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PTX3 is a soluble pattern recognition molecule (PRM) belonging to the humoral innate
immune system, rapidly produced at inflammatory sites by phagocytes and stromal cells
in response to infection or tissue injury. PTX3 interacts with microbial moieties and
selected pathogens, with molecules of the complement and hemostatic systems, and
with extracellular matrix (ECM) components. In wound sites, PTX3 interacts with fibrin and
plasminogen and favors a timely removal of fibrin-rich ECM for an efficient tissue repair.
Idiopathic Pulmonary Fibrosis (IPF) is a chronic and progressive interstitial lung disease of
unknown origin, associated with excessive ECM deposition affecting tissue architecture,
with irreversible loss of lung function and impact on the patient’s life quality. Maccarinelli
et al. recently demonstrated a protective role of PTX3 using the bleomycin (BLM)-induced
experimental model of lung fibrosis, in line with the reported role of PTX3 in tissue repair.
However, the mechanisms and therapeutic potential of PTX3 in IPF remained to be
investigated. Herein, we provide new insights on the possible role of PTX3 in the
development of IPF and BLM-induced lung fibrosis. In mice, PTX3-deficiency was
associated with worsening of the disease and with impaired fibrin removal and
subsequently increased collagen deposition. In IPF patients, microarray data indicated
a down-regulation of PTX3 expression, thus suggesting a potential rational underlying the
development of disease. Therefore, we provide new insights for considering PTX3 as a
possible target molecule underlying therapeutic intervention in IPF.
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INTRODUCTION

Role of PTX3 in Humoral Innate Immunity
The pentraxin family is an ancient group of evolutionarily
conserved proteins belonging to humoral innate immunity that
act as pattern recognition molecules (PRM). PTX3, the prototype
of the long pentraxins arm, differs from the short pentraxins C
reactive protein (CRP) and serum amyloid P component (SAP/
PTX2) in molecular structure, gene organization, cellular source,
and recognized ligands. PTX3 is rapidly produced by
mononuclear phagocytes or stromal cells, including
mesenchymal, smooth muscle, and endothelial cells (ECs) (1–5),
in response to primary proinflammatory cytokines (IL‐1b and
TNF-a), TLR agonists, microbial components (LPS or Outer
membrane protein-A) and microbes. The molecule acts as an
opsonin during infections, facilitating phagocytosis and activating
the complement cascade (6). Genetic evidence in mice (7) and
humans (8–15) suggests that PTX3 plays an essential role in
resistance against selected pathogens, in particular A. fumigatus.
In addition, PTX3 is induced in response to tissue injury and,
through the interaction with the complement system and ECM
components, plays non-redundant roles in tissue repair and
cancer (1, 16). The relevance of PTX3 in the assembly of the
cumulus oophorous was the first evidence of its role in ECM.
Female subfertility associated with PTX3-deficiency (2, 6) also
emphasizes the importance of this protein in ECM assembly
and remodeling.

Inflammation activates various tissue response cascades that
lead to ECM re-organization, removal of ECM debris, and
clearance of apoptotic cells, thus favoring tissue healing. In this
context, PTX3 is involved in the turnover of fibrin-rich deposits
at wound sites after tissue injury, and consequent collagen
deposition (16). Furthermore, when the stimuli persist or the
resolution program is broken or stumbled, the inflammatory
response may become chronic, impacting tissue remodeling and
PTX3 expression. Macrophages are susceptible to the
inflammatory environment and are key cells to modulate this
system through PRMs. During the early inflammatory phase,
M1‐polarized macrophages accumulate and orchestrate the
inflammatory response. The subsequent switch to an M2-
phenotype is crucial for resolving inflammation and tissue repair
(17–19). M2-macrophages contribute to tissue homeostasis,
dampening inflammation, scavenging ECM debris, and
participating in tissue remodeling and repair (19, 20). On the other
hand, apoptotic cells generated during chronic inflammation trigger
the resolution, with significant changes in macrophage functions.
Opsonization of apoptotic cells by PTX3 promotes their recognition
by macrophages and subsequent efferocytosis (21), contributing to
diverseM2-phenotypes switching (6) and regulating IL-10 andTGF-
b1 production (22). Thus, PTX3 may play a homeostatic role in
orchestrating tissue adaptation by coordinating leukocytemigration,
resolution, and tissue healing.

PTX3 has been considered an essential regulator of airway
mucosal surface homeostasis (23) and is useful as a disease or
prognostic marker. In addition, the protein exerts a role in lung
immunity against immunological dangers such as respiratory
infections, allergy, tissue damage, and malfunction (24). As a
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humoral mediator of innate immunity, PTX3 opsonizes
pulmonary pathogens promoting the clearance by phagocytosis
and triggers the mucosal immune response to fungal or bacterial
infections and respiratory viruses. Furthermore, PTX3 also has
relevant roles in non-infectious pulmonary diseases. Altogether,
PTX3 exerts multiple roles in respiratory diseases. However, its
involvement in the development of IPF remains poorly explored.
PTX3 AND LUNG FIBROSIS: LESSONS
FROM EXPERIMENTAL MODELS OF
PULMONARY FIBROSIS

Bleomycin (BLM) is vastly used to investigate the mechanisms
involved in lung fibrosis in mice, and also in the selection of
therapeutic drugs for IPF, including Pirfenidone and Nintedanib
(25, 26). Several studies have addressed the relevance of PTX3 in
different models of pulmonary fibrosis (27–29). Despite the
observation that BLM induces PTX3 expression in murine
models of lung fibrosis (27, 29), a paucity of information exists
on the functional role of the protein in this model. It has been
shown that PTX3 promotes murine fibrocyte differentiation
dependent on FcgRI in vitro (28). In vivo, PTX3 is localized in
fibrotic areas, and its distribution is associated with collagen
deposition in lung parenchyma (28) and with macrophage
infiltration at sites of fibrogenesis (29), revealing an interplay with
macrophages during BLM-induced tissue fibrogenesis. Taking
advantage of transgenic mice overexpressing PTX3 (Tie2-PTX3),
it was recently shown that the protein could limit lung fibrosis,
reducing collagen deposition and fibroblast activation and
decreasing leukocyte recruitment (29). Using the BLM-induced
fibrosis model (3.75 mg/Kg, i.n.), we confirmed macrophage
(Ly6C+CD115+CD11b+) accumulation concomitantly with a
progressive increase of PTX3 lung levels (Figure 1A), as
previously described (30). Soon after BLM (2-4 days), RT-PCR
showedan increased expressionofM1-macrophagegenes, followed
later on (8-16 days) by an increased expression ofM2-macrophage
genes (Figure 1B). Therefore, increased PTX3 lung content is
temporarily associated with a macrophage M2-polarization
preceding the pulmonary fibrosis.

In the same model, Ptx3-/- mice showed reduced survival
(Figure 1C) and accentuated weight loss (Figure 1C).
Corroborating the results by Maccarinelli et al. (29), lungs from
Ptx3-/- mice showed hemorrhagic areas (day-14)(Figure 1C) and
increased fibrosis, as assessed by total collagen content (day-22)
(Figure 1D). InPtx3-/-mice lunghomogenates (Figure 1E),fibrosis
was not associated with differences in IL-4, IL-10, IL-6, and CCL2,
thus indicating the independence of PTX3 in the regulation of
inflammation (1, 2, 31), while we found increasedTGF-b1 inPtx3-/-

mice (Figure 1E)(day-14). As described in several models of
vascular pathology or tissue repair (16, 32), PTX3 controls the
thrombotic response by influencing platelet activation and
degranulation. Therefore, it is tempting to speculate that a specific
increase in lung TGF-b1 may be due to a local release derived by
platelet degranulation. PTX3 was found localized in the damaged
alveolar epithelium and interstitial ECMassociatedwithPDGFRa+
June 2021 | Volume 12 | Article 676702
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FIGURE 1 | PTX3 protects mice from BLM-induced pulmonary fibrosis. A model of lung fibrosis was induced by BLM instillation (3.75 mg/Kg, i.n.) in Wild Type (WT)
and ptx3-/- mice (A-E). (A, left), kinetic of macrophage influx in the lungs of WT mice after BLM by FACS analysis. (A, right), kinetic of PTX3 lung content assessed
by ELISA (PTX3 DuoSet® Kit ELISA DY2166, R&D Systems) in tissue homogenates. (B), Transcription analysis of M1 genes (Cd86-Mm00444543_m1, Il6-
Mm99999064_m1, Il12a-Mm99999066_m1, Tlr4-Mm00445274_m1, Socs1-Mm00782550_s1) and M2 genes (Arg1-Mm00475988_m1, Chi3l3-Mm00657889_mH,
Mrc1-Mm01329362_m1, Il1rn-Mm00446185_m1, Timp1-Mm00441818_m1, Mmp12-Mm00500554_m1) markers of macrophage polarization by TaqMan probes
(Applied Biosystems) at different days after BLM treatment. (C, D), Susceptibility of Ptx3-/- mice to lung fibrosis induced by BLM instillation. (C, left) survival curve of
mice (100% of WT and 54.5% of Ptx3-/- mice), as defined by humane end-points (e.g., weight loss of more than 25% of initial body weight, anorexia, excessive
decrease in activity, shaggy hair, diarrhea, urinary retention, breathing difficulties). **P=0.01; Log-rank test. (C, middle) monitoring of weight loss. *P < 0.05; unpaired
t-test). (C, right) representative photographs showing the appearance of lung parenchyma and quantification of autofluorescence intensity (excitation 405nm;
emission collection at 550-60nm; CLARIOstar Microplate Reader, BMG Labtech) typically associated to hemoglobin in lung lysates of wt (n=9) and Ptx3-/- (n=7) mice
(day 14). *P=0.05, unpaired t-test. (D) lung collagen content after 21 days assessed by Sircol assay. (E), measurement of TGF-b1, IL-4, IL-10, IL-6, and CCL2 in
lung lysates of wt (n=7) and Ptx3-/- (n=5) mice (day 14 after BLM treatment) by ELISA (R&D Systems). *P=0.05, unpaired t-test. (F), confocal microscopy analysis on
lung specimens (10µm) from WT mice (n=7) 14 days after BLM treatment. (F, upper panels) localization of PTX3 (green), Collagen I (blue), PDGFRa+ (red)
mesenchymal cells and CD11b+ (white) immune cells. Representative localization of PTX3 around blood vessels (F, upper, left) or associated with fibrotic ECM and
damaged epithelium (F, upper, middle). (F, lower panels) colocalization of PTX3 (green) with fibrin (white) and plasminogen (red) in fibrotic lung associated with blood
vessels (F, lower, left) or ECM and damaged epithelium (F, lower, middle). Blue, nuclei. Lungs obtained from Ptx3-/- mice were used as control (Upper and lower
panels, right). Bar, 100µm. The following antibodies were used: collagen I, rabbit polyclonal (5µg/ml; AbCam); PTX3, goat polyclonal (0.5µg/ml; R&D Systems);
PDGFRa, BV421 rat (APA5, 1.5µg/ml; BD Horizon); CD11b, APC-Cy7™ rat (M1/70, 2µg/ml; BD Pharmingen); plasminogen, rat monoclonal (1µg/ml; Cell Sciences);
fibrinogen, rabbit polyclonal (4µg/ml; Dako); species-specific Alexa Fluor 488/568/647- conjugated secondary antibodies were used. (F, right) Rate of colocalization
(% of material; Fiji software) of PTX3 signal with fibrin, plasminogen, collagen I (COL1A), PDGFRa, and CD11b and relative Pearson’s correlation coefficient. Mean ±
SEM of 5-8 images acquired for each mouse (n=7). *P < 0.0001, unpaired t-test. (G, upper), Western blot analysis of fibrin in lung lysates (10µg total proteins per
lane on 10% SDS-PAGE) of WT (n=5) and Ptx3-/- (n=5) mice at day 7. A polyclonal rabbit anti-fibrinogen was used (3µg/ml; Agilent/DAKO). 1µl of basal mouse
plasma in ACD-A (Anticoagulant Citrate Dextrose Solution) was used as a control for fibrinogen; 1µl of mouse plasma-ACD incubated with thrombin (1U/ml; 1h) was
used as a control for fibrin. A typical band pattern of fibrin (Aa; Bb, g-g dimer) is indicated in the fibrin control and lung lysates. Red arrows, lower molecular weight
bands corresponding to degraded fibrin. (G, upper, right), quantification of fibrin bands as relative gray values (Fiji software) on Ponceau red staining. ***P < 0.005,
*P < 0.5; unpaired t-test. (G, middle), Western blot analysis of plasminogen and relative band quantification as gray values (Fiji software) in same lysates (50µg total
proteins per lane on 10% SDS-PAGE, G, middle, right). A polyclonal goat anti-plasminogen was used (0.5µg/ml; R&D Systems). The molecular weight of
plasminogen and plasmin activation bands are indicated. (G, lower), Western blot analysis of the complement component C3 in the same lysates (10µg total proteins
per lane on 10% SDS-PAGE) and relative band quantification as gray values (Fiji software, G, lower, right). A polyclonal goat anti-human/mouse C3 and activation
fragments (1:3000; Merck-Millipore) was used. (H) Effect of PTX3 administration in BLM-induced lung fibrosis. One experiment was performed. Human recombinant
PTX3 (50µg/mouse) was injected i.p. one day after BLM (5 mg/Kg, i.n.) treatment in WT mice. Survival (H, left) (Ptx3-/- mice from 42.8% to 77.8%, and WT mice
from 57.1 to 80% of survival) and body weight (H, 3 panels right) were recorded until day 14. Curves referring to weight loss are shown compared to untreated WT
and Ptx3-/- mice (H, first left) or separated by genotype and compared with the correspondent treated group (H, right). *P < 0.05; unpaired t-test. All results were
expressed as mean ± SEM. Normalized data were analyzed by One-Way ANOVA with Tukey post-test, using the software GraphPad Prism 8.0. Differences were
considered significant at P < 0.05.
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mesenchymal cells, and Ptx3-/- mice showed increased interstitial
fibrindepositionandsubsequentfibrotic scarring inALI (acute lung
injury) model (5). Similarly, in the BLM-induced fibrotic lungs
(day-14), PTX3 is localized in damaged epithelium and areas of
ECM rich in collagen-I, preferentially associated with PDGFRa+

mesenchymal cells rather than recruited CD11b+ cells (day-7)
(Figure 1F). Moreover, PTX3 is localized around the blood
vessels (Figure 1F). Thus, in line with evidence obtained in
different experimental models of lung injury and repair (16, 33,
34), PTX3 plays a non-redundant and protective role during BLM-
induced pulmonary fibrosis in mice.

PTX3 promotes arterial thrombosis (32) at wound sites
during injury-induced thrombotic response and promotes
healing by interacting with plasminogen, favoring timely fibrin
removal in acidic microenvironments (5, 16, 33, 35). As
presented in Figure 1F, in the BLM-induced fibrotic lungs
PTX3 colocalized with fibrin deposits in ECM and damaged
epithelium closely associated with plasminogen. A similar
colocalization was observed in the endothelium of blood
vessels possibly associated with coagulation sites (day-7)
(Figure 1F). Coagulation proteases are recognized to exert pro-
fibrotic cellular effects via activation of protease-activated
receptors (PARs) (36). Fibrinolysis is also an essential
prerequisite for subsequent tissue remodeling processes leading
to efficient repair (37–40). Therefore, analysis of fibrin and
Frontiers in Immunology | www.frontiersin.org 4
plasminogen content in lung lysates would address whether a
defective turnover in fibrin removal was present in Ptx3-/- mice.
As assessed by Western blot, lungs of Ptx3-/- mice showed
increased fibrin deposition and decreased fragments of fibrin
degradation at the inflammatory phase (day-7)(Figure 1G).
Differences in plasminogen deposition and plasmin formation
(day-7)(Figure 1G) observed in the same lung homogenates
suggest an impairment in ECM turnover of fibrin, possibly at the
bases of a subsequent increased lung fibrosis. No evidence of
PTX3 regulation on complement activation was observed in this
model, as no differences were found in C3 deposition in the lung
(Figure 1G). Several reports showed that coagulation cascade
elements are involved in lung fibrosis (41). The deficiency of
components of the fibrinolytic system caused exacerbated lung
injury associated with defective clearance of necrotic tissue and
augmented fibrin deposition and fibrosis (42). Lung fibrosis was
reverted by overexpression of plasminogen activator genes (38,
39). Therefore, the disruption of fibrin removal and altered ECM
turnover with collagen deposition appeared as the central
mechanism underlying the phenotypes associated with Ptx3-/-

mice in response to BLM, corroborating the observations from
other models of organ damage (5, 33, 35). TGF-b1-mediated
elevated PAI-1 levels and defective fibrinolysis have significant
fibrotic consequences for tissue repair (43, 44). Interestingly,
TGF-b1 was found to down-regulate PTX3 at mRNA and
June 2021 | Volume 12 | Article 676702
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protein levels in granuloma (45) and mesenchymal cells (our
results, data not shown). TGF-b1 increased ECM deposition
promoting transcription of collagen and protease inhibitors,
including tissue inhibitors of metalloproteases (TIMPs) and
PAI-1 (46). Concomitantly, TGF-b1 decreases the secretion of
proteases responsible for ECM degradation, including activators
of plasminogen (43, 44), thus increasing the overall production
of ECM proteins (47). Therefore, PTX3 down-regulation by
TGF-b1 could inhibit the removal of the fibrin matrix and
increases ECM deposition during experimental fibrosis.

The evidence obtained from the BLM-induced lung fibrosis
model prompted us to evaluate the possible therapeutic effects of
PTX3 treatment in the disease. In a first preliminary experiment,
shown in Figure 1H, a single i.p. injection of recombinant PTX3
(50µg/mouse) one day after BLM (5 mg/Kg, i.n.) was sufficient to
increase survival of Ptx3-/- mice, with a weak effect even in WT
mice survival (Figure 1H). PTX3 treatment also attenuated the
weight loss in Ptx3-/- mice but not in WT mice challenged with
BLM (Figure 1G), suggesting a potential therapeutic effect of
PTX3 in pulmonary fibrosis. However, the actual evaluation of
potential PTX3 treatment requires more detailed pharmacological
studies on the doses and administration routes.
MECHANISMS OF PTX3 IN IDIOPATHIC
PULMONARY FIBROSIS: INTERPRETING
DATA FROM IPF

IPF is a chronic and lethal Interstitial Lung Disease characterized
by fibroproliferation of unknown origin and insensitive to
therapy, associated with excessive ECM deposition in the
pulmonary parenchyma (48–50). Clinical signs include
progressive loss of lung volume, increased respiratory effort,
and abnormal gas exchange, leading to respiratory collapse
(48–50). Currently, some hypotheses have been proposed
about its controversial origin. Among them, clinical data have
revealed a close correlation between pulmonary fibrosis and the
profile of inflammatory mediators released by immune cells (19,
51, 52). Data supports that pulmonary fibrosis is the final result
of previous alveolitis with excessive scarring (19, 52, 53). Current
knowledge about IPF has been derived from detailed
pathological analysis of human lung samples that elucidated its
unique morphological characteristics, together with observations
derived from animal models of disease (26, 52, 54, 55). New
insights raised from genetic and transcriptomic studies on IPF
samples have given a better comprehension of the molecular and
cellular mechanisms determining the lung phenotype of IPF and
patient therapeutics (25, 54, 56).

The physiological role of PTX3 in IPF remains to be
elucidated. However, present results and previous evidence
suggest a role of PTX3 in lung repair in experimental models
of lung injury (16), an association of PTX3 and Primary Graft
Dysfunction (PGD) in IPF recipients after lung transplant (57),
or a potential role of PTX3 produced by fibroblasts and bronchial
epithelial cells in fibrocyte differentiation in vitro (28). In the
lung tissue samples obtained from IPF patients, PTX3 was found
Frontiers in Immunology | www.frontiersin.org 5
associated with fibrotic areas of ECM, epithelium, and alveolar
leukocytes (28). In order to gain a deeper insight into this
association, we analyzed microarray data of lung samples from
IPF (GEO database: GSE32537) using Phantasus (58), a web
application for visual and interactive gene expression analysis
(https://genome.ifmo.ru/phantasus). Besides upregulated genes
related to fibrosis (COL1A1, FGFR2, TIMP2, and TGF-b2/3;
Figures 2A, C), increased expression of M2-macrophage and
inhibition of M1-macrophage related genes were found in IPF
samples (Figures 2A, C), similarly to WT mice exposed to BLM
(Figure 1B). Moreover, IL-10 and PTX3 expression were down-
regulated in IPF in this set of lung microarray (Figure 2A), as
shown by normalized data (Figure 2C). PLAUR and SERPINE-
1, genes belonging to the fibrinolytic system and related to tissue
repair, were also down-regulated (Figures 2B, C). Thus, PTX3
gene down-regulation in lung samples may be related to active
IPF pathology. This recapitulates the mouse phenotype observed
in vivo, with aberrant collagen deposition in Ptx3-/- mice
[Figure 1 (29)], supporting the possibility that endogenous
PTX3 exerts a protective role and may be involved in IPF
disease. Therefore, PTX3 down-regulation could be part of a
TGF-b1 regulatory program leading to fibrinolysis inhibition
and ECM increased deposition, both determinants of IPF
pathogenesis and progression.

THERAPEUTIC OPPORTUNITIES OF PTX3
IN THE CONTEXT OF IPF: WHAT
MECHANISMS WOULD BE INVOLVED?

Data reported byMaccarinelli et al. (29) and our results suggest that
IPF may be related to a low expression of PTX3 in lung tissue.
Therefore, we could consider restoring PTX3 levels exogenously (as
summarized in Figure 1G) as a possible therapeutic approach for
IPF. Different roles of PTX3 could be considered:

PTX3 as a Negative Modulator of Chronic
Airway Inflammation in IPF
Chronic inflammation can lead to an imbalance in soluble factors
productionand leukocyte recruitment, turning thehealing response
into a pathological fibrotic response (52). Chronic neutrophilic
airway inflammationoccurs in IPF and airwayneutrophilia,mainly
due toCXCL8producedbyalveolarmacrophages (59), andpredicts
mortality of IPF patient (60). PTX3 regulates neutrophils influx
through interactionwith P-selectin expressed on the surface of ECs
(31, 61), thus, exogenous PTX3may dampen neutrophil influx into
IPF airways (Figure 2D). Moreover, soluble PTX3 derived from
Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
(UCB-MSCs) has anti-inflammatory effects in ALI, as shown in a
model of neonatal hyperoxia-induced lung injury in rats. Similarly,
adoptive transfer of MSC from WT but not from Ptx3-/- mice
improved oxygenation with reduced lung collapse and neutrophils
(33), shaping the differentiation of anti-inflammatorymacrophages
(62). On the other hand, Dendritic cells (DCs), activated by the
phagocytosis of apoptotic cells, aredescribed to sustain chronic lung
inflammation in IPF (63). Nevertheless, in the presence of PTX3,
DCs failed to internalize apoptotic cells (21), thus suggesting that
June 2021 | Volume 12 | Article 676702
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FIGURE 2 | Impact of PTX3 in Idiopathic Pulmonary Fibrosis and therapeutic opportunities. Microarray analysis of lung samples from IPF (n=119) and healthy (n=50)
individuals from GEO database: GSE32537 were analyzed by Phantasus (58) (https://genome.ifmo.ru/phantasus). (A) Lung expression of PTX3, fibrogenic markers
as COL1A1, FGFR2, TGFB2, TGFB3 and TIMP-2, M1 (SOCS1 and TLR4) and M2 (IL-10, MRC2, IL1RN, and MMP-12) macrophage polarization markers
(B) Expression of coagulation cascade FGA (Fibrinogen alpha-chain precursor), PLG (Plasminogen precursor), PLAT (Tissue-type Plasminogen Activator precursor),
PLAU (Urokinase-type Plasminogen Activator precursor), PLAUR (Urokinase Plasminogen Activator Receptor) and SERPINE1 (PAI-1 Plasminogen Activator Inhibitor-
1) in IPF and health samples. (C) Data table with analysis from GEO database GSE32537 analyzed by Phantasus according to the instructions for the use of the
application. Differences were considered significant at P value <0,05. (D) Possible mechanisms and therapeutic opportunities of PTX3 in the context of IPF. IPF is
characterized by a reduced PTX3 production (red background), however PTX3 may act as an anti-inflammatory as well as a pro-resolutive modulator of chronic
pulmonary inflammation and fibrosis in IPF (blue background) at different levels: (1) Neutrophil influx is facilitated through the interaction with P-selectin expressed on
the surface of ECs, (2) PTX3 could antagonize endothelial P-selectin, dampening neutrophil influx during chronic pulmonary inflammation; (3) the abundance of
apoptotic cells in airways from IPF is related to DC phagocytosis and activation that sustain chronic lung inflammation, (4) PTX3 may block apoptotic cell
internalization and consequent inflammation; (5) FGF2 activates fibroblasts and ECs, (6) however PTX3 interacts with FGF2 reducing its availability for binding to
FGFR2 on fibroblasts and consequent fibrosis; (7) complement and apoptotic cell deposition in the lungs lead to chronic inflammation, (8) on the other side PTX3
may act as a scavenger preventing the excessive deposition of both complement components and apoptotic cells in lungs and consequent attenuation of tissue
damage and inflammation; (9) Alveolar macrophages from IPF display defective efferocytosis and increased TGF-b1 production, contributing to tissue fibrogenesis,
(10) while PTX3 may enhance macrophage efferocytosis and M2 polarization and resolution of inflammation by IL-10; (11) Finally, defective PTX3 production in IPF
may increase fibrin deposition and fibrosis, (12) but PTX3 could contribute to the resolution of fibrosis, interacting with fibrin-clots and disorganized collagen fibers in
the lung parenchyma, supporting fibrinolysis and clearance of ECM debris by macrophage phagocytosis, promoting lung tissue healing and repair.

Doni et al. Could PTX3 Limit the IPF?
PTX3 may prevent chronic pulmonary inflammation in IPF
(Figure 2D). However, whether endogenous or exogenous PTX3
acts as a tissue-protective or resilience factor stimulating lung tissue
reepithelization remains unexplored.

PTX3 Involvement in Resolution
of Inflammation in IPF
Efficient resolution of inflammation is crucial for the restoration of
tissue integrity. PTX3 has been reported to induce the polarization
of macrophages into anti-inflammatory M2 phenotype and to
stimulate them to secrete the resolutive cytokine IL-10 (62, 64).
Moreover, as mentioned above, PTX3 production by MSC
reinforced M2 macrophage markers, inducing Dectin-1 and IL-
10, and protecting mice from neonatal hyperoxia-induced lung
injury (62). Therefore, PTX3 may contribute to the resolution of
chronic inflammation in IPF via M2-macrophages enhancing IL-
10-dependent anti-inflammatory and resolutive functions, such as
neutrophil apoptosis (Figure 2D). Nevertheless, impaired
efferocytosis can result in inflammation-associated pathologies
(65). Indeed, efferocytosis by alveolar macrophages is impaired in
IPF samples comparedwith other interstitial pneumonia (66), and a
dysregulated or defective efferocytosis may contribute to the
pathogenesis of IPF (65, 66). Notably, post-efferocytotic, satiated
macrophages [also termed Mres (67)] produce high levels of
TGF‐b1 (68). However, this production seems to be functionally
antagonized by the production of IFN-b in thesemacrophages (69),
that directs their anti-fibrotic phenotype (70, 71). Along these lines,
apoptotic cell instillation after BLM attenuates lung injury (72) and
inducesPPARg, promoting lungfibrosis resolution via regulationof
efferocytosis and IL-10 production (73). In this way, PTX3
recognizes apoptotic cells and may facilitate the clearance of dead
ordying cells (1). Therefore, the capacity ofPTX3 to affect apoptotic
cell recognition and efferocytosis could represent an additional
mechanism of negative regulation of chronic inflammation in IPF
(Figure2D) (66).PTX3enhancedcomplement-mediated clearance
of apoptotic debris. The protein is recruited by C4 binding protein
(C4BP) onapoptotic cells reducing the deposition of the lyticC5b-9
terminal complex at sites of tissue injury (74), limiting the
complement-mediated tissue damage and inflammation (1), and
possibly tissue fibrosis (Figure 2D).
Frontiers in Immunology | www.frontiersin.org 7
PTX3 as a Resolutive Modulator
of Tissue Fibrosis in IPF
PTX3 interaction with plasminogen ensures the timely removal of
fibrin deposits in the inflammatory ECM of the lung, allowing for
the proper sequence of processes leading to efficient tissue repair.
TGF-b1, the major fibrogenic molecule involved in the mechanisms
of excessive ECM deposition in pulmonary fibrosis, negatively
regulates PTX3 and ECM-degrading molecules (e.g., MMPs, uPA)
and up-regulates TIMPs and PAI-1 (45, 75). Thus, defective PTX3-
mediated fibrinolysis may represent a key mechanism underlying
the development of the disease. Therefore, TGF-b1 induces
suppression of PTX3-mediated fibrinolysis and may represent
another mechanism underlying the development of IPF. In other
contexts of tissue repair (16, 33, 35), PTX3 administration reversed
the defective fibrinolysis associated with PTX3-deficiency and this
may represent an important activity underlying PTX3 role in
regulating the evolution towards fibrotic scarring of the lung
(Figure 2D). PTX3 interacts with FGF2 and modulates the
FGFR2-dependent vascularization of tumors and FGFR2-
mediated smooth muscle cell proliferation and artery restenosis
(76, 77). The expression of FGF2/FGFR2 axis is elevated in IPF
samples (78), and FGFR2-dependent signaling is involved in
pulmonary fibrosis (76, 79). Therefore, a down-regulation of
PTX3 in IPF may represent a possible failure to antagonize these
fibrotic pathways (Figure 2D). Finally, PTX3 also interacts with
collagens and our own preliminary results indicate a possible
involvement of collagen remodeling by mesenchymal cells, thus
suggesting an effect in removing the excess of ECM from tissue
parenchyma (Figure 2D) and hence in promoting tissue healing.
CONCLUDING AND REMARKS

Failure to control the overlapping events leading to the healing
process is the cause of the functional tissue replacement by fibrous
scar. Growing evidences indicate that abnormalities in pathways
involving fibroblast activation and coagulation cascade drive
abnormal fibroproliferation and progressive replacement of lung
parenchyma by collagen (37, 80). Understanding the molecules
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involved in these pathways during aberrant wound repair may
predict new targets and therapeutic intervention strategies. PTX3,
besides being an essential fluid-phase PRM of the innate immune
system, is involved in the healing at wound sites, favoring timely
fibrinolysis through the interaction with fibrin and plasminogen.
Results reported by Maccarinelli and colleagues and our
observations indicate a protective and regulatory role of PTX3 in
BLM-induced lungfibrosismodels of lung injury.Besides IPF, other
pathological conditionscan result inpulmonaryfibrosis, last butnot
least the persistent post-COVID syndrome (81, 82). Many
questions remain open, starting from the therapeutic effect of
PTX3 to the mechanisms involved in the protective role of the
protein and the relationships of PTX3 with the homeostasis of the
airway epithelium and with the collagen fibers of the ECM. Little is
known about the effect of IPF therapywith Pirfenidone/Nintedanib
on PTX3. Further clinical studies will be necessary to answer these
and many other questions. Thus, in summary, we assessed the
involvement of PTX3 in pulmonary fibrosis. Based on the literature
and recent data, we propose that PTX3 may have a physiological
and protective role during IPF, interactingwith various circuits and
representingapotential therapeutic target, actingas apro-resolutive
molecule in the context of pulmonary fibrosis.
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