
Table S1. Oligonucleotides used in this study

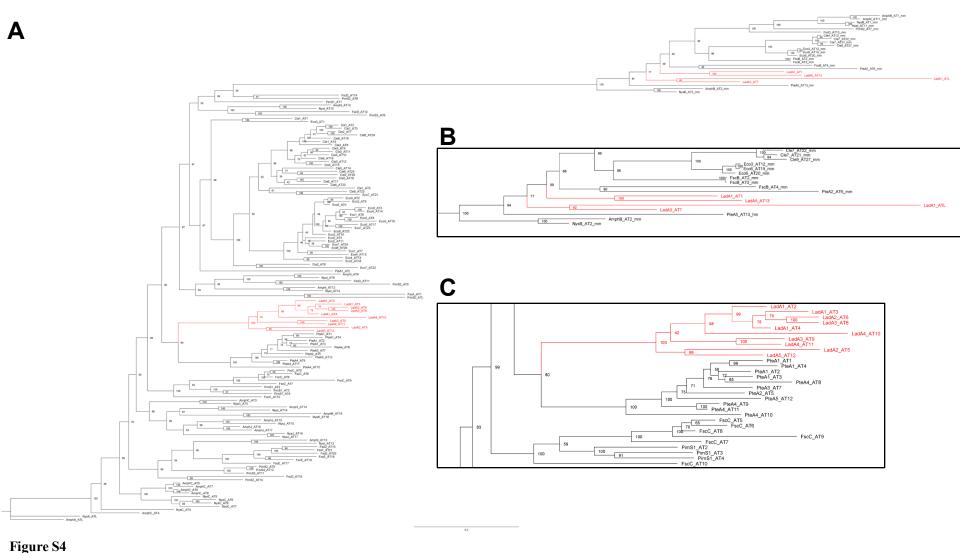
Primer	Sequence (5' – 3')
dCas9-Fw	ACGGCGTCAGAGAAGGGAGCGGACA
dCas9-Re	GAGCCGCCGCCGTCGCCGAG
PmCDA1-Fw	CTCGGCGGCGACGGCGGCGGCTC
PmCDA1-Re	TACCCGGGGATCCTCTAGAAAGCTTTCAGGCGACGAGCAG
ssDNA-actI-ORF2	CGGTTGGTAGGATCGACGGCACCAGTACGGCGCCAGGCCGGTTTTAGAG CTAGAAATAGA
ssDNA-lbpA	CGGTTGGTAGGATCGACGGCCCAGTCCTTCGGCATCAACGGTTTTAGAG CTAGAAATAGA
ssDNA-ladA5	CGGTTGGTAGGATCGACGGCCCAGTACGCCCGCTTCGCGGGTTTTAGAG CTAGAAATAGC

Table S2. DNA sequences of codon-optimized genes for the construction of the pLK101 vector

Name	Sequence
	ATGACCGACGCCGAGTACGTCCGCATCCACGAGAAGCTGGACATCTACA
	CCTTCAAGAAGCAGTTCTTCAACAACAAGAAGTCCGTCAGCCACCGCTG
	CTACGTCCTGTTCGAGCTGAAGCGCCGGGGGGGGGGGGCGCCGCCTGCTTC
	TGGGGCTACGCCGTCAACAAGCCGCAGTCCGGCACCGAGCGGGGCATCC
	ACGCCGAGATCTTCTCCATCCGCAAGGTCGAGGAGTACCTGCGCGACAA
	CCCGGGCCAGTTCACGATCAACTGGTACTCCAGCTGGTCCCCGTGCGCC
$PmCDA1_{str}$	GACTGCGCCGAGAAGATCCTCGAGTGGTACAACCAGGAGCTGCGCGGCA
	ACGGCCACACGCTGAAGATCTGGGCCTGCAAGCTGTACTACGAGAAGAA
	CGCCCGCAACCAGATCGGCCTGTGGAACCTCCGCGACAACGGCGTCGGC
	CTGAACGTCATGGTGTCCGAGCACTACCAGTGCTGCCGCAAGATCTTCA
	TCCAGTCCTCGCACAACCAGCTGAACGAGAACCGCTGGCTCGAGAAGAC
	CCTGAAGCGGGCCGAGAAGCGCCGCTCCGAGCTGTCCATCATGATCCAG
	GTCAAGATCCTGCACACCAAGTCGCCGGCCGTC
	ATGACCAACCTGTCCGACATCATCGAGAAGGAGCCGGCAAGCAGCTGG
	TCATCCAGGAGTCCATCCTGATGCTCCCCGAGGAGGTCGAGGAGGTCAT
UCI	CGGCAACAAGCCCGAGTCCGACATCCTGGTCCACACCGCCTACGACGAG
UGI_{str}	TCCACCGACGAGAACGTGATGCTGCTGACCTCCGACGCGCCCGAGTACA
	AGCCGTGGGCGCTCGTGATCCAGGACTCCAACGGCGAGAACAAGATCAA
	GATGCTG
LVA_{str}	CTCGTCGCC
	GGCGGCGGCGCGCGCGCGCGCGCGCGCCCCAGTACGTGCGCCCC
	TGTTCGACTTCAACGGCAACGACGAGGAGGACCTGCCGTTCAAGAAGGG
I :1 (CC	CGACATCCTGCGCATCCGCGACAAGCCCGAGGAGCAGTGGTGGAACGCC
Linker region (GS	GAGGACTCCGAGGGCAAGCGCGGCATGATCCCGGTGCCGTACGTCGAGA
linker, SH3 domain	AGTACTCCGGCGACTACAAGGACCACGACGGGGGACTACAAGGACCACGA
and 3×FLAG tag)	CATCGACTACAAGGACGACGACGACAAGTCCCGCCTCGAGTCGGGCGAC
	TACAAGGACCACGACGGGGACTACAAGGACCACGACATCGACTACAAGG
	ACGACGACAAGAGCCGC

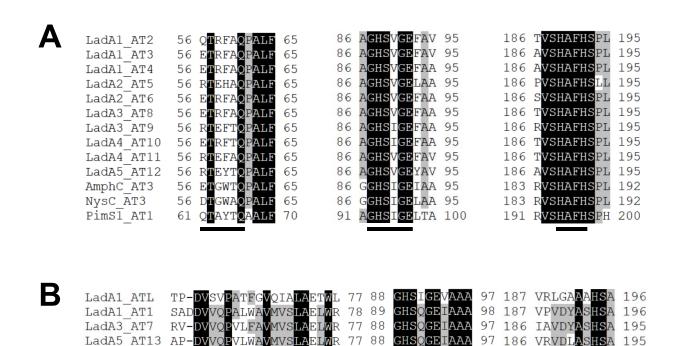
Figure S1Sanger sequencing chromatograms of the target region with the predicted C to T mutation in the m*actI-ORF2* strains. Mutated bases are indicated by black arrows.

SCO3413 SLA_TipA	1	M <mark>S</mark> YSVGQVAGFAGVTVRTLHHYD <mark>D</mark> IGLL <mark>V</mark> PS <mark>E</mark> RSHAGHRRYSDADLDRLQQILFYRELGF MGYSVGQVAGFAGVTVRTLHHYDEIGLLSPSGRSGAGHRRYDDADLDRLQRILFYRELGF	
SCO3413 SLA_TipA	61 61	PLDEVAALLDDPAADPRAHLRRQH <mark>E</mark> LLSARIGKLQKMAAAVEQAMEARSMGINLTPEEKF PLDEVAVLLDDPESDPREHLRRQHALLSDRIARLQQMAKAVEHAMEAKKMGINLTPEERF	
SCO3413 SLA_TipA	121 121	EVFGDFDPDQYEEEVRERWGNTDAYRQSKEKTASYTKEDWQRIQDEADELTRRFVALMDA EVFGDKDPEQYAEEAERRWGGTEAYAESQRRAAAYTKADWQRIQDEVADWGGRYAALVAA	
	181 181	GEPADSEGAMDAAEDHRQGIARNHYDCGYEMHTCLGEMYVSDERFTRNIDAAKPGLAAYM GEPADGEAAMDLAEEHRRHICDRYYECGYEMHVCLGEMYVADERFKAFYDGMGAGVAEHL	
	241	RDAILANAVRHTP RDSITANAVRKA-	253252


Figure S2

Sequence alignment of SCO3413 (TipA) from *S. coelicolor* A3(2) with putative TipA (SLA_TipA) from *S. lavendulae* FRI-5. Identical amino acid residues are highlighted in black.

		*		* _		* _	
KSL	145	RGEHGLALAA	154	AAVGRALATTRH <mark>P</mark> F	304	TATARPA	344
KS1	166	TVDTACSSSL	175	VEAHGTGTRLGD <mark>P</mark> I	316	NIGHTQA	349
KS2	166	TVDTACSSSL	175	VEAHGTGTRLGD <mark>P</mark> I	316	NIGHTQA	349
KS3	166	TVDTACSSSL	175	VEAHGTGTTLGDPI	316	NIGHTQA	349
KS4	167	TVDTACSSSL	176	VEAHGTGTTLGDPI	317	NIGHTQA	350
KS5	166	TVDTACSSSL	175	VEAHGTGTTLGDPI	316	NIGHTQA	349
KS6	165	TVDTACSSSL	174	VEAHGTGTRLGDPI	315	NIGHTQA	348
KS7	166	TIDTACSSSL	175	VEAHGTGTTLGDPI	316	NLGHTQA	349
KS8	167	TVDTACSSSL	176	VEAHGTGTTLGDPI	317	NIGHTQA	350
KS9	166	TVDTACSSSL	175	VEAHGTGTALGDPI	316	NIGHTQA	349
KS10	165	TVDTACSSSL	174	VEAHGTGTSLGDPI	315	NIGHTQA	348
KS11	166	TVDTACSSSL	175	VEAHGTGTTLGDPI	316	NIGHTQA	349
KS12	165	TVDTACSSSL	174	VEAHGTGTTLGDPI	315	NIGHTQA	348
KS13	166	TVDTACSSSL	175	VEGHGTGTRLGDPI	316	NIGHTQA	349
Conse	nsus	DXXCSSXL		HGTGT		Н	


Figure S3

Sequence alignment of the conserved motifs in the KS domain core regions from LadA PKSs. The numbers indicate amino acid positions within each domain. Black and gray boxes in the alignment indicate positions at which the same amino acid is found and at least 70% of the amino acids match, respectively. Asterisks indicate the conserved catalytic triad of C-H-H.

Analysis of the AT domains from the LadA PKSs using a phylogenetic tree. Posterior probabilities are shown at the nodes, and the bar indicates substitutions per site.

Subclades colored red indicate AT domains on the lavencidin biosynthesis gene cluster. Amino acid sequences of AT domains were retrieved from the databases DoBISCUIT (https://www.nite.go.jp/nbrc/pks/) and ClusterCAD (https://clustercad.jbei.org/). These amino acid sequences were aligned with Clustal Omega (1.2.2) implemented in Geneious Prime 2023.2.1 (Biomatters Ltd.) with automatically adjusted settings for the number of sequences in refinement iterations. Bayesian phylogeny was conducted by MrBayes (ver. 3.2.7a) on CIPRES Science Gateway (http://www.phylo.org/) with the following parameters: aamodelpr = fixed(LG); ngen = 20 000 000; rateopts = invgamma; nruns = 2: nchains = 4: temp = 0.2: relburnin = yes; burninfrac = 0.25. The substitution model was selected by ModelTest-NG. The phylogenetic tree was rendered with FigTree version 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/). (A) Overall diagram of the phylogenetic tree of AT domains. (B) Partial diagram of the phylogenetic tree of AT domains including LadA1 ATL, LadA1 AT1, LadA3 AT7, and LadA5 AT13. (C) Partial diagram of the phylogenetic tree of AT domains including LadA1_AT2, LadA1_AT3, LadA1_AT4, LadA2_AT5, LadA2_AT6, LadA3_AT8, LadA3_AT9, LadA4_AT10, LadA4_AT11, and LadA5_AT12.

GHSQGEIAAA 99 189 VPVDYASHSH 198

99 188 IAVDYASHSA

GHSOGEIAAA 99 189 TAVDYAS

Figure S5

AmphB AT1

PimS2 AT7

NvsB AT1

Analysis of the AT domains from LadA PKSs by amino acid sequence alignment. The numbers indicate amino acid positions within each domain. Black and gray boxes in the alignment indicate positions at which the same amino acid is found and at least 70% of the amino acids match, respectively. The AT domains and their corresponding sequence accession numbers are as follows: AmphB/AmphC (AAK73513/AAK73514) for amphotericin in *Streptomyces nodosus* ATCC 14899; NysB/NysC (AVX51107/AVX51108) for nystatin in *Streptomyces noursei* ATCC 11455; PimS1/PimS2 (CAC20931/CAC20921) for pimaricin in *Streptomyces natalensis* ATCC 27448. Three dominant motifs, composed of six, six, and four amino acid residues, are underlined. (A) Sequence alignment of the conserved motifs in AT domains including LadA1_AT2, LadA1_AT3, LadA1_AT4, LadA2_AT5, LadA2_AT6, LadA3_AT8, LadA3_AT9, LadA4_AT10, LadA4_AT11, and LadA5_AT12. (B) Sequence alignment of the conserved motifs in AT domains including LadA1 AT1, LadA3 AT7, and LadA5 AT13.

79 90

79 90

RV-DVVOPASFAVMVSLAAVWR 79 90

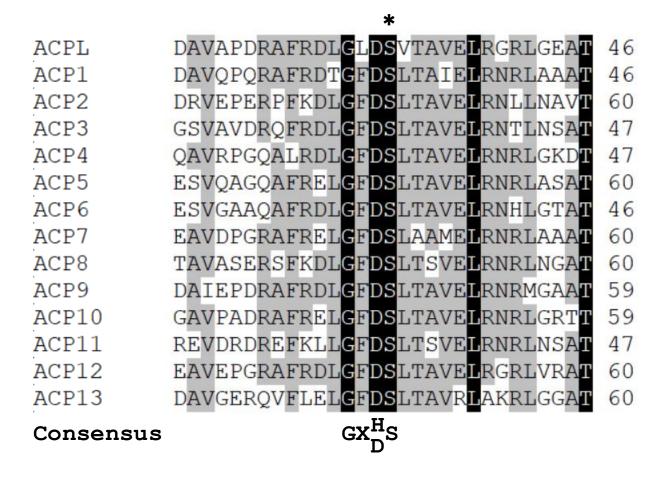


Figure S6


Sequence alignment of the conserved motifs in the ACP domain core regions from LadA PKSs. The numbers indicate amino acid positions within each domain. Black and gray boxes in the alignment indicate positions at which the same amino acid is found and at least 70% of the amino acids match, respectively. An asterisk indicates the active site Ser residue acting as the phosphopantetheine-binding site.

			*	* *
KR1	GTVLV <mark>TG</mark> GTGTLGTHVARWL 20	H <mark>TAGALDDGV</mark> 95	SSIAGTVGNGGQ	G <mark>YAAAN</mark> A 153
KR2	GTVLV <mark>TG</mark> ATGTLGRLVARHL 20	H <mark>AA</mark> GVTDDGI 96	SS <mark>VSATLG</mark> GSG Q A	N <mark>YAAAN</mark> A 154
KR3	GTVL <mark>ITG</mark> ASGALGRLVARHL 20	H <mark>AA</mark> GVTDDGT 96	SS <mark>AAGILG</mark> SAG Q A	N <mark>YCAAN</mark> S 154
KR4	GTVLV <mark>TG</mark> ASGLLGRHVARHL 20	H <mark>VA</mark> GVTDDGI 96	SS <mark>AAGVFG</mark> AAG <mark>Q</mark> A	N <mark>YAAAN</mark> A 154
KR5	GTVLV <mark>TG</mark> ASGTLGRLVAHHL 20	H <mark>AA</mark> GVTDDGV 96	SS <mark>AAGVFG</mark> NPGQG	N <mark>YAAAN</mark> A 154
KR6	GTVLV <mark>TG</mark> ATGALGRLVARHL 20	H <mark>AA</mark> GVLDDGL 96	SS <mark>LAGTFG</mark> TAG Q A	N <mark>YAAAN</mark> A 154
KR7	GTVL <mark>ITG</mark> GTGALGRLVAAHF 20	H <mark>AA</mark> AVVAGGL 96	SS <mark>LAGTLG</mark> GAG <mark>Q</mark> G	AYAAGNA 154
KR8	GTVL <mark>ITG</mark> GTGALGAHVARHL 20	H <mark>AA</mark> GLPQFTP 96	SS <mark>VAAAWG</mark> SGSQA	AYCAANA 154
KR9	GTVL <mark>ITG</mark> GTGSLGGHTARWL 20	H <mark>AA</mark> GLPQFTT 96	SS <mark>VSGVWG</mark> SGSQA	AYSAGNA 154
KR10	GTVL <mark>ITG</mark> GTGALGAHVARWL 20	H <mark>AA</mark> GVGTPAM 95	SS <mark>ISGVWG</mark> AAGQA	AYAVANA 153
KR11	GTVLV <mark>TG</mark> ATGALGGLVARHL 20	H <mark>AA</mark> GVLDDGL 97	SS <mark>VAATLG</mark> SAG <mark>Q</mark> G	N <mark>YAAAN</mark> A 155
KR12	GTVL <mark>ITG</mark> GTGALGGHVARLL 20	H <mark>TA</mark> GVDTPGL 98	SS <mark>IAGVWG</mark> AGG <mark>Q</mark> A	AYSAANA 160
KR13	GTVLVTGGTGHIGGHVARWL 20	HAAGTGTPAM 95	ssgaaaw <mark>g</mark> sga q a	GYAAANA 153

Figure S7

Consensus GXGXXGXXXA

Sequence alignment of the conserved motifs in the KR domain core regions from LadA PKSs. The numbers indicate amino acid positions within each domain. Black and gray boxes in the alignment indicate positions at which the same amino acid is found and at least 70% of the amino acids match, respectively. The consensus sequence for the NADP(H)-binding site is underlined. The catalytic triad of S-Y-N is indicated by asterisks.

Figure S8

Sequence alignment of the conserved motifs in the DH domain core regions from LadA PKSs. The numbers indicate amino acid positions within each domain. Black and gray boxes in the alignment indicate positions at which the same amino acid is found and at least 70% of the amino acids match, respectively. The conserved HXXXGXXXXP motif for DH domains is underlined. The proposed catalytic His, Asp, and His residues are marked with asterisks.

ER11 LLVHSAAGGVGMAA 144

Consensus LXHXXXGGVG

Figure S9

Sequence alignment of the conserved motif in the ER11 domain core region from LadA4 PKS. The number indicates the amino acid position within the domain. The conserved amino acids in the proposed NADP(H)-binding site LXHXXXGGVG are highlighted in gray.