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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- Microsnoop is a deep learning tool for profiling heterogeneous microscopy images.

- Microsnoop provides generalist pipelines for processing various types of images.

- Microsnoop achieves cutting-edge microscopy image representation ability with great potential for expansion.

- Microsnoop is highly scalable for studies from small scale to high throughput.
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Accurate profiling of microscopy images from small scale to high throughput
is anessential procedure inbasicandappliedbiological research.Here,wepre-
sent Microsnoop, a novel deep learning–based representation tool trained on
large-scalemicroscopy images usingmasked self-supervised learning.Micro-
snoop can process various complex and heterogeneous images, and we clas-
sified images into three categories: single-cell, full-field, and batch-experiment
images. Our benchmark study on 10 high-quality evaluation datasets, contain-
ing over 2,230,000 images, demonstrated Microsnoop’s robust and state-of-
the-art microscopy image representation ability, surpassing existing gener-
alist and even several custom algorithms. Microsnoop can be integrated
with other pipelines to perform tasks such as superresolution histopathology
image and multimodal analysis. Furthermore, Microsnoop can be adapted to
various hardware and can be easily deployedon local or cloud computing plat-
forms. We will regularly retrain and reevaluate the model using community-
contributed data to consistently improve Microsnoop.

INTRODUCTION
Automatic quantitative profiling of microscopy images has become increas-

ingly ubiquitous in various aspects of biological research, from small-scale inves-
tigations to high-throughput experiments.1 The analysis of visual phenotypes,
which involves profiling intricate information according to images, is useful in
diverse areas of biology,2 including protein localization,3 cell-cycle stage classifi-
cation,4 mechanisms of action prediction,5 and high-content drug discovery.6 In
addition, the emergence of spatial omics has led to new requirements for the
quantification of microscopy images. For example, spatial proteomics methods
can image more than 50 disease-related proteins in a single tissue slice,7

whereas spatial transcriptomics methods enable the simultaneous acquisition
of image data and transcriptional profiles.8 These developments demonstrate
the need for a high-performance, generalist representation tool that can effec-
tively handle heterogeneous microscopy images.

The traditional approach for profiling microscopy images involves extracting
predefined morphological features, such as intensity, shape, texture, granularity,
and colocalization.9,10 However, these methods have several limitations,
including low computational efficiency, potential information loss, and sensitivity
to image quality.11 To address these issues, learning-based feature extraction
methods have been developed, with recent advancements in computer vision
and deep learning. These representation learning techniques involve pretraining
modelswith pretext tasks and using part of the network as a feature extractor for
downstream analysis.

These methods can be divided into two categories: task-oriented custom
methods and generalist methods. Task-oriented methods4,12–15 are designed
specifically for particular biological research, such as cell-cycle stage prediction,
and are generally pretrained with data from the same source. In contrast, gener-
alist methods can be applied tomany image types, and the training data are usu-
ally not specific to any particular biological problem. One of themost widely used
generalist methods involves using models trained on ImageNet16 (a natural im-
age classification task), which has also been used in recent multimodal
research.17 However, the extent to which the feature extraction patterns learned
from natural images can capture the subtle phenotypes of microscopy images
has not been fully validated by comparative research. To bettermatch the feature
domain to downstream microscopy image profiling tasks, the CytolmageNet18

study was conducted, in which image representations were learned on a micro-
scopy image classification task (890,000 images, 894 classes). Although this
approach demonstrated performance comparable to that of ImageNet, it still
relied on a supervised learning approach, which can be labor intensive, prone
ll
to biases from semantic annotations, and potentially increase the difficulty of
achieving good representation performance.
Self-supervised representation learningmethods allowmodels to learn directly

from pixels without relying on predefined semantic annotations. This approach
involves transforming the original images and training the model to learn the
mapping between the transformed and original images. Various transformation
methods have been used, such as direct copying,19 partial channel drop,20 and
image masking,21 with masked visual representation learning being particularly
popular in natural image studies.22–24

Recently, several studies have been reported about self-supervised learning
techniques developed on specific microscopy image datasets. Pandey
et al.25 showed the effectiveness of a colorization pretext task pretrained on
an electron microscopy image dataset. The GAN-DL study presented a gener-
ative self-supervised learning method that can learn efficient image representa-
tion based on Cell Painting high-content screening data.26 The Cytoself
approach19 exhibited good performance with self-supervised protein localiza-
tion profiling and clustering. Furthermore, recent advances in generalist cell
segmentation algorithms27–29 have demonstrated that heterogeneous micro-
scopy images can be effectively handled by a single model. Despite this
exciting progress, the complexity and diversity of microscopy images pose sig-
nificant challenges in the development of generalist tools for microscopy image
profiling, including handling images with varying resolutions and channel
numbers (such as 1, 2, 3, 5, or 56),3,4,7,28,30 joint representation learning for mul-
tiple image styles, processing various image types, and addressing technical
variations in high-content experiments that may introduce batch effects in
the feature space.31,32

The development of a high-performance, generalist image representation tool
is important for microscopy image analysis. In addition to facilitating accurate
downstream analyses, such a tool would enable unsupervised analysis for identi-
fying new phenotypes. Moreover, generalist tools can facilitate the separation of
feature extractionanddownstreamanalysis steps, allowingdownstreamprocess
to be performed on computers with limited computing power. Then, image repre-
sentations that are much smaller than the original images could be easily stored
and transferred. In addition, secondary analyses, such as the creation of large im-
age databases or joint use with other data representations, can be performed.
This study presentsMicrosnoop, a generalist tool for creatingmicroscopy im-

age representations based on masked self-supervised learning. The developed
tool can handle heterogeneous images and includes a task distribution module
to assist users with varying computing capabilities. We constructed effective
processing pipelines for three different image categories (single-cell, full-field,
and batch-experiment images). We evaluated the performance of Microsnoop
using 10 evaluation datasets from various biological studies and compared
the performance with that of generalist and custom algorithms. The findings
demonstrate Microsnoop’s robust and excellent feature extraction capabilities
and potential for analyzing superresolution histopathology images and multi-
modal biological data. The tool is freely available at https://github.com/
cellimnet/microsnoop-publish.
RESULTS
The design of a generalist representation tool
In this study, we developed a generalist tool calledMicrosnoop for creatingmi-

croscopy image representations. Because large and diverse datasets are benefi-
cial for training generalist models, we collected and curated 10,458 high-quality
microscopy images from various sources published by the cell segmentation
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Figure 1. Design of Microsnoop for microscopy im-
age representation (A) Schematic of the learning pro-
cess. (i) Examples of the 4 main category images are
shown. The image contents range from cellular organ-
elles to tissues. (ii) A masked self-supervised learning
strategy was used, and only images were needed for
training without additional manual annotation. One-
channel masked images were set as the input, and the
encoder-decoder was used to reconstruct the original
images. (B) At test time. (i) Example images from
various downstream tasks are shown, with different
resolutions, numbers of channels, and image types.
Thesemicroscopy images are divided into 3 categories
to ensure the broad coverage of image profiling needs.
(ii) Application of Microsnoop. First, images are
managed by an in-built task distribution module (see
Figure 3A), which generates 1 batch of 1-channel im-
ages for feature extraction. Each batch of images is fed
into the pretrained encoder, and the output smallest
convolutional maps are processed by average pooling.
Then, all of the extracted embeddings are processed
according to different profiling tasks (detailed in sec-
tions about profiling single-cell, full-field, and batch-
experiment images). The potential downstream ana-
lyses of our generalist representation tool are shown.
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community.27–29,33–35 These images were acquired using different technologies
and have various resolutions and channel numbers, ranging from cellular organ-
elles to tissues. The four main types of images are fluorescence, phase-contrast,
A B

Figure 2. Reconstruction results with Microsnoop (A) Example results for images in the test set (validation set for the Histo sub
(Cellpose, LIVECell, TissueNet, and Histo), with a masking ratio of 25% applied on inputs. One representative image is selected
images from evaluated data, with a masking ratio of 25% applied on inputs. The left 2 columns are from COOS7, and the rig
images (different imaging channels of the same cell) are selected for each dataset. Example results for other evaluated datas
difference between the ground truth and reconstructed images.

2 The Innovation 5(1): 100541, January 8, 2024
tissue, and histopathology images (Figure 1A(i);
Table S1). To account for the variability in the
number of image channels, we configured the
input to the neural network as one-channel
images. We organized the training set into a
one-channel data pool, from which images
are sampled, augmented, and transformed for
each training batch (seematerials andmethods).
In terms of the network architecture design, we
used a convolutional neural network (CNN)-
based36 architecture, despite the growing interest in transformer-based architec-
tures37 for natural image analysis. This choicewasmotivated by the superior per-
formance of the CNN architecture observed in our preliminary evaluations
set because it has no test set) from 4 training subsets
for each image type. (B) Example results for single-cell
ht 2 columns are from CYCLoPs. Two representative
ets are shown in Figure S5. The error map shows the
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Figure 3. Profiling with Microsnoop on single-cell
images (A) Pipeline. Every channel in the single-cell
image is processed independently, and the 1-channel
level embeddings are concatenated to obtain multi-
channel level image representations. A task distribu-
tion module is used to prevent memory overflow. The
extractor denotes the pretrained encoder combined
with the average pooling layer shown in Figure 1B(ii).
(B–F) Benchmarks. (B) Benchmark on COOS7, con-
taining 4 separate test sets. (C) Benchmark on
CYCLoPs. (D) Benchmark on CoNSeP. (E and F)
Benchmarks on BBBC048, with 2 different classifica-
tion tasks. The performance of each custom method
is highlighted with a red border. Error bars represent
the mean ± SD based on the 5-fold cross-validation
results. The results of other metrics are shown in
Table S3.
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(Figure S1). This performance disparity may be attributed to the difference in the
amount of training data. Typically, pretraining a vision transformer architecture38

requires considerable data,with over 1millionor even1billion imagesused innat-
ural image studies.21 However, our microscopy image dataset included fewer
training data, which may not have been sufficient to adequately train the trans-
former-based architecture.

We used amasked self-supervised learning strategy to train the network, with
a randomly selected percentage of image patches masked and used as inputs.
The network was then tasked with reconstructing the original, unmasked im-
ages. During training, masked images were encoded as high-level features
through four consecutive downsampling steps, and image reconstruction was
performed with a mirror-symmetric upsampling strategy (Figure 1A(ii)). The
learning process was guided by minimizing the self-supervised loss function
(see materials and methods), which allows the model to learn useful features
to recover the masked parts of the images based on the information present
in the remaining parts. This is a challenging task that necessitates a comprehen-
sive understanding beyond simple low-level image statistics. We investigated
the optimalmask ratio for learning features frommicroscopy images and found
that a 25% mask was optimal for this task (Figure S2). We also conducted an
experiment to explore the impact of the training data scale. The results show
that the subset Cellpose provides a good starting point, and the model perfor-
mance improves as more datasets are added (Figure S3).

During the test, our tool was not focused on a particular downstream profile
task. After comprehensively analyzing various styles of microscopy images,
we classified them into three categories: single-cell images, full-field images,
ll The
and batch-experiment images (Figure 1B(i)). To
account for the variability in device performance,
we developed a task distributionmodule that op-
erates on a batch-by-batch basis to create image
representations (Figure 1B(ii)). To accommodate
the three different image categories, we describe
the corresponding feature processing pipelines
in detail in the following sections.

Diversified evaluation datasets
In prior studies, researchers primarily inves-

tigated a limited number of specific data-
sets.5,39–41 In ourwork, tomorecomprehensively
evaluate our generalist tool, we collected and
curated 10 evaluation datasets, including com-
monly used datasets and some novel additions,
with over 2,230,000 images (Figures S4A–S4J,
see materials and methods). These images
show diverse characteristics, including various
resolutions, image types, numbers of channels,
and biological applications (Table S2). We used
t-distributed stochastic neighbor embedding42

to visualize the representations of the evaluation
images and pretrained images, and noted that in
the embedding space, images were generally
placed according to the dataset categories,
with little overlap in the distributions of the evaluation and training data (Fig-
ure S4K). Among the 10 evaluation datasets, 4 included single-cell images, 4
included full-field images, and 2 included batch-experiment images. To test the
representation performance of the models on fluorescence images, including
bright-field channels, we used COOS7 Test 1–4,41 CYCLoPs,3 BBBC048,4

BBBC014, BBBC02143 and RxRx19a.26 RxRx19a, consisting of 5-channel Cell
Painting30 images, can also be used to test the ability of the model to represent
high-dimensional data. The LIVECell Test28 and TissueNet Test29 datasets were
designed to evaluate the representation performance of a model on phase-
contrast and tissue images, respectively. To assess the ability of the model to
handle challenging histopathology images, we used the CoNSeP44 dataset.
Furthermore, we used the CEM500K25 dataset to explore model performance
on electron microscopy images, which greatly differed from our training data.

Microsnoop accurately reconstructs the masked input images
To qualitatively evaluate model performance in the reconstruction task, we

show examples of each image type (Figure 2A). When the 25% masked image
was input into the pretrained network, the network produced a reconstructed
image that closely resembled the original image, with only some of the
detailed textures lost. This level of detail recovery is not easily achievable by
humans. The reconstruction results of single-cell images from the evaluation
datasets were even more impressive, with the reconstructed images nearly
indistinguishable from the original images (Figures 2B and S5). The model per-
formed better on single-cell images than full-field images, which can be attrib-
uted to cellular heterogeneity, and results in diverse cell phenotypes.
Innovation 5(1): 100541, January 8, 2024 3
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Figure 4. Profiling with Microsnoop on full-field images (A) Pipeline. (i) The cell segmentation algorithm is applied to the easiest channel (e.g., the nucleus channel) in the multi-
channel full-field image, and then the cell region for each single cell is computed and cropped. (ii and iii) Multichannel single-cell images are processed as in Figure 3A (ii), and (iii) the
output single-cell level embeddings are aggregated to obtain the full-field level image representations. (B) Benchmark on LIVECell. (C) Benchmark on TissueNet. (D) Benchmark on
BBBC014. (E) Benchmark on CEM500K. The performance of each custom method is highlighted with a red border. Error bars represent the mean ± SD based on the 5-fold cross-
validation results. The results of other metrics are shown in Table S3. (F) Joint use of Microsnoop with the Lazard et al.50 pipeline for analyzing TCGA dataset. Receiver operating
characteristic curves are shown.
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Compared to reconstructing cells in full-field images, reconstructing cells in
single-cell images is simpler because relevant information can be obtained
more easily. According to the outstanding performance achieved in the pretext
task, we performed quantitative evaluation experiments profiling single-cell,
full-field, and batch-experiment images, which are detailed in the following
sections.

Microsnoop profile of single-cell images with one-channel feature
concatenation

Single-cell images can be produced directly by an imaging instrument such as
an imaging flow cytometer45 or obtained through cell segmentation processing
on full-field images. To accommodate the variable number of channels, we
devised a one-channel feature concatenation strategy (Figure 3A). Each channel
in the multichannel image is processed independently by Microsnoop, and the
resulting embeddings are concatenated in an orderly manner. This concatena-
tion strategywas developed based on our evaluations of five feature aggregation
methods (Figure S6; see materials and methods). To prevent confusion during
processing, a unique index is assigned to each image when multiple images
are being processed. To address potential memory overflow issues when pro-
cessing large batches of data, we established a task distribution module. This
module efficientlymanages image pathways and distributes images for process-
ing, reads the images in the central processing unit (CPU) and transfers them to
the graphics processing unit (GPU) as needed. The user can optimize perfor-
mance by adjusting parameters according to the available memory capacity of
4 The Innovation 5(1): 100541, January 8, 2024
the CPU and GPU. Furthermore, our system has a distributed design that can
support multiple GPUs and can thus address increasing data demands.
In our benchmark study, we included three previously developed generalist

methods for comparison: EfficientNetB0,46 InceptionV3,47 andCytoImageNet18

(see materials and methods). To comprehensively evaluate the performance of
Microsnoop, we compared the performance of Microsnoop with that of several
custom models based on datasets for which these models show good perfor-
mance, such as comparing Microsnoop to Cytoself (pretrained on a dataset
containing 1,100,253 cropped images of 1,311 endogenously labeled proteins
from the OpenCell database) using protein localization datasets. We did not
use any data from the evaluated dataset during the feature extraction process,
and our evaluation using four different metrics demonstrated the outstanding
performance of Microsnoop (Table S3), which consistently outperformed all
of the other methods, including the custom methods (Figures 3B–3F).

Microsnoop profile of full-field images with cell region cropping
Full-field images are a common format directly obtained by most micro-

scopes. Cell segmentation is usually the first step in phenotype profiling due to
the inherent heterogeneity of cells. Although various generalist segmentation al-
gorithms27–29 and fine-tuning strategies48,49 have been developed, segmenta-
tion errors may still occur. For instance, in large drug screening experiments,
cell body imagesmay include several phenotypes, and segmentation algorithms
may perform well with some phenotypes but poorly with others (Figure S7A),
leading to unpredictable effects in downstream analyses. To mitigate these
www.cell.com/the-innovation
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Figure 5. Profiling with Microsnoop on batch-exper-
iment images (A) Schematic of multiwell plates in a
drug screening experiment containing negative con-
trol wells and different treatment wells set in each
plate. (B) Batch correction on image level repre-
sentations. (C) Feature aggregation on image level
embeddings to obtain treatment-level image repre-
sentations. (D and E) Benchmark on BBBC021, with
Not-Same-Compound (NSC) metric for (D) and Not-
Same-Compound-or-Batch (NSCB) metric for (E). (F)
Benchmark on RxRx19a. The performance of each
custom method is highlighted with a red border. Error
bars represent the mean ± SD based on the 5-fold
cross-validation results. The results of other metrics
are shown in Table S3.
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issues, we introduced a cell region cropping strategy, in which the segmentation
algorithm is applied only on the easiest channel, such as the nucleus channel,
which presents more robust segmentation results (Figure S7B). Cell regions
are computed and cropped on the segmentation masks and rescale constant
(Figure 4A(i); see materials and methods). Then, Microsnoop extracts features
from the cropped single-cell images, as described above (Figure 4A(ii)). Finally,
the resulting single-cell level embeddings are aggregated by computing their
mean to obtain the full-field level representations (Figure 4A(iii)).

We evaluated the representation ability of Microsnoop on three full-field image
classification tasks. The results showed thatMicrosnoop outperformed the other
methods, with a 41.93% improvement based on the LIVECell test dataset
(Figures 4B–4D). Furthermore, Microsnoop showed robustness with various im-
age styles, with accuracies of 98.08%, 96.64%, and 100.00% based on the
LIVECell Test, TissueNet Test, and BBBC014 datasets, respectively.

Two other full-field image profile modes and the robustness of the cell
region cropping mode

Inaddition to thecell regioncroppingmode,weprovided twoalternativemodes
for processing full-field datasets: rescaling and tile mode (Figures S8A–S8C; see
materials andmethods). We evaluated the performance of these three process-
ing modes, including different rescale constants for the cell region cropping
mode, on the full-field and batch-experiment datasets (Figures S8D–S8G). The
rescaling and tile modes outperformed the single-cell mode on the LIVECell
andTissueNet tests; however, bothmodesdisplayedsignificantly reducedperfor-
mance on the BBBC021 dataset. The rescalingmodemayhave underperformed
ll The
because it discards high-resolution phenotypic
information during the rescaling process. The
reduced performance with the tile mode may
have occurred because important subtle pheno-
type variations present in certain regions in the
full-field images are averaged out. In contrast,
the cell region cropping mode displayed robust
performance across a range of parameters on
all four datasets.

Nevertheless, these two modes require less
time and memory than the single-cell mode
(Figures S8H and S8I). In addition, these modes
enable the application of our tool in scenarios
in which segmentation is unavailable or not
considered. For the CEM500K dataset, segmen-
tation is challenging, but the rescaling mode still
works. Our model exhibited the best perfor-
mance, even when compared to the Pandey
et al.25 model, which was pretrained on a subset
of this dataset (Figure 4E). To explore whether
our tool can be applied to analyze superresolu-
tion histopathology images, The Cancer Genome
Atlas (TCGA) dataset50 was used. We integrated
Microsnoop into the Lazard et al.50 pipeline by re-
placing their custom MoCo representation
method. Areas of interest can be effectively tiled
in this pipeline (Figure S9), and the image tiles
can be directly embedded with the rescaling
mode of Microsnoop without segmentation. Our results show that Microsnoop
exhibits competitive results with MoCo (TCGA), which was pretrained on
5,300,000 histopathology image tiles of size 2243 224 tiled from the evaluation
dataset (Figure 4F). For datasets containing a large number of images, such as
the RxRx19a dataset (1,527,600 images of size 1,024 3 1,024), cell segmenta-
tion can further increase the number of images by hundreds of times. This in-
crease results in significant economic and time costs for computations, making
it challenging to use the segmentation-based mode. In this scenario, the tile
mode can be applied because it balances cost-effectiveness with reducing infor-
mation loss.

Microsnoop profile of batch-experiment images with sphering batch
correction
Batch effects can be introduced into single-cell or full-field data due to tech-

nical variability, which can affect downstream analysis31,32,39,40 (Figure 5A). To
address this issue, we used a sphering batch correction method.51 This as-
sumes that the large variations observed in negative controls are associated
with confounders, and any variation that is not observed in controls is associ-
ated with phenotypes. The sphere transformation method aims to separate
phenotypic variation from confounders. In our image representation pipeline
for batch-experiment images, Microsnoop first extracts features from images,
and the resulting image-level representations are corrected by the sphering
transformation strategy (Figure 5B). Finally, the image-level representations
are aggregated to treatment-level representations by computing their mean
(Figure 5C).
Innovation 5(1): 100541, January 8, 2024 5
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Figure 6. Joint use of Microsnoop andMUSE (A) Pipeline. Imagemodality data are first processed byMicrosnoop, and then principal component analysis is performed on the output
representations to reduce feature dimensionality. Finally, 2 modality representations are combined by MUSE. (B) Uniform manifold approximation and projection visualization of
different modality latent spaces on seqFISH+ using 2 image representation methods. Silhouette score was used to quantify the separateness of clusters.
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First, we evaluated the representation ability of Microsnoop on the classic
BBBC021 dataset, including previously reported results in the comparisons.
We did not use any data from this dataset during the feature extraction process,
but Microsnoop still achieved state-of-the-art performance even compared with
themethods exclusively studied on it (Figures 5D and 5E). For the 5-channel Cell
Painting30 dataset RxRx19a, our method outperforms another self-supervised
method, GAN-DL,26 which was pretrained on the whole RxRx19a dataset and
achieves comparable performance to a supervised learning approach6 that
was pretrained on a very large annotated Cell Painting dataset (containing
125,510 images), RxRx152 (Figure 5F).

Microsnoop improves the performance of the multimodal structured
embedding algorithm

A recent study of the multimodal structured embedding algorithm (MUSE17)
showedthat thismodelobtains impressiveperformance in integrativespatial an-
alyses of image and transcriptional data. The authors conducted simulation ex-
periments to assess the performance of MUSE with degraded transcriptional
data.Here,we focusedon the impactof image featurequality, and thesimulation
experiment results showed that as the quality of the image representations im-
proves, the performance of MUSE significantly improves (Figure S10). Next, we
tested Microsnoop on the real-world dataset seqFISH+8 and compared the per-
formance with that of the representation method used in the original paper. We
combined Microsnoop and MUSE (Figure 6A) and found that higher quality im-
age representations lead to greater improvements in MUSE performance
(Figure 6B).

DISCUSSION
The accurate analysis of heterogeneous microscopy images, a critical aspect

of both fundamental and applied biological research, is highly valued by the mi-
croscopy image analysis community.53,54 In this study, wepresentMicrosnoop, a
generalist deep learning tool for microscopy image profiling. Our proposed tool
offers promising advancements in this field. Microsnoop was trained on large-
scale high-quality data using a masked self-supervised pretext task, and the
model learned valuable features for generalist image representations. Our tool
is flexible, with an efficient task distribution module and custom pipelines for
three image categories, and canmeet various user needs. A one-channel feature
concatenation strategy was proposed for adapting to varying channel numbers.
For full-field images, we provided three analysismodes. The cell region cropping-
based single-cell profile mode shows more robust performance, and the rescal-
6 The Innovation 5(1): 100541, January 8, 2024
ing and tile modes can cover segmentation-independent profiling scenarios. In
addition, Microsnoop can mitigate batch effects in batch-experiment images
with a sphering transformation strategy. Our benchmark results demonstrate
the excellent microscopy image representation ability of Microsnoop without us-
ing any new data for fine-tuning. By integrating Microsnoop with an exceptional
pipeline, superresolution histopathology images can be analyzed. Furthermore,
the enhanced representation of unimodal image data leads to significant im-
provements in the performance of multimodal algorithms.
In ourmethodology experiments, we found that amask ratio of 25% is optimal

for microscopy images, which is significantly lower than the 75%mask that has
been found to be optimal for natural images.21 The difference is due primarily to
the smaller size and varied content of microscopy images, which may result in
lost information if too much reference information is masked. In the
CytoImageNet study, the authors attempted to develop a microscopy image
classification task tomimic the success of ImageNet. However, unlike natural im-
ages, it is difficult to obtain and determine class labels for microscopy images.
Therefore, they assigned weak labels to images based on associated metadata.
Although CytoImageNet and Microsnoop both use microscopy images for pre-
training, a more effective pretext task seems to be more beneficial for micro-
scopy image representation learning. Compared toCytoself, a customself-super-
vised representation method for protein subcellular location images, our model
demonstrates stronger generalizability with COOS7 and CYCLoPs, despite not
being specifically trained for protein localization tasks. Our method is unique in
that it does not require domain-specific knowledge and was developed to create
generalist image representations. Our benchmark study showed that a single
network can handle heterogeneous microscopy images, which is consistent
with results in the related domain of cell segmentation.27 Furthermore, our pre-
text taskwas trained using the same network structure as Cellpose. In the future,
additional systematic research could be conducted to investigate the effective-
ness of transfer learning methods based on our pretrained model for handling
other tasks, such as segmentation and tracking. Moreover, this is reminiscent
of the recent success of large pretrained language models in the field of natural
language processing.55–57 With continued advancements in computer vision
and models for microscopy image representations and other image processing
tasks such as cell segmentation, itmay be possible tomerge thesemodels into a
single, unified model in the future.
Although Microsnoop is a powerful tool, there are several areas for improve-

ment. For example, further evaluation is needed to determine the efficacy of
our approach in one-channel feature concatenation and feature aggregation
www.cell.com/the-innovation
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with three-dimensional and time-series imaging datasets in comparison to
training a network to directly extract spatial or temporal information. To enhance
the capabilities of Microsnoop, future work could include exploring alternative ar-
chitectures, incorporating additional self-supervised pretext tasks for multitask
learning, using cross-channel correlation information, and refining the single-
cell level feature aggregation methods. Moreover, the current training images
are still smaller than natural images, and more training data combined with
the transformer architecture could be studied to improve performance. The
investigation into the influence of the training set demonstrates the capacity of
ourmodel for ongoing development. Notably, a considerable number of datasets
that we evaluated were not involved in pretraining. We intend to regularly retrain
the model using community-contributed data to consistently improve Micro-
snoop. Continual learning-based strategies58,59 can be explored to prevent cata-
strophic forgetting. Furthermore, although Microsnoop can be used for data
storage and sharing, sharing private data via embeddings still poses risks.60

Thus,morespecialized research on the safety of embeddings should be conduct-
ed. Finally, deploying ourmodel onmobile devices to aid rapid detection could be
a valuable application scenario.61

Overall, we developed an impressive, generalist tool formicroscopy image rep-
resentation. We anticipate its positive impact on the microscopy image analysis
community, facilitating new phenotype discovery, data sharing, and the estab-
lishment of large image databases. Furthermore, we envision that Microsnoop
can be used effectively in multimodal studies, such as combining molecular
and image representations for mechanism of action prediction,62,63 exploring
the relationship between gene expression and image representations for drug
discovery64 and other broad applications.65,66

MATERIALS AND METHODS
See supplemental information for details.

DATA AND CODE AVAILABILITY
The links to download the raw data of the training set and evaluation datasets

are provided in Tables S1 and S2. The evaluation results of four different metrics
(accuracy, Matthews correlation coefficient, balanced accuracy and F1 score)
are provided in Table S3. The per-class accuracy of Microsnoop for each evalu-
ation is provided in Table S4. The new evaluation datasets generated by this
study are available on figshare: https://doi.org/10.6084/m9.figshare.22197607.

The TCGA dataset is available at https://portal.gdc.cancer.gov/.
seqFISH+ mouse cortex dataset: Transcript data were downloaded from

https://github.com/CaiGroup/seqFISH-PLUS. Image data were provided by L.
Cai, the corresponding author of the seqFISH+ paper.8

The source code for Microsnoop, including a detailed tutorial, is available
on GitHub (https://github.com/cellimnet/microsnoop-publish). A configured
Amazon Machine Image is available for quickly and conveniently deploying Mi-
crosnoop for microscopy image analysis.

All of the data in this study are available from the corresponding author upon
reasonable request.
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