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Rheumatoid arthritis (RA) is an incurable disease that afflicts 0.5–1.0% of the global

population though it is less threatening at its early stage. Therefore, improved diagnostic

efficiency and prognostic outcome are critical for confronting RA. Although machine

learning is considered a promising technique in clinical research, its potential in verifying

the biological significance of gene was not fully exploited. The performance of a machine

learning model depends greatly on the features used for model training; therefore, the

effectiveness of prediction might reflect the quality of input features. In the present study,

we used weighted gene co-expression network analysis (WGCNA) in conjunction with

differentially expressed gene (DEG) analysis to select the key genes that were highly

associated with RA phenotypes based on multiple microarray datasets of RA blood

samples, after which they were used as features in machine learning model validation.

A total of six machine learning models were used to validate the biological significance

of the key genes based on gene expression, among which five models achieved good

performances [area under curve (AUC) >0.85], suggesting that our currently identified

key genes are biologically significant and highly representative of genes involved in RA.

Combined with other biological interpretations including Gene Ontology (GO) analysis,

protein–protein interaction (PPI) network analysis, as well as inference of immune cell

composition, our current study might shed a light on the in-depth study of RA diagnosis

and prognosis.

Keywords: rheumatoid arthritis, artificial intelligence, machine learning, WGCNA, diagnosis, prognosis

INTRODUCTION

Rheumatoid arthritis (RA) is a long-term autoimmune disease that provokes synovial inflammation
(Song and Lin, 2017) and predominantly inflicts accumulative damage on joints (Smolen et al.,
2016). Epidemiology studies revealed ∼49,000 RA-associated deaths globally in 2010 (Lozano
et al., 2012). The incidence of RA was higher in females than in males, and its pathogenesis
was mainly dependent on genetic factors, especially immune-associated genes (Song and Lin,
2017). Due to the fact that RA could eventually result in varying degrees of joint impairments
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or even disability and severely affect the life quality of the victims,
it has imposed a heavy burden on the society (Lundkvist et al.,
2008). Regrettably, RA is still an incurable disease; therefore,
timely intervention will be necessary. Aside from acute RA
onset that immediately perturbs the immune system, most pre-
clinical RA, whose clinical symptoms are still inconspicuous,
could be abrogated through customized interventions, and
the resulting establishment of RA could also be prevented
(Smolen et al., 2016). As noted above, accurate diagnosis and
improved prognosis are crucial for monitoring RA, although
the heterogeneity of RA could undermine the effectiveness of
these approaches. The heterogeneity of RA is characterized by its
clinical symptoms and pathogenesis that vary across patients who
receive the same diagnosis (Smolen et al., 2016). Thus, there is a
fundamental need for understanding the molecular mechanism
underlying the heterogeneous RA to improve both diagnostic and
prognostic outcomes.

Microarray technology is a widely used, high-throughput
and robust approach that allows the simultaneous detection
of gene expression profile of thousands of genes. Considerable
information provided by microarray has been deposited in Gene
Expression Omnibus (GEO), through which public data could
be integrated and re-analyzed, providing valuable information
and novel perspectives regarding different diseases. Thanks to
the development of bioinformatics, numerous analytical methods
have been implemented for data mining from public databases,
among which weighted gene co-expression network analysis
(WGCNA) is a well-known approach for gene co-expression
analysis. WGCNA was initially proposed by scholars Zhang and
Horvath (2005), the corresponding concepts were later integrated
into the R package, which can be used in various aspects, such
as establishment of a weighted gene co-expression network,
detection of highly correlated gene modules, association of gene
modules with clinical traits, and identification of intra-modular
hub genes (Langfelder and Horvath, 2008). WGCNA is widely
used in bioinformatics analysis of many diseases, including
RA. For instance, Gene Ontology (GO) enrichment of modules
defined by WGCNA showed several immune response-related
genes that play potential roles in RA (Ma et al., 2017). In
addition, pivotal differentially expressed genes (DEGs) associated
with RA and corresponding networks have been developed by
combined utilization of DEG analysis and WGCNA (He et al.,
2019). Moreover, WGCNA followed by in vivo validation showed
that imatinib could mitigate the inflammatory responses in RA
through suppressing CSF1R (Hu et al., 2019).

As a subset of artificial intelligence, machine learning
has emerged as a valuable tool in the field of biology, for
instance, Le et al. (2017) developed a web-based tool ET-CNN,
which was specialized for distinguishing electron transport
protein through combined utilization of convolutional neural
network (CNN) and position-specific scoring matrices (PSSM);
similarly, coupling of deep gated recurrent units and PSSM
profiles was used to identify fertility-associated proteins (Le,
2019), whereas deep-neural network-based natural language
processing was used to decipher S-sulfenylation sites from
protein sequences (Do et al., 2020). In the clinical setting,
such technology also bears the potential of disease detection

and classification (Cruz and Wishart, 2007), but it should
be noted that the prediction accuracy of machine learning
model is often inversely correlated with the number of features
(variables), that careful consideration should be given when
selecting limited number of appropriate features, and that
these parameters should be as informative as possible (Jamshidi
et al., 2019). Although machine learning has been widely
used to predict arthritis based on different features, such as
immunological profile (Van Nieuwenhove et al., 2019), as well as
integration of clinical, therapeutic, and laboratory information
(Ceccarelli et al., 2018), implementation of biomarker-based
machine learning model validation in RA is relatively limited.
Moreover, the effectiveness of prediction/classification of
machine learning models could reflect the quality of input
features (Jamshidi et al., 2019). Therefore, the present study
aims at employing machine learning model validation to further
verify the biological significance of biomarkers determined
by WGCNA.

Specifically, the current study was designed in conformity
with the following major points to achieve the intended goal:
first, we defined the intersection between hub genes in the
training set (determined by WGCNA) and DEGs in the test
set as key genes and verified the biological significance of these
markers in a tissue sample dataset. Second, the key genes were
used as features in machine learning model validation; the key
genes were used as features in six different machine learning
classification models, the performances of these models were
further evaluated, and the biological significance of the key genes
was further confirmed.

MATERIALS AND METHODS

Data Collection
Gene expression data were downloaded from the GEO
database (http://www.ncbi.nlm.nih.gov/geo/) on July 15, 2020;
we screened GEO microarray datasets in compliance with the
following criteria: (1) samples of RA patients and healthy controls
(HCs) were collected before receiving pharmacotherapy or other
treatments that might affect gene expression profiles; (2) HCs are
not necessarily the control used in RA research, as long as these
samples represent the gene expression in healthy population.
After careful consideration, a total of 12 GEO datasets (Table 1)
were applied in this study, including the training set composed
of 11 profiles (GSE93272, GSE45291, GSE74143, GSE65010,
GSE15573, GSE61635, GSE65391, GSE138458, GSE143272,
GSE113469, GSE50772) containing blood samples from 419 RA
patients and 318 HCs, along with the test set based on one dataset
(GSE55457) containing tissue samples of 10 RA patients and 13
HCs. Expression matrices of the 12 GEO datasets are available in
Supplementary Tables 1.1, 1.2.

Data Pre-processing
During the filtering process, intersection of the identified gene
symbols across all gene expression arrays (which were common
to 12 datasets) was retained and used for integration of 11
training datasets. In order to eliminate potential batch effects
that resulted from systematic and non-biological differences
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TABLE 1 | Information of 12 GEO datasets.

No. of GEO profile Batch number Experiment type Source Case Control Platform Category

GSE93272 B1 Expression profiling by array Whole blood 0 43 GPL570 Training set

GSE45291 B2 Expression profiling by array Whole blood 0 20 GPL13158 Training set

GSE74143 B3 Expression profiling by array Whole blood 377 0 GPL13158 Training set

GSE65010 B4 Expression profiling by array Peripheral blood 24 24 GPL570 Training set

GSE15573 B5 Expression profiling by array Peripheral blood 18 15 GPL6102 Training set

GSE61635 B6 Expression profiling by array Whole blood 0 30 GPL570 Training set

GSE65391 B7 Expression profiling by array Whole blood 0 72 GPL10588 Training set

GSE138458 B8 Expression profiling by array Plasma 0 23 GPL10558 Training set

GSE143272 B9 Expression profiling by array Peripheral blood 0 51 GPL10558 Training set

GSE113469 B10 Expression profiling by array Peripheral blood 0 20 GPL10558 Training set

GSE50772 B11 Expression profiling by array Peripheral blood 0 20 GPL570 Training set

GSE55457 B12 Expression profiling by array Frozen tissue 13 10 GPL96 Testing set

The training set comprised 11 datasets derived from blood samples, whereas the test set was based on 1 tissue dataset.

among the 11 batches in the training set, we used t-
SNE dimensionality reduction algorithm to determine the
existence of batch effects. Subsequently, the removeBatch Effect
function in the R (R statistical software, version 3.6.3) package
limma (version 3.42.2) (Ritchie et al., 2015) was used to
eliminate the batch effects and preserve the differences between
different clinical status (RA/control). Finally, Quantile method
in voom function of the limma package was implemented for
data normalization.

DEG Analysis
The limma package was run to discover DEGs based on the
criteria of |log2FC| >0.5 and p <0.05, and the DEGs were
displayed on a volcano plot. To further visualize the expression
of DEGs in different groups, the top 40 DEGs were selected
based on the p-values to generate a heatmap using the R package
ComplexHeatmap (version 2.2.0) (Gu et al., 2016).

WGCNA Analysis
The R packageWGCNA (version 1.69) (Langfelder and Horvath,
2008) was used to perform WGCNA analysis in R. WGCNA
parameters were default unless specified otherwise. Firstly, the
correlation matrix between the genes was calculated using smn

(co-expression similarity) = |cor(m, n)| based on the gene
expression array, after which a weighted undirected network was
established using amn (adjacency between gene m and gene n)
= smn

β, the appropriate power parameter β = 8 was determined
by pickSoftThreshold function (Langfelder and Horvath, 2008).
Secondly, all genes were divided into different modules according
to the dynamic mixed method of similarity. Next, the module-
trait relationship was calculated according to the correlation
between the gene modules and clinical information, through
which two modules with the strongest positive or negative
correlation with the sample status were screened out. Groups of
genes in these respective twomodules were namedmodule genes,
and the intersection ofmodule genes andDEGs in the training set
was named hub genes.

Network Analysis of Module Genes/Hub
Genes
Network analysis of the module genes at transcriptome level was
performed using Cytoscape (version 3.6.1) (Shannon et al., 2003)
in accordance with the following criteria: node score (weighted
adjacency between two nodes) cut-off≥0.42 and degree (number
of edges possessed by a node) cut-off≥50, whereby co-expression
amongmodule genes was intuitively visualized. As for interaction
at protein level, a protein–protein interaction (PPI) network was
constructed by using hub genes as queries against the STRING
database (version 11.0) (Szklarczyk et al., 2017), and topological
parameters of the network were analyzed locally using the
Cytoscape plug-in “NetworkAnalyzer” (version 4.4.6). For in-
depth analysis, the intersection between hub genes and DEGs in
the test set was further defined as key genes.

GO and KEGG Enrichment Analysis
TheGO andKyoto Encyclopedia of Genes andGenomes (KEGG)
enrichment analysis of DEGs was implemented by the R package
clusterProfiler (version 3.14.3) (Yu et al., 2012) and displayed
in the dotplot, wherein enriched pathways were described
using gene ratio, adjusted p-value, and count; enrichment
with adjusted p < 0.1 was considered statistically significant.
Enrichment analyses including GO and KEGG pathway analysis
were performed each time when a new set of genes (DEGs,
module genes, or hub genes) was defined.

Inference of Immune Cells Composition in
Tissue Samples
As RA could provoke inflammation (Song and Lin, 2017),
it is reasonable that RA is accompanied by altered immune
cells composition. After the validation of the key genes, we
explored such alteration in RA tissue samples by comparing
their normal counterparts. Briefly, deconvolution of cellular
composition was carried out using CIBER-SORT algorithm (Cell-
type Identification by Estimating Relative Subsets of Known
RNA Transcripts) (Newman et al., 2015), a machine learning
algorithm trained on 22 pre-defined distinct immune cell profiles
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corresponding to the expression patterns of 547 genes, whereby
different immune cell compositions could be distinguished by
these “molecular barcodes,” under a null hypothesis that none
of the pre-defined cells were predicted to reside in a given
sample (Newman et al., 2015). The analysis was carried out in
compliance with a previously described protocol (Chen et al.,
2018a), where 100 permutations were performed to ensure
the statistical rigor. The resultant relative fractions of different
immune cells were visualized using stacked barplot showing the
percentages of immune cell components, and the significance
of alterations was calculated using Wilcoxon rank-sum test (RA
group vs. HC group) followed by p-value adjustment of multiple
testing (q-value) and displayed on a volcano plot.

Validation of the Key Genes and Their
Biological Significance
To further confirm the biological significance of our currently
identified key genes, machine learning models were employed.
Initially, LASSO (least absolute shrinkage and selection operator)
algorithm was performed on the key genes to select the modeling
feature. LASSO was implemented by glmnet package (version
4.0.2) (Friedman et al., 2010) in R. Then, six machine learning
classification models were used to train the predictive model.
The training goal was to fit the appropriate model weights to
predict whether the testing sample belongs to the RA sample or
HC sample. The greedy algorithm was performed to optimize
the hyperparameters by investigating all possible combination
of hyperparameters within a certain range, and a 10-fold cross-
validation was used to evaluate the availability of different
combinations. The main parameters of the six models were as
follows: (a) LASSO was equivalent to the logistic regression using
L1 regularization optimization, the penalty coefficient C was
set to 0.14, and the optimization algorithm was the “liblinear”
method; (b) the penalty coefficient C in the support vector
machine (SVM) model was set to 0.1, and the kernel function
was set to radial basis function (RBF); (c) random forest (RF)
stipulates that the maximum number of sub-decision trees was
200, and each sub-tree contained up to five features; (d) the
maximumdepth of eXtremeGradient Boosting (Xgboost) was set
to 4, the penalty coefficient λ was set to 10, and the learning rate
was set to 0.001; (e) the back propagation neural network (BPNN)
model was set to a single hidden layer network. The number of
neurons in the hidden layer and the input layer remained the
same. The activation function from the input layer to the hidden
layer was set to the Relu function, and the value of the output
layer compressed by the Sigmoid function was regarded as the
probability value for output. The batch gradient descent method
was used as the training method, the loss function was set to
cross entropy function, the number of iterations was set to 1,000,
and the learning rate was set to 0.001. (f) The CNN model, a 1D
CNN model, contained two convolutional layers (conv1, conv2),
two pooling layers (pool1, pool2), and two fully connected layers
(fc1, fc2). Conv1 contained two output channels, its kernel size
was set to 3, the stride was set to 1, and the padding was set
to 1. Conv2 contained four output channels, its kernel size was
set to 5, the stride was set to 1, and the padding was set to 0.

The data underwent batch normalization after passing through
each convolutional layer and then activated by the Relu function.
Both the pool1 and pool2 used the max pooling as the pooling
method, and the kernel size and stride were set to 2. After passing
through the pool2 layer, the data were flattened and regarded as
the input of the fc1 layer. The fc1 layer contained 10 neurons and
used Relu as the activation function. The output of the fc2 layer
was the probability value compressed by the Sigmoid function.
Like BPNN, the batch gradient descent method was used as
the training method, the loss function was set to cross entropy
function, the number of iterations was set to 1,000, and the
learning rate was set to 0.001. Each model was subjected to 1,000
times Monte Carlo cross-validations on the test set, which means
that in each validation process, the training set was randomly
partitioned in a 1/4 ratio for validation set and modeling set,
respectively, whereas the test set remained unchanged during
the process. The modeling set was used to fit the predictive
model to predict the validation set or the test set. As a result,
1,000 values of six indicators [sensitivity, specificity, accuracy,
positive predictive value (PPV), negative predictive value (NPV),
area under curve (AUC)] were obtained, and the average value
was used to evaluate the generalization performance of different
models. The receiver operating characteristic (ROC) curve was
drawn based on sensitivity [true positive rate (TPR)] and 1
– specificity [false positive rate (FPR)]. The area enclosed by
the ROC curve and the x axis and y axis was called the AUC
value, which was associated with themodel performance. LASSO,
SVM, and RF models were all integrated in the scikit-learn
package (version 0.22.1) (Pedregosa et al., 2011), Xgboost was
implemented by the xgboost package (version 1.1.0) (Chen and
Guestrin, 2016), and the network structure of BPNN and CNN
was built in the Pytorch framework (version 1.3.1) (Paszke et al.,
2019). All models were implemented in python (version 3.7.6).

RESULTS

Identification of DEGs and Their Functional
Enrichment Analysis
Initially, 11 GEO datasets of blood sample were preprocessed
in statistical analysis software R, whereby we found an
obvious batch effect across different datasets (Figure 1A),
which was subsequently corrected using removeBatchEffect in
limma package (Figure 1B). Next, a total of 451 DEGs in
the training set were discovered using limma package, among
which 231 genes were upregulated, whereas 220 genes were
downregulated. The volcano plot showing the upregulated
and downregulated genes and non-DEGs was depicted in
Figure 2A, whereas the top 40 DEGs ranked by p-values
were used to generate the heatmap (Figure 2B). Detailed
information concerning DEG analysis results was provided in
Supplementary Table 2. Based on DEGs, GO term enrichment
analysis was performed; our results were mainly focused on
three different GO categories, namely, biological process (BP),
molecular function (MF), and cellular component (CC), along
with KEGGpathway analysis. Enrichment of DEGs was displayed
in Figures 3A–D. With regard to BP, DEGs were significantly
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FIGURE 1 | Verification of batch effect removal using t-SNE plots. (A) The

distribution of the raw data after dimensionality reduction. (B) The distribution

of the batch effect corrected data after dimensionality reduction. The dots with

different colors represented samples in different batches. Healthy controls and

rheumatoid arthritis samples were denoted by triangles and circles,

respectively.

enriched in neutrophil activation, neutrophil degranulation,
neutrophil activation involved in immune response, and
neutrophil mediated immunity (Figure 3A). As for CC, DEGs
were mainly implicated in cytoplasmic vesicle lumen, vesicle
lumen, and secretory granule lumen (Figure 3B). With respect to
MF, enrichment DEGs were found in the pathways concerning
organic acid binding, antioxidant activity, and hydrolase
activity acting on carbon–nitrogen (but not peptide) bonds
and antioxidant activity (Figure 3C). In addition, significant
enrichment of DEGs results in KEGG pathways of Alzheimer
disease, NOD-like receptor signaling pathway, and apoptosis
(Figure 3D). These significantly enriched pathways and terms
improved our understanding of the regulatory roles of DEGs in
RA occurrence and progression.

Weighted Correlation Network Analysis
Correlated genes usually exhibit identical or similar expression
pattern. To gain a deeper insight into gene correlation

FIGURE 2 | Differential analysis of datasets. (A) Volcano plots showing the

differentially expressed genes screened by the criteria of |log2FC| >1 and p <

0.05. The upregulated and downregulated genes were denoted by red spots

and green spots, respectively. (B) The top 10 DEGs with the smallest p-values

in the upregulated and downregulated clusters were taken out, respectively, to

generate heatmap.

in RA, we established a co-expression network to screen
gene modules that contain highly correlated genes using
WGCNA. As shown in Figure 4A, up to five modules (brown,
yellow, turquoise, blue, and green) were mined, whereas the
gray module represents genes without significant clustering
information. The correlation of genes in different modules
was shown in Figure 4B, whereas the eigengene adjacency
heatmap and corresponding dendrogram (Figure 4C) showed
the adjacencies among different modules, and the adjacencies
between yellow/brown, blue/green, and blue/turquoise were
relatively high, suggesting a positive intra-correlation within
these module pairs (Figure 4D). Further analysis showed that
the blue gene module had the most significant positive
correlation with the sample status (Figure 4E), whereas the
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FIGURE 3 | Functional enrichment analysis of DEGs. The results of three major GO enrichment categories are shown in (A) biological process, (B) cellular

component, and (C) molecular function, respectively, along with (D) KEGG pathway. The dot size represented the count of differentially expressed genes, and the

color depth represented the p-value-based significance.

turquoise gene module had the most significant negative
correlation with the sample status (Figure 4F). Genes in
these two modules were subsequently used for GO/KEGG
enrichment analyses. The enrichment analysis results of blue
module were shown in Figures 5A–D. With regard to BP, the
blue module genes were significantly enriched in proteasomal
protein catabolic process, neutrophil activation, and neutrophil
mediated immunity (Figure 5A). As for CC, the blue module
genes were mainly implicated in focal adhesion, cell–substrate
adherens junction, and cell–substrate junction (Figure 5B). With
respect to MF, the blue module genes were found in the

pathway concerning electron transfer activity, oxidoreductase
activity, and a multitude of other functions (Figure 5C). In
addition, significant enrichment of the blue module genes in
the KEGG pathway of Herpes simplex virus 1 infection was
revealed (Figure 5D).

The enrichment analysis results of the turquoise module
were as indicated in Figures 5E–H. With regard to BP, the
turquoise module genes were significantly enriched in neutrophil
activation, neutrophil mediated immunity, and neutrophil
degranulation (Figure 5E). As for CC, the turquoise module
genes were mainly implicated in cytoplasmic vesicle lumen,
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FIGURE 4 | WGCNA analysis identified the gene modules related to RA. (A) The dendrogram showed that the molecules were classified into different gene modules

based on the correlation analysis. Different colors represented the different modules, and the gray module represented genes that were unassigned to any network.

(B) The network heatmap showed the correlation of genes in different modules, and the lighter areas represented the higher correlation. (C) Eigengene adjacency

heatmap showed that aside from relatively strong correlation between the blue/green or yellow/brown modules, limited correlations were observed among other

module pairs. (D) The heatmap of module trait relationships showed the correlation between each gene module and clinical status of samples. The red cube

represented a positive correlation, whereas the blue cube represented a negative correlation. The consensus correlation between modules and phenotypes was

reported as a number shown in each cube, with p value (in parenthesis) printed below the correlations. The blue/turquoise module had the most significant

positive/negative correlation with the sample status, and the scatter plots (gene significance vs. module membership) of the blue and turquoise modules were shown

in (E,F), respectively.

vesicle lumen, and secretory granule lumen (Figure 5F). With
respect to MF, the turquoise module genes were those in the
pathways of catalytic activity (acting on RNA), ubiquitin-like
protein ligase binding, and ubiquitin protein ligase binding

(Figure 5G). In addition, significant enrichment of the turquoise
module genes in several KEGG pathways including Salmonella
infection, NOD-like receptor signaling pathway, and NF-kappa
B signaling pathway was revealed (Figure 5H).
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FIGURE 5 | Functional enrichment analysis of module genes. Module genes in the blue and turquoise modules were analyzed, and enrichment categories of two

modules are shown in (A,E) biological process, (B,F) cellular component, (C,G) molecular function, and (D,H) KEGG pathway, respectively. The dot size represented

the count of differentially expressed genes, and the color depth represented the p-value-based significance.

Network Analyses of Module Genes/Hub
Genes
Genes in the blue and turquoise modules were filtered based
on node score and merged together, named module genes,
and further visualized as a correlation network in Figure 6A,
where up/downregulated genes (intersection of DEGs and
genes in two modules) in the training set were, respectively,
denoted by red/blue colors (nodes with larger size possess
more edges). A total of two networks were generated, and all
DEGs were clustered in the network based on the turquoise
module (Figure 6A), whereas only five genes were filtered in the
network based on the blue module (Figure 6B). Additionally, no
correlation (edges) between turquoise network and blue network
was observed due to the low inter-module correlation. Therefore,
subsequent analyses were mainly focused on the turquoise
module. Given that the correlation network at transcriptome
level has been elucidated, we further analyzed the PPI network
at protein level. Briefly, the intersection of module genes and
DEGs identified above was defined as hub genes and searched
against STRING online database to establish a PPI network;
closely related proteins encoded by hub genes were shown
in Figure 6C. The PPI network was subjected to topological
analysis, and strong inter-connectivity was observed at the
central part of the PPI network, including DEFA4, CTSG,
ARG1, RETN, LCN2, PGLYRP1, MMP9, TNFAIP6, and TCN1,
among which the intra-network importance of MMP9 and
ARG1 was significantly increased (larger node size among hub
genes) at protein level (Figure 6C, central area), compared
with that at transcriptional level (relatively small node size
among module genes, Figure 6A, bottom). Subsequently, these
hub genes underwent GO/KEGG enrichment analyses. The

enrichment analysis results of hub genes (Figures 7A–D) showed
that with regard to BP, hub genes were significantly enriched in
neutrophil activation, neutrophil degranulation, and neutrophil
activation involved in immune response (Figure 7A). As for CC,
hub genes were mainly implicated in cytoplasmic vesicle lumen,
vesicle lumen, and secretory granule lumen (Figure 7B). With
respect to MF, hub genes were found in the pathways of organic
acid binding, hydrolase activity [acting on carbon–nitrogen (but
not peptide) bonds], and antioxidant activity (Figure 7C). In
addition, significant enrichment of hub genes in KEGG pathways
associated with Alzheimer disease was revealed (Figure 7D).

Validation of the Key Genes in the Test Set
We first defined a set of key genes as the intersection of hub
genes (intersection of module genes and DEGs of the training
set) and DEGs of the test set (Table 2). The expression pattern
regarding the top three upregulated (FUT7, KCNJ2, TREML2)
and downregulated (BIN1, ZFP36, PNPO) key genes was further
verified in the test set (GSE55457, tissue samples) by comparing
RA patients against controls. As shown in Figure 8, the box plot
indicated that the expression pattern of these key genes resembled
to that in the training set (blood sample): FUT7, KCNJ2, and
TREML2were significantly upregulated, accompanied by distinct
downregulation of BIN1, ZFP36, and PNPO, suggesting the
biological significance of these key genes across different samples
and their potential to serve as biomarkers for RA.

Immune Cell Infiltration Analysis
After the analysis with CIBER-SORT, inferred immune cell
compositions in the RA and HC groups were visualized
(Figure 9A); the corresponding volcano plot (Figure 9B) showed
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FIGURE 6 | Network analyses of module genes/hub genes recognized by WGCNA at transcriptional and protein levels. In gene co-expression network of turquoise

module (A), blue module (B), the red/blue circles represented up/downregulated module genes, respectively, and the gray circles represented module genes that

were not differentially expressed; larger node size is associated with increased number of edges. (C) In protein–protein interaction network of hub genes, the node

size (from small to large), node color (from yellow to green), and transparency of edges (from light to dark) were proportional to degree centrality (number of edges

possessed by a node), betweenness centrality (the frequency that a node serves as a bridge along the shortest path between two other nodes), and combined score

(evidence of interaction between two nodes based on different evidence channels, e.g., experimental data/association in curated databases), respectively.

that the percentages of five immune cells including macrophages
M1, gamma delta T cells, CD8(+) T cells, plasma cells,
and memory B cells were significantly elevated in the RA
group (red horizontal dash line on the y axis indicates a q-
value of 0.05). On the contrary, the proportion of resting
CD4(+) memory T cells was reduced in the RA group, in
distinct contrast to the elevated level of activated CD4(+)
memory T cells.

Machine Learning Model Validation
Our machine learning methods were based on pre-defined
key genes. First, LASSO algorithm was used for selection
of pivotal key genes that were appropriate for subsequent
machine learning validation; the λ value corresponding to the
smallest binomial deviance was selected as the penalty coefficient,
whereby 15 features were obtained for building the predictive
model (Figures 10A,B). The weights of the gene features were
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FIGURE 7 | Functional enrichment analysis of hub genes. Hub genes were also subjected to enrichment analysis, categories are shown in (A) biological process, (B)

cellular component, (C) molecular function, and (D) KEGG pathway, respectively. The dot size represented the count of differentially expressed genes, and the color

depth represented the p-value-based significance.

shown in Figure 10C. Next, the evaluation of up to six different
machine learning classification models (“LASSO,” “SVM,” “RF,”
“Xgboost,” “BPNN,” “CNN”) was carried out. The performance
of the six models was demonstrated using ROC, which was
plotted with TPR (sensitivity) against FPR (1 – specificity)
(Figure 11A). ROC curve for a specific machine learning method
is generated by varying thresholds that result in trade-off between
sensitivity and specificity. Therefore, AUC can be used to evaluate
the performance of a specific model; the higher the AUC, the
better the effectiveness of prediction. By comparing the AUC
of the six machine learning models, BPNN (0.99) appears to
perform the best among the six machine learning models;
LASSO (0.91) and SVM (0.95) also did well in this regard.
Notably, aside from the RF model with AUC lower than 0.8,
the other models achieved relatively high effectiveness (AUC
>0.85) in RA prediction. These observations were consistent

with the box plot that showed the distribution of 1,000 AUC
values obtained by six machine learning models in 1,000
independent random verifications (Figure 11B). As shown in
Supplementary Figure 1, during 1,000 iterations in the training
process of “BPNN,” “CNN” using batch gradient descent method,
the fitting effect increased with the number of iteration (up to
1,000 iterations), which was reflected in lower loss value. The
detailed information of this section was shown in Table 3 (test
set) and Supplementary Table 3 (training set), respectively.

DISCUSSION

In this study, we first identified numerous DEGs (between RA
patients and controls) in the training set/test set. Gene modules
(blue/turquoise modules) strongly associated with RA in the
training set were subsequently discovered by WGCNA, whose
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TABLE 2 | The information of 22 key genes.

Symbols logFC p Adj. p Threshold

FUT7 0.9304 9.15e−18 8.58e−18 Up

TREML2 0.8808 9.16e−18 8.17e−17 Up

KCNJ2 0.9233 5.30e−17 3.53e−16 Up

POLB 0.7819 1.31e−15 6.45e−14 Up

AIM2 0.6428 2.62e−12 6.90e−11 Up

QPCT 0.6298 3.23e−9 5.41e−8 Up

PTP4A3 0.5064 3.44e−9 5.74e−8 Up

TNFSF10 0.5212 7.07e−8 9.91e−7 Up

GLTSCR1 −0.6983 5.07e−19 6.37e−18 Down

ADM −1.1117 1.99e−16 1.04e−15 Down

GPS1 −0.7038 1.91e−16 1.01e−15 Down

VEGFB −0.7276 8.69e−15 4.33e−15 Down

ECHDC2 −1.0442 1.33e−15 6.51e−14 Down

TAF15 −0.8912 1.34e−14 5.27e−13 Down

SAFB −0.5298 1.69e−14 6.56e−13 Down

SNCA −1.7333 7.64e−14 2.84e−14 Down

BET1L −0.6322 1.31e−13 4.31e−12 Down

TOMM40 −0.5833 1.74e−13 5.74e−12 Down

LTBP4 −0.5541 2.87e−13 9.41e−12 Down

PNPO −0.5628 5.19e−12 1.36e−12 Down

BIN1 −0.6311 5.74e−10 1.16e−10 Down

ZFP36 −0.8074 1.04e−10 2.01e−9 Down

Key genes were obtained from intersection between DEGs in the test set and hub genes

in the training set, including 8 upregulated genes and 14 downregulated genes, among

which 15 features selected by Lasso (shown in bold) were used in subsequent machine

learning modeling.

intersection with DEGs in the training set was defined as hub
genes. Network analyses revealed the correlation among hub
genes at both transcriptome (WGCNA node score) and protein
(PPI network combined score) levels. Afterward, the intersection
between DEGs in the training set and hub genes was defined as
key genes and underwent selection by LASSO algorithm before
being used as features in machine learning model validation.
Finally, the biological significance of these features was supported
by relatively high AUC (>0.85) achieved by 5 out of 6 machine
learning models.

In 11 GEO datasets based on blood samples (training set),
we discovered a total of 451 DEGs that were significant between
RA patients and controls, among which 231 upregulated and 220
downregulated genes were screened using a stringent threshold.
These DEGs underwent subsequent GO term enrichment and
KEGG pathway analysis, through which we further discovered
several pathways where DEGs were significantly enriched. As
for BP, DEGs were related to neutrophil associated pathways.
Neutrophils play a pivotal role in the initiation of RA; these
cells will be activated after migrating into the articular cavity
where they exert regulatory functions, such as generating
cytokines that affect other immune cells, thereby sustaining
the inflammation status and contributing to the pathogenesis
of RA (Chen et al., 2018b). With regard to CC, DEGs were
mainly associated with lumen, such as cytoplasmic vesicle

lumen and secretory granule lumen, indicating that RA might
affect the lumen biogenesis, which was not previously reported.
Enrichment of DEGs in the MF pathway displayed a greater
diversity, which involved organic acid binding, antioxidant
activity, and hydrolase activity acting on non-peptide carbon–
nitrogen bonds, among which the potential of antioxidant as
an alternative RA therapy has been proposed according to the
evaluation of plasma oxidant/antioxidant status in RA (Jaswal
et al., 2003). KEGG pathway analysis of DEGs demonstrated
relatively high enrichment in the pathway concerning Alzheimer
disease; although the enrichment in Parkinson disease was
less significant, these pathways were strongly correlated with
neurodegenerations. Their association with RA was supported
by several publications; specifically, a Mendelian randomization
study proposed a correlation between RA and Alzheimer disease
(Bae and Lee, 2019); co-methylation relation study revealed that
samples of RA and Parkinson disease shared 337 significantly
altered (vs. their respective control) methylation gene pairs (Tang
et al., 2018).

To explore the way through which these DEGs worked in
concert to affect the pathogenesis of RA, we utilized WGCNA to
select highly co-expressed genemodules for further investigation.
As a result, a total of five modules were defined, among which
two modules (blue/turquoise) exhibited the most significant
positive/negative correlation with the sample status; therefore,
these two modules were merged together as module genes for
in-depth study. Pathway enrichment analysis of these modules
showed that: 1, consistent with the results of DEGs, bothmodules
were mainly enriched in neutrophil associated process with
regard to BP category; 2, for CC, genes in the blue module were
predominantly implicated in adhesion and junction, whereas
genes in the turquoise module were clustered in lumen, agreeing
with the result of DEGs; 3, in terms of MF, genes in the blue
module were responsible for NADH dehydrogenase activities,
whereas genes in the turquoise module participated in various
molecular binding activities, especially ubiquitin protein ligase
binding; 4, similar to DEGs, genes in the blue module were
mainly associated with neurodegeneration-associated KEGG
pathways, whereas genes in the turquoisemodule were connected
with immune-associated KEGG pathways [nuclear factor (NF-
kappa) B signaling pathway/T cell receptor signaling pathway].
Collectively, pathways in which genes in the blue module were
enriched (adhesion/junction, NADH dehydrogenase activities,
and neurodegeneration) were positively correlated with RA,
whereas their turquoise counterparts (lumen, ubiquitin binding,
and immunity) were quite the opposite. Some supporting
evidence was discussed below: the expression of several adhesion
molecules was previously discovered in rheumatoid synovium,
and these molecules promote the pathogenesis of RA through
regulating synovial production (Haskard, 1995; Liao and Haynes,
1995); the mutations of the A20 [tumor necrosis factor (TNF)
inducible protein 3] at ZnF7 (zinc finger 7) ubiquitin binding
domain lead to arthritis in the mouse model (Polykratis et al.,
2019). Through visualization with correlation network, strong
intra-connectivity was found within modules. The intersection
of module genes and previously identified DEGs was named
hub genes, and the correlation among hub genes was further

Frontiers in Genetics | www.frontiersin.org 11 February 2021 | Volume 12 | Article 604714

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Xiao et al. Discovering Pivotal Markers for RA

FIGURE 8 | Expression patterns of the top three upregulated and three downregulated key genes in the RA (rheumatoid arthritis) and HC (healthy control) groups of

the test set. (A) Expression patterns of FUT7. (B) Expression patterns of BIN1. (C) Expression patterns of KCNJ2. (D) Expression patterns of ZFP36. (E) Expression

patterns of TREML2. (F) Expression patterns of PNPO.

visualized through network analyses. We found that MMP9 and
ARG1 were more pivotal at protein level (among hub genes) than
at transcriptional level (among module genes), as these proteins
exhibited increased level of degree centrality and betweenness
centrality. Additionally, MMP9 and ARG1 were upregulated
DEGs identified in our training set, which was supported by
previous reports. Indeed, MMP9 is distinctly increased in serum,
and especially in the synovial fluid of RA patients, partially
through conferring synovial fibroblast with survival benefits,
thereby inducing inflammation and degradation of the cartilage
(Xue et al., 2014). Moreover, ARG1 was reported to be strongly
associated with polyamine and nitric oxide (NOS) in RA, and
high ARG1 activity is considered as a frequent feature for RA
patients (Panfili et al., 2020). In contrast, pivotal genes, such as
MAGED1, RAB11FIP3, and PUS1, that were correlated with the
vast majority of the turquoise module genes were less prominent
at protein level.

Enrichment analyses were performed to interpret the
biological significance of the newly defined set of genes;
the majority of results concerning BP, CC, and KEGG
pathway analysis were highly consistent with that of DEGs

or blue/turquoise modules, except for enrichment in GO MF
terms that varied across a wide range of MFs, including
binding functions (organic acid binding, heat shock protein
binding, fatty acid binding, glucose binding, etc.) and regulation
of enzyme activity (hydrolase, antioxidant, peroxidase, and
deaminase activities). Some of these functions were also related
to arthritis: research on pre-RA subjects and matched controls in
a cohort study showed that erythrocyte membrane levels of the
n−6 polyunsaturated fatty acids—linoleic acid (PUFA LA) were
inversely associated with RA development (de Pablo et al., 2018);
the occurrence of abnormal glucose metabolism in RA patients
was significantly higher (Pi et al., 2017). A cross-sectional study
demonstrated that antioxidant levels were elevated in RA patients
by comparing controls; worse still, these patients were unable to
avoid impairments induced by oxidation (Garcia-Gonzalez et al.,
2015).

To further explore biologically significant candidates, the key
genes were defined as the intersection of hub genes (intersection
of module genes and DEGs of the training set) and DEGs of
the test set. However, MMP9 and ARG1 that played a central
role in the PPI network were not among the key genes, and
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FIGURE 9 | CIBER-SORT inference of immune cells composition in tissue samples. (A) Stacked barplot showing the percentages of 22 immune cell components of

the RA and HC groups. (B) Volcano plot reveals distinct differences in relative compositions of immune cell populations between RA and HC samples. The y axis

represents the –log10 transformation of q-value (adjusted p-value), and the red horizontal dash line indicates a q-value of 0.05.

we hypothesized that these genes might play a major role on
peripheral blood instead of RA tissue. Nevertheless, we verified
the expression patterns of the key genes in tissue samples of
RA patients by comparing with controls and discovered the top
three upregulated (FUT7, KCNJ2, TREML2) and downregulated
(BIN1, ZFP36, PNPO) key genes. As expected, these key genes
exhibited similar expression patterns in tissue samples; we discuss

their potential roles in RA based on our current results in
the following lines. FUT7 gene encodes fucosyltransferase-VII,
an important mediator for synthesizing selectin ligands (Sarraj
et al., 2014) and leukocyte adhesion (Wang et al., 2013). Mice
with mutated FUT4 and FUT7 exhibited remarkable deficiencies
in terms of leukocyte recruitment at the presence of acute
inflammation (Homeister et al., 2001). Importantly, upregulated
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FIGURE 10 | Feature selection using Lasso. (A,B) The LASSO penalized

model showed that when Log λ = −4.51, the minimum binomial deviance for

the selected λ was ∼0.3, where the coefficient of 15 selected features (with

non-zero coefficients) was calculated and shown in (C).

FUT7 was reported in synovial tissues of RA, and its potential
correlation with M1 inflammatory macrophages was also verified
by quantitative reverse transcription PCR (qPCR) (Li et al.,
2014). Kir2.1, also called inward-rectifier potassium ion channel,

FIGURE 11 | Modeling on independent test set for verification. (A) The ROC

diagram showed the prediction effect of different models on the test set, with

95% confidence interval being marked with dotted lines. The AUC value of the

model represents the area under the ROC curve. The closer the AUC to 1, the

better the generalization of the model. (B) The box plot of the AUC value

showed the distribution of 1,000 AUC values obtained by the model in 1,000

independent random verifications. The narrower the box, the more stable the

prediction effect of the model.

is a lipid-gated ion channel encoded by the KCNJ2 gene and a
mediator of inward-rectifier K+ current (IK1) (Li et al., 2016),
and the potential association between Kir2 and immune response
has been described, but yet it remains elusive. For instance,
interferon gamma (IFN-γ) is secreted by Th1 (CD4+) cells, and
the inverse correlation between IFN-γ and IK1/Kir2.1 expression
was found in the rat heart with myocardial infarction, where Th1
cells responded to the stimulation by elevating the level of IFN-
γ; the regulatory role of CD4 cells on IK1/Kir2.1 expression was
therefore ascribed to IFN-γ (Li et al., 2016).TREML2, also termed
as myeloid cells (TREM)-like transcript 2 (TLT-2), is stably
expressed by CD8(+) T cells, when binding to T cell proliferation
co-stimulator B7-H3 (CD276) (Chapoval et al., 2001), T cell
proliferation will be promoted; the regulatory role of TLT-2
was therefore attributed to activated TLT-2–B7-H3 signaling
cascade (Hashiguchi et al., 2008). The pro-inflammatory nature
of TREML2 was also indicated in a previous study showing an
upregulation of TREML2 in response to inflammation (King
et al., 2006). Bridging Integrator-1 is encoded by the human
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TABLE 3 | The evaluation indicators of the six models were extracted from the test results of independent datasets, and the value of each indicator was obtained through

1,000 independent random verifications.

Model Cut-off Sensitivity Specificity PPV NPV Accuracy AUC (CI: 95%) p

LASSO 0.4 53.1% ± 0.0034 99.7% ± 0.0003 99.8% ± 0.0003 63.5% ± 0.0020 73.9% 0.91 ± 0.0013 3.08e−04

0.5 50.5% ± 0.0235 99.8% ± 0.0003 99.8% ± 0.0002 62.2% ± 0.0019 73.9%

0.6 46.0% ± 0.0038 99.9% ± 0.0002 98.9% ± 0.0020 60.2% ± 0.0020 73.9%

SVM 0.4 92.3% ± 0.0033 85.8% ± 0.0037 91.4% ± 0.0019 92.2% ± 0.0030 87.0% 0.95 ± 0.0010 4.39e−12

0.5 90.5% ± 0.0035 89.7% ± 0.0032 93.7% ± 0.0017 91.7% ± 0.0025 91.3%

0.6 88.3% ± 0.0038 93.2% ± 0.0028 95.8% ± 0.0015 89.8% ± 0.0028 95.7%

RF 0.4 83.5% ± 0.0049 50.4% ± 0.0065 71.9% ± 0.0031 69.3% ± 0.0065 56.5% 0.75 ± 0.0032 1.28e−02

0.5 59.3% ± 0.0068 80.5% ± 0.0050 80.2% ± 0.0049 65.4% ± 0.0044 73.9%

0.6 59.3% ± 0.0068 80.5% ± 0.0050 80.2% ± 0.0049 48.9% ± 0.0066 60.9%

Xgboost 0.4 98.7% ± 0.0006 24.4% ± 0.0040 63.6% ± 0.0012 68.2% ± 0.0086 73.9% 0.87 ± 0.0006 8.96e−41

0.5 79.9% ± 0.0052 77.3% ± 0.0028 82.9% ± 0.0024 80.9% ± 0.0029 82.6%

0.6 9.85% ± 0.0026 99.9% ± 0.0002 51.9% ± 0.0098 46.4% ± 0.0010 52.2%

BPNN 0.4 98.7% ± 0.006 95.1% ± 0.0010 96.5% ± 0.0007 98.4% ± 0.0007 95.7% 0.99 ± 0.0000 1.76e−09

0.5 95.3% ± 0.0007 97.3% ± 0.0009 98.0% ± 0.0006 94.4% ± 0.0009 95.7%

0.6 92.7% ± 0.0006 98.4% ± 0.0007 98.8% ± 0.0005 91.3% ± 0.0007 95.7%

CNN 0.4 81.5% ± 0.0037 78.1% ± 0.0043 85.0% ± 0.0024 78.5% ± 0.0039 87.0% 0.88 ± 0.0019 1.27e−02

0.5 72.4% ± 0.0045 84.8% ± 0.0036 87.2% ± 0.0028 74.1% ± 0.0031 82.6%

0.6 61.7% ± 0.0050 90.0% ± 0.0027 90.0% ± 0.0029 68.2% ± 0.0031 82.6%

BIN1 gene (Negorev et al., 1996) and predominantly expressed
in the brain and muscle (Wechsler-Reya et al., 1997), which is
a multifunctional protein that also serves as a tumor suppressor
through interacting with Myc; hence, Myc box-dependent-
interacting protein is an alias for the BIN1 gene (Sakamuro
et al., 1996). Moreover, increasing bodies of evidence suggested
that altered BIN1 might affect the common late onset of
AD (LOAD) through the tau pathology pathway (Tan et al.,
2013). Intriguingly, the potential inflammatory role of BIN1 was
reported in the aging BIN1 knockout mice model that exhibited
an elevated incidence of inflammation (Chang et al., 2007). The
ZFP36 gene (also known as zinc finger protein 36 homolog)
encodes tristetraprolin (TTP), a negative regulator of many pro-
inflammatory genes, including TNF-α that participated in the
pathogenesis of RA and other inflammatory diseases (Feldmann,
1996). Knockout of ZFP36 was shown to provoke severe erosive
arthritis in mice (morphologically resembles human RA) (Taylor
et al., 1996), such inflammatory response was attributed to
the inhibitory effect of TTP on TNF (Carrick et al., 2006).
The pyridoxine-5′-phosphate oxidase (PNPO) enzyme plays a
pivotal role in pyridoxine conversion (Jaeger et al., 2016) and the
synthesis of activated vitamin B6 [pyridoxal 5′-phosphate (PLP)],
which is also involved in a board spectrum of BPs including
metabolizing amino acids and synthesizing nucleic acids (Khayat
et al., 2008). Up to now, relatively few studies have been focusing
on the correlation between PNPO and disease pathogenesis, one
of which proposed that infantile seizure was a consequence of
PNPO deficiency (Khayat et al., 2008).

Among other key genes, TNFSF10 and VEGFB, respectively,
belong to two established RA-associated protein families, namely,
TNF superfamily and vascular endothelial growth factor (VEGF)
family. TNFSF superfamily is involved in the simulation of

several immune cells (including T and B lymphocytes) and
therefore considered a hallmark of autoimmune diseases (Croft
et al., 2012), among which TNF-α is enriched in the synovial fluid
of RA patients that exerts pro-inflammatory effects and regarded
as a therapeutic target of RA (Radner and Aletaha, 2015). VEGF,
as an angiogenic factor that occurs in response to impairments,
could be elevated by cytokines that promote inflammation, and
the serum level of VEGF in RA patients was proposed as an
indicator of RA progression (Taylor, 2002). Combined with the
current results, TNFSF10 and VEGFB might also participate
in the pathogenesis of RA through similar ways and serve as
RA markers.

As an autoimmune disease, the onset of RA is accompanied
by a series of immune processes, wherein immune cells play a
fundamental role. To gain a deeper understanding of the key
genes, we sought to link the expression patterns of the key genes
with immune cells by analyzing the immune cell composition
in tissue samples. The promoted local recruitments of five types
of immune cells in RA tissues were inferred by CIBER-SORT,
among which increased proportions of CD8(+) T cells and M1
inflammatory macrophages were consistent with the verification
regarding 2 out of 3 top upregulated genes (elevatedTREML2 and
FUT7 corresponded to increased proportions of CD8(+) T cells
and M1 inflammatory macrophages, respectively) in RA tissue
samples. Intriguingly, in RA tissues, the percentage of resting
CD4(+) memory T cells in RA was significantly reduced by
comparing the elevated proportion of activated CD4(+) memory
T cells, such trade-off suggested that resting CD4(+) memory
T cells might be activated in response to the inflammatory
stimulation of RA. These results indicated that the change in
RA immune microenvironment might be associated with our
currently identified key genes. Collectively, among the six top
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key genes, to our knowledge, FUT7 and ZFP36 were previously
reported to be related to RA, whereas TREML2, KCNJ2, and
BIN1 might be associated with inflammatory response. The
one remaining gene PNPO is a novel potential RA biomarker
predicted in the current study. The elevated TREML2 and FUT7
expression was consistent with the inference of CIBER-SORT
immune cell alteration.

Considering that the expression of the top key genes was
validated to be consistent across different (blood/tissue) RA
patient samples, we used the LASSO penalized model to further
select pivotal key genes that were appropriate for subsequent
validation. A total of 15 pivotal key genes were selected,
and, as expected, the top three up/downregulated (FUT7,
KCNJ2, TREML2/BIN1, ZFP36, PNPO) key genes were also
incorporated. These biomarkers were used as features to train
multiple machine learning algorithms to validate their biological
significance. Previously, WGCNA and machine learning were
used to uncover causative factors in RA; for instance, Ma
et al. (2017) used two datasets (GSE55235 and GSE77298) that
contained a total of 26 RA samples and 17 HCs to unearth
core players in RA through WGCNA. Although the key genes
described in their study did not overlap with that identified in our
current study, it is notable that TNFSF10 (the key gene identified
in the current study) was also among the top 10 characteristic
genes (without heterogeneity between two datasets) reported
by Xing et al. (2011), Ma et al. (2017) used Bayesian network
in conjunction with Monte Carlo simulation to predict genes
with novel roles (which was not directly associated with RA
therapeutic target, TNF-α) in RA treatment, whereby dozens of
genes were predicted to play novel roles in RA by impacting
Disease Activity Score 28 (DAS28) or joint health. Platzer et al.
(2019) adopted machine learning to generate gene expression-
based models for distinguishing between HC/RA and early
RA/other related arthritis (e.g., arthralgia) based on several DEGs
identified by single-variable comparisons. By comparing these
machine learning-based reports, we did not find intersection
between our currently identified key genes and those identified
in the abovementioned machine learning-based reports, which
might be attributed to different research goals and the scales
of datasets.

Likewise, studies of machine learning had attained successes
in the prediction of RA, for instance, histologic data were used
to establish machine learning model for stratifying synovial
subtypes of RA (Orange et al., 2018); multiple features of RA
and non-RA categorization including texture and shape were
integrated for RA classification (Bardhan and Bhowmik, 2019).

However, relatively limited studies were focused on the
potential of machine learning as an evaluator of biological
significance. In our present study, pivotal biomarkers that were
selected by LASSO (15 pivotal key genes) were validated by
machine learning model validation, and the results showed that
aside from “RF,” AUC of multiple machine learning methods
(“LASSO,” “SVM,” “Xgboost,” “BPNN,” “CNN”) exceeded 0.85,
especially BPNN (with an AUC of 0.99), which was higher
(although not directly comparable) than the AUC achieved
by the aforementioned reports. As suggested in previous

review, eliminating redundant features and focusing on fewer
elements that are relevant to the phenotypes could improve
the performance of a classifier, as empirical knowledge was
incorporated into the procedure (Libbrecht and Noble, 2015).
Therefore, the achievement of the current machine learning
models might be ascribed to the pivotal key genes that served
as features.

Although we have achieved significant results in our current
study, several limitations should be noted. First, analyses were
mainly performed based on transcriptome information (although
a PPI network was constructed and analyzed); therefore,
posttranslational modulations that play pivotal roles in the
pathogenesis of autoimmune diseases including RA (Opdenakker
et al., 2016) were not put into consideration for most part of
the study. Second, we did not find well-established RA markers,
such as C-reactive protein (CRP) (Choy, 2012), interleukin (IL)-
6 (Srirangan and Choy, 2010), or TNF-α (Saklatvala, 1986)
(although another member of TNF superfamily, TNFSF10, was
discovered as a key gene in the present study), which might be
ascribed to the integration process in the current study, during
whichmassive datasets were aggregated to obtain the training set,
at the cost of excluding some important genes with incomplete
information (with ID that was not shared by all datasets or with
proportion of missing value >50% across all datasets).

In summary, the present study discovered several enriched
pathways in RA patients based on DEGs, and the corresponding
hub genes were determined byWGCNA and visualized using the
PPI network. By incorporating the genetic information from the
test set, 22 key genes were subsequently defined, among which
FUT7 (Li et al., 2014) and ZFP36 (Taylor et al., 1996) were
reported to be involved in the pathogenesis of RA; TNFSF10
(Croft et al., 2012) and VEGFB (Taylor, 2002) belonged to
known RA-associated families; TREML2 (Chapoval et al., 2001),
KCNJ2 (Li et al., 2016), and BIN1 (Chang et al., 2007) were
proposed to be associated with immune response; TREML2 and
FUT7 exhibited expression patterns that were consistent with
our current inferential results of immune cells composition,
whereas PNPO is not yet reported in RA and deserves further
investigation. The preceding key genes were among the 15 pivotal
features selected by LASSO, and their biological significance was
further confirmed through machine learning model validation.
Taken together, our currently identified key genes might provide
novel perspective in understanding RA pathogenesis or serving
as biomarker for RA diagnosis. Their correlation with immune
response/immune cells also confers them the potential as
therapeutic target of RA, since the suppression of harmful
properties in immune cells has been proposed as a feasible
approach to alleviate RA through preventing inflammation
(Xue et al., 2019).
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