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Abstract Introduction: New treatments for neurodegenerative disease are urgently needed, and clinical trial
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methods are an essential component of newdrug development. Although a parallel-group study design
for neurological disorder clinical trials is commonly used to test the effectiveness of a new treatment as
compared to placebo, it does not efficiently use information from the on-going study to increase the
success rate of a trial or to stop a trial earlier when the new treatment is indeed ineffective.
Methods: We review some recent advances in designs for clinical trials, including futility designs
and adaptive designs.
Results: Futility designs and noninferiority designs are used to test the nonsuperiority and the non-
inferiority of a new treatment, respectively. We provide some guidance on using these two designs
and analyzing data from these studies properly. Adaptive designs are increasingly used in clinical tri-
als to improve the flexibility and efficiency of trials with the potential to reduce resources, time, and
costs. We review some typical adaptive designs and new statistical methods to handle the statistical
challenges from adaptive designs.
Discussion: Statistical advances in clinical trial designs may be helpful to shorten study length and
benefit more patients being treated with a better treatment during the discovery of new therapies for
neurological disorders. Advancing statistical underpinnings of neuroscience research is a critical
aspect of the core activities supported by the Center of Biomedical Research Excellence award sup-
porting the Center for Neurodegeneration and Translational Neuroscience.
� 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

In clinical trials for neurological disorders, a parallel
group study is commonly used to assess the effectiveness
of a new treatment as compared to the placebo group [1–
4]. Patients are randomized to either the treatment arm(s)
or the placebo arm following a prespecified randomization
schedule. At the end of the study, the change of the
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primary outcome from the end to the baseline, calculated
from the treatment arm, is compared with that from the
placebo arm to make a conclusion whether the new
treatment has sufficient activity to move to the next phase
for further investigation. The primary outcome to assess
the cognitive performance can be measured by established
assessment tools, such as the Alzheimer’s Disease
Assessment Scale–Cognitive subscale (ADAS-Cog), the
Unified Parkinson’s Disease Rating Scale (UPDRS), Clin-
ical Dementia Rating, and the Amyotrophic Lateral Scle-
rosis Functional Rating Scale-revised (ALSFRSr). The
commonly used parallel-group design is able to study the
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effectiveness of the new treatment with influential covariates
being balanced during the randomization procedure; howev-
er, it may not be efficient enough for the purpose of rapidly
screening out nonpromising treatments or identifying the
most promising treatments [1,5–10].

Futility designs are widely used in early phase neurolog-
ical disorder trials to screen out new treatments that are high-
ly unlikely to produce successful results [11–15]. Futility
designs can be used in a single-arm study with the threshold
estimated from historical controls or in a parallel-group
study with a nonsuperiority alternative hypothesis [16–18].
The purpose of the futility design is to screen out an
unpromising treatment with fewer patients and a much
shorter study time period. As compared to the futility
design, the commonly used parallel-group study is often
used to test the superiority or noninferiority of the new treat-
ment over the placebo. In this article, we review the differ-
ence between the futility design and the noninferiority
design which is also widely used in clinical trials to test
the noninferiority of a new treatment. We also provide
some guidance on the proper usage of such designs [19–24].

In recent years, adaptive designs have been introduced
and used in trials for neurological disorders to reduce
resource use and study length [25–28]. There are a few
definitions for an adaptive design. In 2010, the Food and
Drug Administration published a draft guidance document
on adaptive designs and defined an adaptive design as “a
study that includes a prospectively planned opportunity for
modification of one or more specified aspects of the study
design and hypotheses based on analysis of data (usually
interim data) from subjects in the study” [29].

Adaptive designs provide opportunities to modify or
change the trial during the study while maintaining the
validity and integrity of the trial. These opportunities are
prespecified when certain conditions are met. In 2008,
Chow and Chang [27] reviewed 10 adaptive designs used
in clinical trials, including an adaptive randomization
design that allows modification of randomization sched-
ules; a group sequential design that allows early stopping
due to futility, efficacy, or both; a sample size re-
estimation design allowing sample size adjustment; a
pick-the-winner design; an adaptive dose-finding design;
a biomarker-adaptive design; an adaptive treatment-
switching design; an adaptive seamless design; a
hypothesis-adaptive design; and a multiple adaptive
design. In this article, we review the following two
commonly used adaptive designs in neurological disorder
trials. The response-adaptive randomization design uses
the patients’ responses from the current on-going study
to modify the assignment probabilities to each treatment
arm, with more patients being treated in the better arms.
The response-adaptive randomization design belongs to
the adaptive randomization design that also includes
treatment-adaptive randomization and covariate-adaptive
randomization [27]. The other adaptive design discussed
in this article is the adaptive dose-finding design that in-
creases the accuracy of the estimation for the maximum
tolerated dose or minimum effective dose [30].

Studies designed by an adaptive method may introduce
new challenges in data analysis. It is important that intended
statistical analysis should guide the study design [23,31,32].
For this reason, new statistical analysis approaches to
analyze the data from adaptive designs properly are also
discussed. Review of novel, efficient, and proper statistical
approaches in neuroscience research is an important
service of the Data Management and Statistics Core of the
Center for Neurodegeneration and Translational
Neuroscience supported by the Center of Biomedical
Research Excellence award from the National Institute of
General Medical Sciences.
2. Futility designs

The futility design, also known as the nonsuperiority
design, can be used to screen out a new treatment candidate
who is not promising for further investigation. It can be im-
plemented in a single-arm study or a parallel group study to
investigate the effectiveness of a new experimental treat-
ment. Suppose me and mc are the mean of the primary
outcome in a new experimental treatment group and in the
control group, respectively, in a parallel group study. For a
single-arm study, we may use the same notation mc to repre-
sent the estimated value from historical data. Let D 5 me 2
mc be the difference between the two groups.

For clinical trials in neurology, the primary outcome of
interest to measure disease symptoms is often computed
from some well-established assessment tools, for example,
ADAS-Cog, UPDRS, and ALSFRSr. The change of these
measurements from the end to the baseline (post–pre) is
often used as the primary outcome, for example,
me 5 me1 2 me0, where me1 and me0 are the outcome of pa-
tients from the treatment group at the end and at baseline,
respectively. It should be noted that a treatment with a
smaller increase (slowing disease progression) or a larger
decrease (improving the disease symptoms) in the outcome
is considered as a better treatment in some assessment tools
(e.g., ADAS-Cog, UPDRS), whereas it is reversed when
others are used (e.g., ALSFRSr).

When ADAS-Cog or UPDRS is used to measure the dis-
ease symptom, suppose d0 is the maximum allowable pro-
gression threshold, the statistical hypotheses for the futility
design are presented as

H0 : D � d0 against Ha : D.d0; (1)

where d0 is a clinically meaningful threshold to measure the
disease symptom [33–35]. For example, a clinical trial to
assess the effectiveness of coenzyme Q10 and GPI-1485 in
Parkinson’s Disease (PD) patients [36] was designed as a fu-
tility study with d0 5 23.19, which is 30% of the total
UPDRS change of participants in the placebo group from
the Deprenyl and Tocopherol Antioxidant Therapy of
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Parkinsonism trial (DATATOP), mc 5 10.65. This trial is de-
signed as a single-arm futility study with the hypotheses:

H0 : me2mc � 23:19 against Ha : me2mc.23:19:

If the null hypothesis is rejected, we can conclude that the
new experimental treatment is not promising for further
investigation. The sample size for each arm in this study
[36] was calculated as 58 participants per arm to attain
85% power at the significance level of 0.1, with me 5 7.46
under the null hypothesis and me 5 10.65 under the alterna-
tive hypothesis.

When a larger observed outcome represents a better treat-
ment (e.g., the ALSFRSr score), the hypotheses for a two-
arm futility design are presented as

H0 : D � d0 against D,d0; (2)

where d0 is the minimum worthwhile efficacy, and it is
often a positive value. Although the hypotheses can be
presented in two different formulae as in Equations (1)
and (2) which depend on the direction of the assessment
tool, they are statistically identical by reversing one of
the assessment tools. Both the alternative hypotheses sug-
gest nonsuperiority of the new experimental treatment as
compared to placebo.
3. Noninferiority designs

The aforementioned futility design (also known as the
nonsuperiority design) should not be confused with other de-
signs, such as a superiority design or a noninferiority design.
We compare these designs to the futility design with the hy-
potheses in Equation (2) by assuming that a higher score rep-
resents a better treatment. The hypotheses of a superiority
design or a noninferiority design are expressed as

H0 : D � d1 against D.d1; (3)

where d1 is the margin. Let the clinically meaningful esti-
mate of D be DCME. This estimate is very important in clin-
ical trials to show clinically meaningful improvement by a
new treatment. When d1 . DCME, Equation (3) represents
a superiority design. It becomes a noninferiority design
when d1 , DCME. In a noninferiority trial, the aim is to
show that a new treatment is not much worse than the stan-
dard care or not clinically inferior to the standard care. Le-
saffre [37] compared the difference between superiority
trials and noninferiority trials with two real noninferiority
trial examples along with the discussion of the noninferiority
margin.

In a randomized clinical trial to investigate the validity
and reliability of online delivery of the Lee Silverman Voice
Treatment for PD patients with speech and voice disorder
[38], the change in sound pressure level (dB-C) after the
treatment was the primary outcome. The clinically relevant
improvement was estimated as DCME 5 4.5 dB, with an esti-
mated standard deviation of 2.48 dB. This study was de-
signed as a noninferiority trial to compare the performance
with the Lee Silverman Voice Treatment between online
and face-to-face administration, with the noninferiority mar-
ginal of 2.25 which is half of the estimated clinically relevant
improvement, d1 5 2.25 , DCME. A sample size of 15 per
arm was required to attain 90% power at the significance
level of 0.025 for this noninferiority trial.

In another noninferiority study reported by Winblad et al.
[39], the rivastigmine capsule was compared with placebo
for AD patients by using the ADAS-Cog change from base-
line as the primary outcome. The noninferiority margin was
set as 1.25 points decrease on the ADAS-Cog, which is half
of the estimated treatment difference from other existing
studies. This noninferiority margin is considered as the min-
imum clinically meaningful difference.

In the aforementioned hypotheses for either a futility
design or a noninferiority design, the primary outcome is
computed as the change from the end to baseline, for
example, me 5 me1 2 me0. When the primary outcome is
measured as the change from baseline to the end (pre–
post, e.g., me 5 me0 2 me1), the aforementioned hypotheses
can still be applied. For example, in a study to confirm the
noninferiority of rotigotine to ropinirole for PD patients on
concomitant levodopa therapy, the primary outcome was
the change of the UPDRS Part III (ON state) sum score
from baseline to the end [40]. In this study, a larger observed
value (the difference of change between rotigotine and ropi-
nirole) represents a better treatment. For this reason, the hy-
potheses presented in Equation (3) should be used in this
study to assess the noninferiority of rotigotine to ropinirole.
4. Sample size determination and statistical inference

Sample size calculation plays a very important role in
clinical trials to ensure a prespecified level of power when
type I error rate (a) is controlled. Type I error rate and power
are generally computed by using the estimated D values un-
der the null and alternative hypotheses, d0 and da. Accurate
estimates of d0 and da would increase the success rate of a
trial with the computed sample size adequate to detect the
difference between the treatment arms.

The hypotheses discussed in this article are all one-sided;
therefore, za, instead of za/2, is used in the sample size deter-
mination (see Levin [41] for the detailed sample size calcu-
lation formula). It should be noted that the sample size
calculation provided by Levin [41] is based on asymptotic
approaches, which should be used with caution for a study
with sample size that is small to medium. For a study with
binary outcome (more than 50% decrease in the Inventory
of Depressive Symptomatology-Clinician score from base-
line in PD [42]), the proper type I error rate should be
computed under the null hypothesis (H0: D � d0), not just
at the boundary of the associated hypothesis space
(D 5 d0) [43–45]. In the trial to compare response rates
between atomoxetine and placebo [42], we suppose the
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null hypothesis is presented as H0: pa � pc, where pa and pc
are the response rate for the atomoxetine arm and the pla-
cebo arm, respectively. The response rate for the placebo
arm is estimated to be 10% from historical data. An exact un-
conditional approach [46] may be used to calculate the error
rate, then the actual type I error rate is computed as

TIEðpa; pcÞ5 max
pa�pc�10%

X

TðXa;XcÞ˛U
f ðXa;Na; paÞf ðXc;Nc; pcÞ;

(4)

where U is the rejection region and f (.) is the probability
density function of a binomial distribution. The type I error
rate should be properly computed over the null space
pa � pc � 10% as in Equation (4). Often, its error rate is
computed on the boundary with pa 5 pc 5 10%, which is
not proper for use without a theoretical proof to show that
the error rate occurs at the boundary of the null space [43].

When two proportions are compared, efficient sample
size calculation approaches are recommended for use to pro-
vide valid sample sizes, such as simulation-based ap-
proaches and exact approaches [3,23,47–50]. In addition,
the actual type I error rate could be highly affected by the
estimated d0 [15], and we would encourage researchers to
compute and provide sample sizes under multiple possible
d0 and da scenarios.

At the end of a trial, observed data are analyzed to make
statistical inference. Statistical analysis should be intention-
ally consistent with the design. For a randomized placebo-
controlled futility study with the hypotheses given in
Equation (1), the null hypothesis is rejected when a large
D value is observed. The progression threshold d0 is the
boundary of the one-sided lower confidence interval
computed from the observed data. When d0 is outside of
the interval (d0 is less than the lower limit), we have enough
evidence to reject the null, and the new experimental treat-
ment is not promising for further investigation. Otherwise,
if the computed lower limit is less than d0, we fail to reject
the null hypothesis. Similarly, the 1 2 a lower limit of D
is used in testing the hypotheses in Equation (3), whereas
the 12 a upper limit is used for the hypotheses in Equation
(2) to make valid statistical inference. The lower or upper
limit of d0 should be computed properly for different
types of data. For a matched-pairs study, a study design
that accounts for the matching information should be consid-
ered.
5. Adaptive designs

Adaptive designs have been increasingly used in clinical
trials to increase the flexibility of a trial by allowing a trial to
be stopped earlier for futility when a new treatment is not
promising and/or allowing more patients being assigned to
a better treatment and so on. The adaptations in a trial
have to be prospectively planned to guarantee the validity
and integrity of the trial.
An adaptive design provides opportunities for a trial to be
modified during the course of the trial; however, it has to be
prospectively planned. In other words, any modification of a
trial (e.g., adding or dropping a treatment arm) is specified
during the planning stage when certain conditions are met.
These conditions include the comparison of results based
on the observed data from the on-going study. In general,
it takes more effort for the research team to prepare an adap-
tive design than a traditional nonadaptive design. A signifi-
cant number of simulation studies have to be conducted to
investigate all possible outcomes during the planning stage.

In a very recent phase II trial to evaluate the BAN2401 (a
monoclonal antibody targeting amyloid protofibrils) for the
treatment of AD patients, the response-adaptive randomiza-
tion model was used in the study design. The probability of
the next patient being assigned to one of the treatment arms
or the control arm is determined by the probability of that
treatment arm being the most effective treatment arm among
all arms. The cumulative data of patients from this on-going
study are used for calculating these probabilities. An adap-
tive randomization design allows a trial to assign more pa-
tients to better treatment arms, which may lead to
imbalances in the sample-size allocation and the distribution
of influential covariates across treatment arms. Recently, Sa-
ville and Berry [51] proposed using odds ratios to modify the
probability in the response-adaptive randomization for each
arm to improve the covariate balance. When the primary
outcome is binary, a new patient allocation scheme to adjust
the covariate imbalance issue during the adaptive randomi-
zation procedure has been proposed [52]. New and proper
statistical methods are needed to overcome the emergent
statistical challenges from the response-adaptive randomiza-
tion. Alternatively, a study can be designed as a covariate-
adaptive randomization to balance the allocation of multiple
arms across a set of influential covariates without compro-
mising randomness. That would help reducing the
complexity of the final data analysis.

In neurology, adaptive designs are often used in early
phases to learn the safety of a new treatment and select the
dose for the following trials. In a dose-finding study, there
are often a few arms with different dose levels and a placebo
arm to estimate the placebo effect. Adaptive methods can be
used to stop a dose earlier due to futility, accept a dose due to
efficacy, or add a new dose to the study. The aforementioned
response-adaptive randomization could be used in conjunc-
tion with the adaptive dose-finding design. For example, a
phase II trial to evaluate the safety and efficacy of ABT-
089 in AD patients was designed by using a Bayesian
response-adaptive randomization method to allocate pa-
tients to one of the seven arms (six arms of ABT-089 with
different doses and placebo) after having at least five patients
in each arm [53]. This study was also designed to allow stop-
ping for efficacy or futility based on the conditional power
calculated from the on-going study. The objective of this
adaptive dose-finding study was to identify the minimum
effective dose resulting in at least an average of 1.75-point
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ADAS-Cog improvement over placebo. In other studies, the
maximal tolerated dose may be the target dose [54].

In addition to the aforementioned adaptive designs, Chow
and Chang [27] reviewed other commonly used adaptive
design methods in clinical trials: an adaptive seamless phase
II/III design, a biomarker-adaptive design, an adaptive
treatment-switching design, and so on. More details about
these adaptive designs may be found in the literature
[1,9,22,24,25,27,55–57].
6. Discussion

The futility design is used in early phase clinical trials to
screen out unpromising treatments and save resources for
other treatment candidates. By contrast, a futility-stopping
boundary is used to drop a treatment arm from a trial or
stop a trial earlier if the treatment will not show efficacy
based on the observed results. The futility boundary could
be defined as the prespecified conditional power or the pre-
specified confidence limit. They are two different concepts,
that is, the futility design is a study design, whereas a futility
boundary is a threshold in the study design [41,58].

Adaptive designs are attractive to increase the flexibility
of a trial, but they also introduce new statistical challenges
to analyze the final observed data properly. The aforemen-
tioned imbalance issue on the inferential covariates from
the response-adaptive randomization is one of them. When
a study is designed by an adaptive approach, the data anal-
ysis should align with the study design. For an adaptive
two-stage design in which the second-stage sample size de-
pends on the results from the first stage, the data analysis that
uses only the final observed data without considering the na-
ture of a two-stage adaptive design is not appropriate
[10,59]. For example, a single-arm two-stage adaptive
design was used to assess the effectiveness of a new treat-
ment for PD patients with the primary outcome as a binary
endpoint. The required sample size for the first stage is
n1 5 22 participants, and the second-stage sample size,
n2(X1), is a function of the number of the responses from
the first stage (X1), (e.g., n2(X1) 5 35 when X1 5 11)
[59]. At the beginning of the study, the number of responses
from the first stage X1 is unknown. Therefore, the sample
space having all possible X1 from 0 to n1 should be used in
statistical inference, such as P-value calculation and confi-
dence interval calculation.

In practice, it is possible that the final observed sample
size is different from that is planned. Then, a statistical
approach that incorporates adaptive elements and the
observed sample size is valid for data analysis [10,45].
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RESEARCH IN CONTEXT

1. Systematic review: Futility designs are commonly
used in early phase neurological disorder trials to
screen out new treatments that are highly unlikely
to produce successful results. Adaptive designs are
increasingly used in drug development to improve
the flexibility and efficiency of trials, having the po-
tential to reduce the cost and save sample sizes.

2. Interpretation: A futility design should not be
confused with a design that allows a trial to be
stopped due to futility. The number of neurological
disorder trials designed by adaptive approaches is
not as large as expected.

3. Future directions: Adaptive futility designs should be
developed for use in trials, and the associated statis-
tical methods for newly developed designs should be
proposed to provide proper statistical inference.
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