.iele 6

Minimize f1(x) � 1− exp(−4∗x1)∗ sin (6πx1)
6

Minimize f2(x) � g(x) xh(f1(x), g(x))

where g(x) � 1 + 9((
N
i�2xi)/(N− 1)0.25)

h(f1(x), g(x)) � 1− ((f1(x))/(g(x)))2, 0≤xi ≤ 1, 1≤ i≤ 30

8 Computational Intelligence and Neuroscience

real random motion of optimization is calculated to reach the
minimum f2 value. Here, the Brownian motion achieved an
average of 50% improvement in 5 out of 6 functions compared
to LFM. If the statistical regression in a function (ZDT3) is
examined, it is understood that the randommotion should be
applied stepwise in trigonometric rooted approaches.

When the results were analyzed graphically, the success
of the Brownian motion in terms of convergence and

coverage compared to LFM increased in proportion to the
increase in size. While the DA with LFM was tested in 5
dimensions in the previous study [28], the search space was
increased to 10 dimensions in order to increase the difficulty
after it has been modified, and the Brownian motion clearly
revealed its true success against the LFM.

.e results of the modified DA were compared not only
with those of the original algorithm but also with those of

91
.2

0

43
.9

9 63
.8

8

23
.8

4

27
.5

3

99
.2

6

28
.4

8

1.
26 12

.8
3

80
.0

0 99
.9

8

–8
8.

69

36
.8

0

0.
00 9.

83

58
.7

2 86
.0

5

–2
1.

02

12
.3

5

2.
16

59
.6

9

23
.2

7

0.
63 17

.8
9

80
.0

0

–4
.0

7

–7
5.

08

54
.0

5

0.
00 8.

09

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

With step size control
Without step size control

Figure 7: Percentage of the success rate of minimum values obtained from the modified DA.

Table 3: Comparative results of the single-objective benchmark functions.

Benchmark functions
Performance results Percentage of success rate

LFM SSCBM Brownian motion SSCBM Brownian motion
F1 (min.) 5.56E− 06 4.89E− 07 2.29E− 06 91.20 58.72
F1 (avg.) 4.59E+ 00 5.03E+ 00 4.93E+ 00 −9.71 −7.52
F2 (min.) 1.29E− 02 7.24E− 03 1.80E− 03 43.99 86.05
F2 (avg.) 1.46E+ 00 1.26E+ 00 8.68E− 01 13.59 40.69
F3 (min.) 8.39E− 02 3.03E− 02 1.02E− 01 63.88 −21.02
F3 (avg.) 1.38E+ 02 1.63E+ 02 8.40E+ 01 −17.42 39.30
F4 (min.) 3.45E− 02 2.63E− 02 3.02E− 02 23.84 12.35
F4 (avg.) 1.91E+ 00 2.08E+ 00 1.78E+ 00 −8.87 6.58
F5 (min.) 5.56E+ 00 4.03E+ 00 5.44E+ 00 27.53 2.16
F5 (avg.) 1.74E+ 03 1.45E+ 03 5.74E+ 02 16.97 67.06
F6 (min.) 4.10E− 07 3.04E− 09 1.65E− 07 99.26 59.69
F6 (avg.) 5.49E+ 00 4.30E+ 00 5.58E+ 00 21.55 −1.65
F7 (min.) 1.41E− 03 1.01E− 03 1.09E− 03 28.48 23.27
F7 (avg.) 1.95E− 01 2.18E− 02 2.22E− 02 88.80 88.62
F8 (min.) −3.89E+ 03 −3.94E+ 03 −3.92E+ 03 1.26 0.63
F8 (avg.) −2.82E+ 03 −2.84E+ 03 −2.93E+ 03 1.05 4.22
F9 (min.) 2.99E+ 00 2.61E+ 00 2.46E+ 00 12.83 17.89
F9 (avg.) 3.06E+ 01 2.44E+ 01 2.47E+ 01 20.39 19.47
F10 (min.) 4.44E− 15 8.88E− 16 8.88E− 16 80.00 80.00
F10 (avg.) 2.28E+ 00 2.26E+ 00 2.32E+ 00 0.63 −1.79
F11 (min.) 3.94E− 03 8.59E− 07 4.10E− 03 99.98 −4.07
F11 (avg.) 4.70E− 01 4.38E− 01 4.34E− 01 6.81 7.71
F12 (min.) 1.63E− 04 3.07E− 04 2.85E− 04 −88.69 −75.08
F12 (avg.) 1.29E+ 00 1.20E+ 00 1.29E+ 00 7.11 0.50
F13 (min.) 6.70E− 05 4.23E− 05 3.08E− 05 36.80 54.05
F13 (avg.) 8.35E− 01 6.90E− 01 6.71E− 01 17.38 19.72
F14 (min.) 9.98E− 01 9.98E− 01 9.98E− 01 0.00 0.00
F14 (avg.) 1.25E+ 00 1.23E+ 00 1.20E+ 00 1.97 3.97
F15 (min.) 3.41E− 04 3.08E− 04 3.13E− 04 9.83 8.09
F15 (avg.) 2.45E− 03 2.12E− 03 2.04E− 03 13.45 16.70
Note: min.�minimum; avg.� average.

Computational Intelligence and Neuroscience 9

some very important optimization algorithms such as GA,
PSO, and ACO by means of basic statistics (i.e., mean and
standard deviation).

Table 5 shows the results of 4 algorithms on 15 different
benchmark functions..ese results were carried out with a total
of 500 iterations with 40 agents for each optimization method.

When the results are analyzed, the proposed method
for solving the benchmark functions with an early con-
vergence problem has produced similar and successful
results with those of the ACO algorithm according to
other algorithms..is means that the pheromone solution
used by the ants is similar to the short-step solution of the

Table 4: Results of the multiobjective benchmark functions.

Algorithm
ZDT1 ZDT2 ZDT1 linear ZDT3 ZDT4 ZDT6

f1 f2 f1 f2 f1 f2 f1 f2 f1 f2 f1 f2
.e original DA 0.20 2.00 0.15 1.57 0.07 1.04 0.40 0.28 0.14 2.24 0.19 1.71
.e modified DA 0.21 0.50 0.50 0.72 0.55 0.45 0.22 0.43 0.20 0.60 0.61 0.91

1.2

1

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.8

0.6

0.4

f2

f1

0.2

0

True PF
Obtained PF

(a)

f2

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f1

True PF
Obtained PF

3.5

3

2.5

2

1.5

1

0.5

0

(b)

Figure 9: Pareto-optimal front comparison of ZDT1 optimization (PF� pareto front): (a) Brownian motion; (b) LFM.

–9
.7

1

13
.5

9

–1
7.

42

–8
.8

7

16
.9

7

21
.5

5

88
.8

0

1.
05

20
.3

9

0.
63 6.

81 7.
11 17

.3
8

1.
97

13
.4

5

–7
.5

2

40
.6

9

39
.3

0

6.
58

67
.0

6

–1
.6

5

88
.6

2

4.
22

19
.4

7

–1
.7

9

7.
71

0.
50

19
.7

2

3.
97

16
.7

0

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

With step size control
Without step size control

Figure 8: Percentage of the success rate of average values obtained from the modified DA.

10 Computational Intelligence and Neuroscience

Brownian motion. .e pheromone, which keeps ants close
to each other and increases their nutrient concentration,
has shown the effect of the neighborhood radius on the
Brownian motion.

PSO was more successful than other algorithms in terms
of standard deviations. .e reason for this is that as in the
original dragonfly algorithm, the long steps extend the

search space and rarely reach the result in a shorter time. On
the contrary, the proposed method has been more successful
than PSO on benchmark functions with local minima. .e
reason for this is that the short steps to different directions in
the Brownian motion method allow the particles to discover
different aspects and produce better solutions at the relevant
time interval.

1

0.8

0.7

0.9

0.6

0.5

0.4

0.3

f2

0.2

0.1

0
10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f1

True PF
Obtained PF

(a)

2

1.6

1.4

1.8

1.2

1

0.8

0.6

f2

0.4

0.2

0
10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f1

True PF
Obtained PF

(b)

Figure 10: Pareto-optimal front comparison of ZDT2 optimization (PF� pareto front): (a) Brownian motion; (b) LFM.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1
0

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f1

True PF
Obtained PF

(a)

3.5

3

2.5

2

1.5

1

0.5

0

f2

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f1

True PF
Obtained PF

(b)

Figure 11: Pareto-optimal front comparison of ZDT1 linear optimization (PF� pareto front): (a) Brownian motion; (b) LFM.

Computational Intelligence and Neuroscience 11

3.4. A Solution of the Welded Beam Design Problem with the
Modified Dragonfly Algorithm. .e welded beam design is a
practical design problem that is often used as a benchmark in
testing different optimization techniques. .e problem is an
example of structural optimization problems, which consists
of a nonlinear objective function and five nonlinear con-
straints [33]..e welded beam design problemwas solved by
many algorithms such as GA [34], simulated annealing [35],
evolutionary strategy [36], and gravitational search algo-
rithm [37].

In this study, the welded beam design problem was
implemented in order to show the effectiveness of the

modified DA..e reason for choosing this problem is that it
was used many times as an application of hybrid swarm-
inspired optimization techniques in the past. One of these is
Kaveh and Talatahari’s study [38] which hybridizes PSO and
ACO. Another study is the application of the upgraded ACO
[39], and Brajevic and Tuba [40] proposed a solution for
limited engineering problems. Liao et al. [41] used it in the
application of mixed-variable optimization problems, and
finally, it is used by Ranjini and Murugan [20] for the
memory-based modification of DA.

.e welded beam design problem aims to minimize the
manufacturing cost of the welded beam by finding a suitable

1.2

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

f2

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f1

True PF
Obtained PF

(a)

1.2

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

f2

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f1

True PF
Obtained PF

(b)

Figure 12: Pareto-optimal front comparison of ZDT3 optimization (PF� pareto front): (a) Brownian motion; (b) LFM.

1

0.9

0.8

0.7

0.6

0.4

0.5

0.3

0.2

0.1

0

f2

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f1

True PF
Obtained PF

(a)

4

3.5

3

2

2.5

1.5

1

0.5

0

f2

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f1

True PF
Obtained PF

(b)

Figure 13: Pareto-optimal front comparison of ZDT4 optimization (PF� pareto front): (a) Brownian motion; (b) LFM.

12 Computational Intelligence and Neuroscience

set of four structural parameters of the beam. .ese four
structural parameters are the thickness of the weld (x1), the
length of the clamped bar (x2), the height of the bar (x3), and
the thickness of the bar (x4). Relevant restrictions include
shear stress (τ), bending stress (θ) in the beam, buckling load
(P), and the last deflection of the beam (δ). Figure 15 shows
the systematic design of the problem.

.e total cost is equal to labor costs (a function of the
source dimensions) and the cost of welding and beam
material. .e beam will be optimized for the minimum cost
by changing the source and element dimensions (x1, x2, x3,
and x4)..e variables x1 and x2 are usually integer multiples
of 0.0625 inches but are considered to be continuous for this

application. .e parameters and values of the problem are
given in the following equations:

E � 30 × 106 psi, (19)

G � 12 × 106 psi, (20)

L � 14 inches, (21)

τmax � 13600 psi, (22)

σmax � 30000 psi, (23)

1

0.9

0.8

0.7

0.6

0.4

0.5

0.3

0.2

0.1

0

f2

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f1

True PF
Obtained PF

(a)

9

8

7

6

4

5

3

2

1

0

f2

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f1

True PF
Obtained PF

(b)

Figure 14: Pareto-optimal front comparison of ZDT6 optimization (PF� pareto front): (a) Brownian motion; (b) LFM.

Table 5: Comparison of the modified DA with well-known optimization algorithms.

Benchmark functions
Algorithms

.e modified DA ACO GA PSO
Mean Std. Mean Std. Mean Std. Mean Std.

F1 4.93E+ 00 7.16E− 18 5.80E− 19 9.85E− 18 1.03E+ 03 4.47E+ 02 5.78E− 18 1.80E− 17
F2 8.68E− 01 3.76E− 05 3.09E− 05 5.17E− 05 8.21E+ 00 2.11E+ 00 4.34E− 03 1.35E− 02
F3 8.40E+ 01 2.10E− 06 6.04E− 06 2.89E− 06 2.68E+ 03 1.37E+ 03 2.60E− 03 4.55E− 03
F4 1.78E+ 00 2.78E− 03 2.15E− 05 3.82E− 03 2.91E+ 01 1.13E+ 01 2.40E− 03 3.46E− 03
F5 5.74E+ 02 6.79E+ 00 7.56E+ 00 9.33E+ 00 1.83E+ 05 1.17E+ 05 8.72E+ 01 1.10E+ 02
F6 5.58E+ 00 1.32E− 15 5.73E− 15 1.82E− 15 7.75E+ 02 3.16E+ 02 6.00E− 15 1.90E− 16
F7 2.22E− 02 4.69E− 03 1.42E− 02 6.45E− 03 2.29E− 01 9.98E− 02 8.21E− 03 4.93E− 03
F8 −2.93E+ 03 3.84E+ 02 −3.93E+ 03 5.28E+ 02 −4.68E+ 03 1.11E+ 02 −9.76E+ 09 1.65E+ 12
F9 2.47E+ 01 9.48E+ 00 2.20E+ 01 1.30E+ 01 3.51E+ 01 9.17E+ 00 1.44E+ 01 1.08E+ 01
F10 2.32E+ 00 4.87E− 01 3.18E− 01 6.70E− 01 1.31E+ 01 1.75E+ 00 3.85E− 01 8.27E− 01
F11 4.34E− 01 7.35E− 02 2.66E− 02 1.01E− 01 1.06E+ 01 4.99E+ 00 1.15E− 01 4.82E− 02
F12 1.29E+ 00 9.83E− 02 4.28E− 02 1.35E− 01 2.56E+ 03 8.00E+ 03 1.18E− 10 3.73E− 10
F13 6.71E− 01 4.63E− 03 3.02E− 03 6.37E− 03 9.36E+ 04 1.21E+ 05 3.02E− 03 6.37E− 03
F14 1.20E+ 00 9.12E+ 01 1.42E+ 02 1.25E+ 02 1.79E+ 02 2.93E+ 01 2.06E+ 02 1.86E+ 02
F15 2.04E− 03 8.06E+ 01 2.67E+ 01 1.11E+ 02 1.60E+ 02 2.64E+ 01 2.59E+ 02 2.16E+ 02
Note: Std.� standard deviation.

Computational Intelligence and Neuroscience 13

δmax � 0.25 inches, (24)

P � 6000 lb, (25)

f(x) � C0 + C1 + C2. (26)

Young’s modulus (psi) is given in equation (19), the
shear modulus (psi) for the beam material in equation (20),
the protrusion length (inches) of the member in equation
(21), welding design stress (psi) in equation (22), normal
design stress (psi) in equation (23) for the beam material,
maximum deviation in equation (24), and load (lb) in
equation (25). .e cost function of the problem is shown in
equation (26).

In equation (26), C0 represents the initial cost, but it is
assumed that the connections required for the installation
and retention of the rod during welding are available.
.erefore, the cost C0 in the total cost model can be ignored.
C0 represents the cost of resources, and C2 represents the
cost of materials. .e welded beam design problem was
carried out with 40 dragonflies with 200 iterations. .e
average values were obtained after the optimization was
performed 200 times. .e results are shown in Table 6.

According to the results obtained, although the Brownian
motion was less successful in terms of the minimum cost
without step size controlling, it has almost the same result
with LFM. .e most significant success of the Brownian
motion can be seen from the average values. When no step
size controlling is applied to the algorithm, the Brownian
motion is more successful than LFM..ismeans that the long
premature jumps of LFM do not always have a positive effect.
.e step size controlling the movement of the Brownian
motion increases the likelihood of reaching optimal results.
On the contrary, the Brownian motion has yielded 20% more
successful results than LFM in terms of minimum cost when
1% step size controlling has been applied. .e success of the
modified DA will be a guide for the solution of other real-
world problems according to all these results.

3.5. Analysis of the Modified DA. In this study, long sudden
jumps which are one of the main differences between LFM

and Brownian motion were examined. As previously
mentioned, long sudden steps are a solution that LFM
produces to avoid early convergence. However, as a result of
this solution, the step produced from time to time leads to
the renewal of the step when it goes out of the search space.
.is causes time loss. At this point, the Brownian motion
solution that we have implemented rescues the algorithm
from these long steps.

.e data obtained from Figure 16 show the long steps
taken by 40 dragonflies through 1 iteration. Here, the long
steps are taken as a result of the threshold value applied by
taking the average distance from the steps taken for each
method. As can be seen in the results, in the original DAwith
LFM, the long steps produced for each function are at least 5
and the average is 9.26. In the modified DA with Brownian
motion, these numbers are at least 0 and average is 1.53..is
is themain difference between themethods in this study, and
our suggestion is that this difference often leads to success.

Even though the irregular jumps of LFM which is the
motivation of the study are corrected by the Brownian
motion, dragonflies may need sudden jumps to escape from
the local minima. Although the proposed method greatly
improves the irregular jumps caused by LFM from time to
time, there is a rare possibility that it may get stuck in local
minima. On the contrary, the number of neighbors in which
the dragonflies have mass mobility has experienced a slight
decrease with the Brownian motion. .is, in a very rare way,
can reduce communication groups and cause discovery to be
restricted.

.e modified DA has time complexity just like all other
optimization algorithms. It depends on the population size
and number of iterations. .e overall complexity of the
modified DA can be expressed as O(number of iterations∗
population size). Using Brownian motion instead of LFM
did not affect the time complexity of the original algorithm.
.e goal here is to achieve the optimum result with the
optimum number of dragonflies. Apart from the number of
dragonflies, the dimension of the benchmark functions and
the number of iterations are among the factors affecting the
execution time. However, in contrast to the number of
dragonflies, the concept of dimension has an inverse pro-
portional effect with velocity. Table 7 compares the modified
DA and the original DA in terms of execution time. .e
results of this comparison were obtained with 40 dragonfly
agents, 15 different benchmark functions (all are in 10 di-
mensions), and 200 iterations.

When the results were examined, 7 of the total 15
functions improved by averagely 5%. On the contrary, there
is an average of 3% regression observed for the remaining 8
functions. Two of the functions provided for improvement
are outstanding: When F5 is examined, it has been observed
that improvement in processing time is due to Brownian
motion’s short steps in different directions. When LFM was
used, the fact that the step had to be dismissed because of the
long jumps caused the execution time to be prolonged.
Additionally, when F8 is examined from these functions, it is
seen how the problem of early convergence which is the
main optimization problem is solved with the Brownian
motion. LFM used to solve this problem in the original

x2

x3

x4

L

x1

Member

Load P

Beam

Figure 15: Welded beam design problem.

14 Computational Intelligence and Neuroscience

algorithm does not always provide the exact solution as
mentioned in the study. .e Brownian motion, on the
contrary, can be more successful in preventing getting stuck

in local minima as it aims to go in different directions at
every step. When F2 is examined from the observed func-
tions, it is realized that the long steps in LFM worked this
time and the short steps in the Brownian motion failed. .e
result to be taken as neutral here is that the success of the
method may change according to the characteristic of the
function.

4. Conclusions

Randomization is one of the essential elements of optimi-
zation techniques based on swarm intelligence. It plays a
very important role in both exploration and exploitation
stages. In this study, the randomization stage of DA, which
is one of the swarm-based algorithms, used effectively in
recent years, is modified with the Brownian motion. .e
results of the single-objective problem optimization from
the obtained results clearly show that when the Brownian
motion is used instead of LFM, definite success is achieved
in the context of the minimum values in the benchmark
functions. On the contrary, the modified DA was tested on
6 multiobjective problems. When numerical and graphical
results are examined, it can be seen that the Brownian

Table 6: Comparative optimum cost results of the welded beam design problem.

Algorithm
Without SSC 10% SSC 1% SSC

Min. Avg. Min. Avg. Min. Avg.
.e original DA 1.302 4689.090 1.253 1.985 1.252 1.718
.e modified DA 1.293 1.956 1.252 2.079 1.204 1.930
Note: SSC� step size control; Min.�minimum; Avg.� average.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
The original DA 10 8 12 11 8 9 7 11 9 5 8 10 9 9 13
The modified DA 2 1 1 0 3 1 0 2 3 2 3 1 1 2 1

0
2
4
6
8

10
12
14

F1
F2

F3

F4

F5

F6

F7

F8F9

F10

F11

F12

F13

F14

F15

The original DA

The modified DA

Figure 16: Comparison of long sudden jump counts of the original and modified algorithms.

Table 7: Comparison of execution times.

Function
Processing time (seconds) Decrease in

execution time.e original DA .e modified DA
F1 16.055 15.252 5%
F2 15.543 16.104 −4%
F3 15.643 15.742 −1%
F4 15.390 15.710 −2%
F5 17.125 15.430 10%
F6 14.883 15.290 −3%
F7 15.800 15.396 3%
F8 17.594 15.886 10%
F9 15.008 15.658 −4%
F10 15.145 14.758 3%
F11 15.307 15.034 2%
F12 16.439 16.000 3%
F13 15.389 15.994 −4%
F14 13.254 13.478 −2%
F15 14.675 15.221 −4%

Computational Intelligence and Neuroscience 15

motion has significant success in 10-dimensional space
compared to LFM.

As a general evaluation of the results, the long sudden
steps from LFM sometimes caused the search space to be out
of the search space. .erefore, the random motion had to be
reproduced from the beginning. .is is a costly time-con-
suming situation and it changes the original movement.
However, with the Brownian motion, there is a significant
reduction in the number of long steps in each iteration
(Figure 16), and the original randomness is retained without
having to repeat the movement. .is has increased the
importance of the neighborhood radius used in the original
algorithm, both while saving time and facilitating the
movement of dragonflies together.

In addition, the problem of getting stuck in the local
minima (fast convergence) and the problem of infinite
looping in the search field, as in most optimization algo-
rithms and the original DA, have been significantly exceeded
by the Brownian movement’s principle of random motion
generation in a different direction.

In addition to the success of LFM in relation to the usual
random motion, this success of the Brownian motion also
highlights the importance of random flight mechanisms.
Random motion algorithms have a high effect on perfor-
mance of optimization techniques. Finally, this success of the
Brownian motion has shown another way to improve the
results of other optimization techniques as the future work.

Data Availability

No data were used to support this study.

Conflicts of Interest

.e authors declare that they have no conflicts of interest.

Acknowledgments

.is academic work was linguistically supported by the
Mersin Technology Transfer Office Academic Writing
Centre of Mersin University.

References

[1] W.-L. Chang, D. Zeng, R.-C. Chen, and S. Guo, “An artificial
bee colony algorithm for data collection path planning in
sparse wireless sensor networks,” International Journal of
Machine Learning and Cybernetics, vol. 6, no. 3, pp. 375–383,
2015.

[2] M. Reed, A. Yiannakou, and R. Evering, “An ant colony al-
gorithm for themulti-compartment vehicle routing problem,”
Applied Soft Computing, vol. 15, pp. 169–176, 2014.

[3] N. Menon and R. Ramakrishnan, “Brain tumor segmentation
in MRI images using unsupervised artificial bee colony al-
gorithm and FCM clustering,” in Proceedings of the 2015
International Conference on Communications and Signal
Processing (ICCSP), Chengdu, China, April 2015.

[4] M. Saidi-Mehrabad, S. Dehnavi-Arani, F. Evazabadian, and
V. Mahmoodian, “An ant colony algorithm (ACA) for solving
the new integrated model of job shop scheduling and conflict-

free routing of AGVs,” Computers & Industrial Engineering,
vol. 86, pp. 2–13, 2015.

[5] D. C. Secui, “A new modified artificial bee colony algorithm
for the economic dispatch problem,” Energy Conversion and
Management, vol. 89, pp. 43–62, 2015.

[6] L. Zou, L. Shu, S. Dong, C. Zhu, and T. Hara, “A multi-
objective optimization scheduling method based on the ant
colony algorithm in cloud computing,” IEEE Access, vol. 3,
no. 1, pp. 2687–2699, 2015.

[7] E. Tuba, A. Alihodzic, and M. Tuba, “Multilevel image
thresholding using elephant herding optimization algorithm,”
in Proceedings of the 2017 14th International Conference on
Engineering of Modern Electric Systems (EMES 2017),
pp. 240–243, Oradea, Romania, June 2017.

[8] M. Sonmez, A. P. Akgüngör, and S. Bektaş, “Estimating
transportation energy demand in Turkey using the artificial
bee colony algorithm,” Energy, vol. 122, pp. 301–310, 2017.

[9] B. Babayigit, “Synthesis of concentric circular antenna arrays
using dragonfly algorithm,” International Journal of Elec-
tronics, vol. 105, no. 5, pp. 784–793, 2018.

[10] E. Tuba and Z. Stanimirovic, “Elephant herding optimization
algorithm for support vector machine parameters tuning,” in
Proceedings of the 9th International Conference on Electronics,
Computers and Artificial Intelligence (ECAI 2017), pp. 1–4,
Piscataway, NJ, USA, June 2017.

[11] S. Debnath, A. Jee, and S. Baishya, “Access Point Planning for
Disaster Scenario using Dragonfly Algorithm,” in Proceedings
of the 2018 5th International Conference on Signal Processing
and Integrated Networks (SPIN), pp. 226–231, Noida, India,
February 2018.

[12] J. Yang and Y. Zhuang, “An improved ant colony optimi-
zation algorithm for solving a complex combinatorial opti-
mization problem,” Applied Soft Computing, vol. 10, no. 2,
pp. 653–660, 2010.

[13] J. H. Roh, M. J. Kim, H. Y. Song, J. B. Park, S. U. Lee, and
S. Y. Son, “An improved particle swarm optimization for
nonconvex economic dispatch problems,” IEEE Transactions
on Power Systems, vol. 25, no. 1, pp. 156–166, 2010.

[14] B. Yu, Z.-Z. Yang, and J.-X. Xie, “A parallel improved ant
colony optimization for multi-depot vehicle routing prob-
lem,” Journal of the Operational Research Society, vol. 62,
no. 1, pp. 183–188, 2011.

[15] D. Karaboga and B. Akay, “A modified artificial bee colony
(ABC) algorithm for constrained optimization problems,”
Applied Soft Computing, vol. 11, no. 3, pp. 3021–3031, 2011.

[16] B. Akay and D. Karaboga, “A modified Artificial Bee Colony
algorithm for real-parameter optimization,” Information
Sciences, vol. 192, pp. 120–142, 2012.

[17] K. Ishaque, Z. Salam, M. Amjad, and S. Mekhilef, “An im-
proved particle swarm optimization (PSO)-based MPPT for
PV with reduced steady-state oscillation,” IEEE Transactions
on Power Electronics, vol. 27, no. 8, pp. 3627–3638, 2012.

[18] R. Forsati, A. Keikha, and M. Shamsfard, “An improved bee
colony optimization algorithm with an application to docu-
ment clustering,” Neurocomputing, vol. 159, no. 1, pp. 9–26,
2015.

[19] M. A. Salam, H. M. Zawbaa, E. Emary, K. K. A. Ghany, and
B. Parv, “A hybrid dragonfly algorithm with extreme learning
machine for prediction,” in Proceedings of the 2016 In-
ternational Symposium on Innovations in Intelligent SysTems
and Applications (INISTA 2016), Sinaia, Romania, August 2016.

[20] K. S. S. Ranjini and S. Murugan, “Memory based hybrid
dragonfly algorithm for numerical optimization problems,”
Expert Systems with Applications, vol. 83, pp. 63–78, 2017.

16 Computational Intelligence and Neuroscience

[21] I. Pavlyukevich, “Lévy flights, non-local search and simulated
annealing,” Journal of Computational Physics, vol. 226, no. 2,
pp. 1830–1844, 2007.

[22] P. Barthelemy, J. Bertolotti, and D. S. Wiersma, “A Lévy flight
for light,” Nature, vol. 453, no. 7194, pp. 495–498, 2008.

[23] X.-S. Yang and S. Deb, “Cuckoo search via Levy flights,” in
Proceedings of the World Congress on Nature & Biologically
Inspired Computing (NaBIC 2009), New Delhi, India, De-
cember 2009.

[24] X. Yang, “Firefly algorithm, Levy flights and global optimi-
zation,” in Research and Development in Intelligent Systems
XXVI, pp. 1–10, Springer, Cambridge, UK, 2009.

[25] J. Lin, C. Chou, C. Yang, and H. Tsai, “A chaotic Levy flight
Bat algorithm for parameter estimation in nonlinear dynamic
biological systems,” Computer and Information Technology,
vol. 2, no. 2, pp. 56–63, 2012.

[26] H. Hakli and H. U�guz, “A novel particle swarm optimization
algorithm with Levy flight,” Applied Soft Computing Journal,
vol. 23, pp. 333–345, 2014.

[27] A. A. Heidari and P. Pahlavani, “An efficient modified grey
wolf optimizer with Lévy flight for optimization tasks,” Ap-
plied Soft Computing, vol. 60, pp. 115–134, 2017.

[28] S. Mirjalili, “Dragonfly algorithm: a new meta-heuristic op-
timization technique for solving single-objective, discrete, and
multi-objective problems,” Neural Computing and Applica-
tions, vol. 27, no. 4, pp. 1053–1073, 2016.

[29] M. Abdechiri, M. R. Meybodi, and H. Bahrami, “Gases
Brownian Motion optimization: an algorithm for optimiza-
tion (GBMO),” Applied Soft Computing, vol. 13, no. 5,
pp. 2932–2946, 2013.

[30] W. Craig and R. Hart, “Flocks, herds and schools: a dis-
tributed behavioral model,” ACM SIGGRAPH Computer
Graphics, vol. 21, no. 4, pp. 25–34, 1987.

[31] T. Hida, BrownianMotion, Springer US, New York, NY, USA,
1980.

[32] MathWorks, MATLAB and Statistics Toolbox, MathWorks,
Natick, MA, USA, 2014.

[33] K. Deb, “Optimal design of a welded beam via genetic al-
gorithms,” AIAA Journal, vol. 29, no. 11, pp. 2013–2015, 1991.

[34] C. A. C. Coello, “Use of a self-adaptive penalty approach for
engineering optimization problems,” Computers in Industry,
vol. 41, no. 2, pp. 113–127, 2000.

[35] A.-R. Hedar and M. Fukushima, “Derivative-free filter sim-
ulated annealing method for constrained continuous global
optimization,” Journal of Global Optimization, vol. 35, no. 4,
pp. 521–549, 2006.

[36] E. Mezura-Montes and C. A. C. Coello, “An empirical study
about the usefulness of evolution strategies to solve con-
strained optimization problems,” International Journal of
General Systems, vol. 37, no. 4, pp. 443–473, 2008.

[37] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, “GSA: a
gravitational search algorithm,” Information Sciences, vol. 179,
no. 13, pp. 2232–2248, 2009.

[38] A. Kaveh and S. Talatahari, “Engineering optimization with
hybrid particle swarm and ant colony optimization,” Asian
Journal of Civil Engineering, vol. 10, no. 6, pp. 611–628, 2009.

[39] A. Kaveh and S. Talatahari, “An improved ant colony opti-
mization for constrained engineering design problems,”
Engineering Computations, vol. 27, no. 1, pp. 155–182, 2010.

[40] I. Brajevic and M. Tuba, “An upgraded artificial bee colony
(ABC) algorithm for constrained optimization problems,”
Journal of Intelligent Manufacturing, vol. 24, no. 4, pp. 729–
740, 2013.

[41] T. Liao, K. Socha, M. A. Montes de Oca, T. Stutzle, and
M. Dorigo, “Ant colony optimization for mixed-variable
optimization problems,” IEEE Transactions on Evolutionary
Computation, vol. 18, no. 4, pp. 503–518, 2014.

Computational Intelligence and Neuroscience 17

