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Abstract: Despite the significant progress made towards comprehending the deregulated signa-
tures in lung cancer, these vary from study to study. We reanalyzed 25 studies from the Gene
Expression Omnibus (GEO) to detect and annotate co-deregulated signatures in lung cancer and in
single-gene or single-drug perturbation experiments. We aimed to decipher the networks that these
co-deregulated genes (co-DEGs) form along with their upstream regulators. Differential expression
and upstream regulators were computed using Characteristic Direction and Systems Biology tools,
including GEO2Enrichr and X2K. Co-deregulated gene expression profiles were further validated
across different molecular and immune subtypes in lung adenocarcinoma (TCGA-LUAD) and lung
adenocarcinoma (TCGA-LUSC) datasets, as well as using immunohistochemistry data from the
Human Protein Atlas, before being subjected to subsequent GO and KEGG enrichment analysis. The
functional alterations of the co-upregulated genes in lung cancer were mostly related to immune
response regulating the cell surface signaling pathway, in contrast to the co-downregulated genes,
which were related to S-nitrosylation. Networks of hub proteins across the co-DEGs consisted of
overlapping TFs (SOX2, MYC, KAT2A) and kinases (MAPK14, CSNK2A1 and CDKs). Furthermore,
using Connectivity Map we highlighted putative repurposing drugs, including valproic acid, be-
tonicine and astemizole. Similarly, we analyzed the co-DEG signatures in single-gene and single-drug
perturbation experiments in lung cancer cell lines. In summary, we identified critical co-DEGs in
lung cancer providing an innovative framework for their potential use in developing personalized
therapeutic strategies.

Keywords: lung cancer; tumor heterogeneity; Characteristic Direction; co-deregulated genes; single-
gene perturbation; single-drug perturbation; drug repurposing; GEO2Enrichr; X2K

1. Introduction

Lung cancer (LC) maintains the highest mortality rate among cancer-related deaths,
with almost an equal distribution between females and males [1]. Molecularly diverse
subtypes of lung cancer have been investigated and proposed, but the therapeutic outcome
in these patients is low, as a result of drug resistance [2]. The gradual accumulation of
genetic and epigenetic alterations, as well as environmental factors, destabilizes the DNA,
and leads to an abnormal gene expression stemming from the coordinated deregulation of
transcription factors (TFs). In addition, mutations in genes encoding protein kinases are
critical for the onset of carcinogenesis.

Thus far, most efforts focus on the detection of differentially expressed genes (DEGs)
between cancerous and normal lung tissue. Nevertheless, the reported DEGs vary from
study to study, depending on biological differences in the profiled samples (e.g., sex,
mutation status, subtype, stage, etc.), as well as differences in sample numbers or the
computational methodology followed [3]. One intriguing issue not yet contemplated is
the analysis of the genes and signaling pathways being simultaneously deregulated across
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molecularly heterogenous subtypes in lung cancer, including lung adenocarcinomas and
squamous cell carcinomas. Challenging as it may seem, the analysis of pooled, diverse
datasets of lung cancer could reveal the commonly deregulated signaling pathways across
these tumor entities. Such information could be very useful for the treatment of what really
should be viewed as many different diseases.

Extracting large-scale data from the Gene Expression Omnibus (GEO) offers extensive
possibilities of simultaneously managing and analyzing multiple gene signatures. Collect-
ing gene expression profiles of co-deregulated genes (co-DEGs) at the transcriptional level
can help us understand the complete activation and overlapping of molecularly diverse
oncogenic paths. Abnormal patterns of gene expression can also be used for the detection
of disease biomarkers, as well as for therapeutic purposes.

There are many genes being differentially expressed across distinct histological or
molecular subtypes in lung cancer [4–11]. Nevertheless, the sensitivity and specificity
of these biomarkers is not always necessarily adequate, urging the need to identify an
updated panel of genes that can be used as better diagnostic and preventive biomarkers, or
even as therapeutic targets. In addition, the co-DEGs across distinct lung tumors vary and,
to our knowledge, their role within signaling networks or their transcriptional regulatory
mechanisms has been poorly investigated. A recent new multivariate method called the
Characteristic Direction (CD), can be used to compute signatures using the orientation of
the separating hyperplane from a linear classification scheme to define a direction that
characterizes differential expression [12].

The purpose of this study was to use the CD method to identify co-DEGs across
various independent datasets in lung cancer. We used GEO datasets to annotate and extract
gene expression signatures, and validated our results in the TCGA-LUAD and TCGA-
LUSC datasets, as well as in the Human Protein Atlas, aiming to better understand the
links between co-deregulated genes, drugs and lung cancer. Importantly, we aimed to
identify the “hubs” in the gene networks composed of transcription factors and protein
kinases differentially expressed in lung cancer. We also intended to identify drugs (or drug
combinations) targeting these hubs. Such drugs could thus be used as new and effective
treatment regimes. The lists of co-deregulated gene signatures that we propose can provide
further insights into lung carcinogenesis.

2. Results

Using a Systems Biology approach, we extracted the co-deregulated signatures (i.e.,
signatures containing the same deregulated genes present in at least two independent stud-
ies) from 25 independent GEO datasets and classified them as: (1) lung cancer vs. healthy
tissue; lung cancer (tissue or cell lines) with a single gene (2); or single-drug (3) perturbation
(Table S1). We asked whether signature similarity within and across these three categories
could recover prior knowledge and discover new connections. To globally assess associa-
tions between signatures within each category, we computed the signatures using the CD
method, and compared ranked signature associations with prior knowledge. We concluded
such lists of co-deregulated genes in each category after stringent filtering and excluding
the genes that were deregulated in a single study. These lists contained 20 co-upregulated
and 25 co-downregulated genes in LC versus the normal tissue; 333 co-upregulated and
528 co-downregulated genes after single-gene perturbation; and 459 co-upregulated and
439 co-downregulated genes after single-drug perturbation (Table S1). In each category we
identified the TFs, PPIs, and kinases accountable for the observed changes in the mRNA
expression of these co-DEGs, the drugs that suppress or induce these co-DEGs, respectively,
and finally the biological pathways in which the abovementioned genes are involved.

Next, we sought to identify which of these upstream regulators are most probably
responsible for the deregulation in the expression of the identified gene lists in lung cancers.
To this end, in each category we identified the phosphorylation reactions possibly being
carried out by upstream regulatory kinases. We also investigated the drugs that suppress
over-expressed genes, or those that induce the expression of under-expressed ones. The
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top TFs and protein kinases from each category of co-DEGs were classified based on the
highest value of a combined score of the p-value and the z-score (Figure S1).

2.1. Co-Deregulated Genes in Lung Cancers

We analyzed two GEO datasets to detect the co-DEGs in lung cancer samples against
their adjacent healthy tissue (Table S3). The co-upregulated genes were mainly enriched in
the “immune response-regulating cell surface receptor signaling pathway” (GO biological
process) and the “Sec61 translocon complex” (GO cellular component), as well as “platelet-
derived growth factor binding” and “cell adhesive protein binding involved in bundle
of His cell–Purkinje myocyte communication” (GO molecular function) (Figure 1a and
Table S3).
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Figure 1. GO enrichment of the co-upregulated (a) and the co-downregulated (b) genes in
lung cancer vs. the normal tissue. KEGG enrichment for the co-upregulated (c) and the
co-downregulated (d) genes in lung cancer vs. the normal tissue. Repurposing drugs (CMap) tar-
geting the co-up- (e) and co-downregulated (f) genes in lung cancer. Bar graphs were sorted using
a combined score between the Benjamini–Hochberg (BH)-adjusted p-value and the z-score of the
deviation from the expected rank. Each bar’s length shows the significance of the corresponding
term, being relative to the color brightness of each bar.

We further explored differences in the expression of individual genes within the top
enriched terms of the co-up- or co-downregulated genes across different immune and
molecular subtypes in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma
(LUSC) datasets from the Cancer Genome Atlas (TCGA), respectively. Specifically, the
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immune subtypes we explored were: C1 (wound healing); C2 (IFN-gamma dominant); C3
(inflammatory); C4 (lymphocyte depleted); C5 (immunologically quiet); and C6 (TGF-b
dominant), as previously described by Thorsson et al. [13]. The molecular subtypes of
LUSC contained basal, classical, primitive, and secretory lung tumors. Among the top
co-upregulated genes, we examined “anterior gradient 2, protein disulphide isomerase
family member” (AGR2), “alpha-2-glycoprotein 1, zinc binding” (AZGP1), “small cell
lung carcinoma cluster 4 antigen” (CD24), “collagen, type I, alpha 2” (COL1A2), “colla-
gen, type III, alpha 1” (COL3A1), “collagen triple-helix repeat containing 1” (CTHRC1),
“desmoplakin” (DSP), and “joining chain of multimeric IgA and IgM” (JCHAIN). Simi-
larly, among the top co-downregulated genes, we explored “brain-expressed, X-linked
1” (BEX1); “chemokine (C-C motif) ligand 2” (CCL2); “C-type lectin domain family 3,
member B” (CLEC3B); “cysteine-rich intestinal protein 1” (CRIP1); “epithelial membrane
protein 2 (EMP2)”; “fatty acid-binding protein 4, adipocyte (FABP4)”; “Fc fragment of IgG,
low-affinity IIIb, receptor (CD16b)” (FCGR3B) and “ficolin (collagen/fibrinogen domain
containing) 1” (FCN1). Interestingly, we found significant differences in the expression
of these genes across the different molecular and immune subtypes in lung cancer. For
example, AGR2, CD24, COL3A1, CTHRC1, DSP and JCHAIN were upregulated in basal
LUSC tumors. Similarly, AZGP1, COL1A2, COL3A1 and CTHRC1 were upregulated in
“TGF-b dominant” (C6) LUSC samples (Figure 2).
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Figure 2. Expression of the top co-up- or co-downregulated genes across different immune and
molecular subtypes of lung adenocarcinoma (LUAD) or lung squamous cell carcinoma (LUSC).
The immune subtypes were: C1 (wound healing); C2 (IFN-gamma dominant); C3 (inflammatory);
C4 (lymphocyte depleted); C5 (immunologically quiet) and C6 (TGF-b dominant), as defined in
Thorsson et al. [13]. The molecular subtypes of LUSC contained basal, classical, primitive, secretory
tumors. LUAD immune subtypes, n=C1,83;C2,147;C3,179;C4,20;C6,28. LUSC immune subtypes,
n = C1,275;C2,182;C3,8;C4,7;C6,14. LUSC molecular subtypes, n=basal 42, classical 63, primitive 26,
secretory 39.
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The co-downregulated genes, on the other hand, were mainly enriched in “peptidyl-
cysteine S-nitrosylation”, “leukocyte aggregation” (GO biological process) (Figure 1b and
Table S3), “cytolytic granule” (GO cellular component), “RAGE receptor binding”, “arachi-
donic acid binding”, and “icosatetraenoic acid binding” (GO molecular function).

KEGG enrichment analysis highlighted the involvement of the co-upregulated genes
in the pathways: “Relaxin signaling pathway” and “ECM–receptor interaction” (Figure 1c
and Table S4). As for the co-downregulated genes, these were overrepresented in “Graft-
versus-host disease”, “IL-17 signaling pathway” and “Allograft rejection” (Figure 1d and
Table S4).

We then constructed the PPI networks containing the critical hub proteins in lung
carcinogenesis, as they potentially regulate the expression of the co-DEGs. The responsible
upstream regulators for the co-upregulated genes involved CTCF, EZH2, TCF3, SOX2,
RAD21, FOSL2, IRF1 and SMC3 (TFs) and CDK1/2, GSK3B, PLK1, AKT1, CDK4, DNAPK,
ATM, CSNK2A1 and MAPK14 (kinases) (Figure 3a and Table S5). The co-downregulated
genes on the other hand, were significantly associated with the TFs HDAC2, PPARG and
RUNX1 and the kinases GSK3B, MAPK14, MAPK3, ERK1/2, CSNK2A1 and CK2ALPHA
(Figure 3b and Table S6).
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proteins (gray nodes), and kinases (blue nodes). Gray edges indicate PPI interactions and green
edges depict kinase-driven phosphorylation events. Node size is relative to expression. Upstream
regulatory networks were constructed using X2K.

Apart from selected genes, we also successfully validated the co-deregulated gene
signatures in lung cancer (termed “UP genes” and “DOWN genes”, respectively) using
the TCGA-LUAD and TCGA-LUSC datasets. Both gene expression signatures confirmed
their significant difference in the LUAD and LUSC TCGA datasets, compared to the control
tissues. As controls, we used normal lung samples from both the TCGA and GTEx projects
(Figure 4a,b).
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Figure 4. The expression patterns of the co-upregulated (a) and co-downregulated (b) gene signa-
tures were verified in the TCGA-LUAD and TCGA-LUSC datasets, respectively (LUAD, 483 lung
adenocarcinomas (T) and 347 normal (N) samples; LUSC, 486 lung squamous cell carcinomas (T) and
338 normal (N) samples). The significantly elevated expressions of the major hub transcription factors
MYC, STAT3, TP63 and KLF4 were verified among LUAD and LUSC, respectively. The upregulated
levels of the hub kinases CDK1, GSK3B, CSNK2A1 and MAPK14 were also validated in LUAD and
LUSC tumors (*, p < 0.001; **, p < 0.0001). The Kaplan–Meier curves depict disease-free survival of
lung patients with high or low expression in signatures composed of the transcription factors (FOSL2,
CHD1, SOX2, KLF4, TP63, STAT3 and MYC) (c) or kinases (MAPK14, GSKB3, CDK4, CDK1, MAPK3,
CSNK2A1, HIPK2, MAPK8) (d) acting as main hubs, respectively. High expression of the signature
composed of the hub kinases was significantly associated with disease-free survival (p < 0.05), but
that of the hubs’ TFs was not. MYC and TP63 were significantly upregulated in LUSC (but not LUAD)
patients, exhibited moderate protein expression (e,f), and showed a reverse pattern of association
with patient survival (p ≤ 0.05, Log-rank) (g,h). The TCGA-LUAD and TCGA-LUSC patient cohorts
were analyzed using GEPIA2. IHC data were extracted from the Human Protein Atlas.
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In addition, we selected specific hub proteins to verify their gene expression, using
GEPIA2 [14]. We further compared disease-free survival in patients with high expression
in signatures composed of the hub TFs FOSL2, CHD1, SOX2, KLF4, TP63, STAT3 and MYC
(Figure 4c) or the kinases MAPK14, GSKB3, CDK4, CDK1, MAPK3, CSNK2A1, HIPK2,
and MAPK8 (Figure 4d) against those with low expression and found that, although
high expression of the TF hubs’ signatures was not associated with survival, the high
expression of the signature composed of the eight hub kinases was significantly associated
with disease-free survival (p = 0.0044, Log-rank). Of these, GSK3B, CDK1 and CDK4 were
positively correlated with LUAD patients’ disease-free survival (DFS), whereas MAPK3,
CSNK2A1, HIPK2 and MAPK8 were correlated with LUSC patients’ DFS (Figure 4d).

The TFs MYC and TP63 were among the main hubs, and their upregulated levels were
mainly verified in LUSC (Figure 4e,f). MYC stained high in 10% of the cases using IHC
data from the Human Protein Atlas and its high expression was an unfavorable marker
in lung cancer (p = 0.0049, Log-rank) (Figure 4g). On the other hand, TP63 stained high in
40% of the cases (Figure 4f) and its high expression correlated with better patient survival
(p = 0.052, Log-rank) (Figure 4h). Similar analyses were performed for other hub proteins,
including CEBPB, RUNX1, GATA1, etc.

2.2. Drug Repurposing against Lung Cancer

Drug repurposing is a strategy for identifying new uses for approved or investigational
drugs that are outside the scope of the original medical indication. Here, using Connectivity
Map (CMap) and the identified co-DEGs, we found two existing drugs mainly targeting
the co-upregulated genes (valproic acid and betonicine) and one drug (astemizole) against
the co-downregulated genes (Figure 1e,f and Table S7) [15–19].

2.3. Signatures of Co-Deregulated Genes in Single-Gene Perturbation Experiments

We extracted the co-DEG signatures from 11 single-gene perturbation studies that
were enriched in biological processes involving “positive regulation of Tau protein kinase
activity”, “regulation of Tau protein kinase activity”, “negative regulation of plasminogen
activation”, “cytoplasmic translation” and “co-translational protein targeting to membrane”
(Figure 5a and Table S8). A remarkable finding is the modulated expression of Tau protein,
which normally penetrates to the brain tissue, taking part in the organization of the axial
microtubules of nerve cells. This correlated relationship is admittedly anticipated, as
similar risk factors such as cell ageing, irregular cell cycle and cell death due to DNA
damage turn out to be present in both cancer development and neurological disorders.
It has recently been proposed that Tau protein appears in smooth muscle cells of the
vascular and airway systems of the lung [15], and there is a positive correlation between
Tau protein and the evolution of pulmonary adenocarcinoma [16]. The common cellular
pathogenetic events between these two clinically distinct diseases require further study in
light of molecular cross-linking given the tremendously high rate of metastatic tendency
of lung tumors to the brain [17,18]. Subsequently, these genes co-overexpress in the
negative regulation of plasminogen activation, a system that has dissimilar gene expression
patterns among lung cancer subtypes [19]. They are also enriched in cellular components
such as “cytosolic small ribosomal subunit”, “alveolar lamellar body”, “small ribosomal
subunit”, and “multivesicular body lumen”, as well as in operating functions such as
“aminophospholipid flippase activity”, “aspartic-type endopeptidase inhibitor activity”
and “cytochrome-c oxidase activity”. Aminophospholipid flippases are phospholipid
transporters responsible for the formation and maintenance of the cytoplasmic asymmetry
of membranes, a unique architecture that contributes to various signaling processes such
as apoptosis mediated by phagocytes. A high flippase activity has been found to regulate
the low surface exposure of phosphatidylserine residues in human cancer cells [20], an
altered pattern of which is responsible for immunological imbalance through silencing
key inflammatory signals. In this way, the deregulated action of flippases brings about an
immune-escape phenomenon of malignant cells, as well as induces immunosuppressive



Int. J. Mol. Sci. 2022, 23, 10933 8 of 22

phosphatidylserines [21]. Aspartic-type endopeptidase inhibitor activity assists in the
hydrolysis of a peptide bond in the side chains of aspartic acid so that a nucleophilic
character is acquired. Dysfunctionality arises from an endogenous abnormal feature of
carcinogenesis to disorientate transcription factors from functioning properly.
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Figure 5. Gene Ontology (GO) enrichment analysis of the co-DEGs in single-gene perturbation
experiments in lung cancer. (a) GO enrichment results of the co-upregulated genes in lung cancer
against the normal tissue. (b) GO enrichment results of the co-downregulated genes in lung cancer
against the normal tissue. KEGG enrichment analysis regarding the co-DEGs in single-gene pertur-
bation experiments in lung cancer. (c) KEGG enrichment for the co-upregulated genes and (d) the
co-downregulated genes. Bar graphs were sorted using a combined score between the Benjamini–
Hochberg (BH)-adjusted p-value and the z-score of the deviation from the expected rank. Each bar’s
length shows the significance of the corresponding term being relative to the color brightness of
each bar.

Our KEGG analysis revealed the enrichment of both classes of co-DEGs (i.e., co-
up- and co-downregulated genes), mainly in the “Ribosome” and “Coronavirus disease”
pathways (Figure 5c,d and Table S9). Ribosomal malfunction reflects the central role that
ribosomes play in the control of gene expression. Increased ribosomal biogenesis leads to
high levels of protein synthesis as a principal point in maintaining and advancing cancer,
without the complete mechanism being known yet.

Interestingly, the second pathway hints towards the molecular association of COVID-19
disease with lung cancer [22]. More specifically, these two separate conditions share a com-
mon pathogenetic ground, partially aligned with the lungs being vulnerable to COVID-19.
Currently, there is evidence under consideration for developing lung malignancy following
SARS-CoV-2 infection.
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As for the co-downregulated genes, we detected enrichment in “SRP-dependent co-
translational protein targeting to membrane”, “cytoplasmic translation”, “co-translational
protein targeting to membrane”, “protein targeting to ER” and “nuclear-transcribed mRNA
catabolic process, nonsense-mediated decay” (GO biological process); “cytosolic small
ribosomal subunit”, “cytosolic large ribosomal subunit”, “small ribosomal subunit” and
“large ribosomal subunit” (GO cellular component); and “ubiquitin ligase inhibitor activ-
ity”, “ubiquitin–protein transferase inhibitor activity” and “insulin-like growth factor II
binding” (GO molecular function) (Figure 5b). Most successive stages of protein synthesis
are disrupted by carcinogenetic processes that create a viable tumor microenvironment by
controlling the protein interactions at the cellular level. In addition, the deviation from
normal protein functionality is reported to be decisive in carcinogenetic events, as there is a
dual pathological targeting of translational and post-translational modification processes,
as the above-mentioned results reference. Ubiquitination is the physiological process of
protein degradation being involved in signal transduction, and results in morbid effects
of the solidification of lung tumors. Furthermore, cancer growth signaling moderated by
the IGFBP2/IGF pathway has been extensively studied due to its mitogenic nature. Its
complex involvement in a plethora of biological procedures results in an uneven motif
of overexpression among patients with a diverse clinical picture. In cancer cells, IGFBP2
expression is topologically imported into the cytoplasm and the nucleus is absent of a
nuclear localization sequence. Conflicting points of view do not fully explain the onco-
genic or tumor suppressive effect of IGFBP2, stating that more in vitro functional studies
are needed.

The TFs RELA and MYC, along with the kinases CDK1 and MAPK14, were significant
regulatory mediators of both the co-up- and co-downregulated genes following single-gene
perturbation. In addition, PML, MYC, RELA, KAT2A, CEBPB, KLF4, TCF3, SOX2, NELFE
and ZMIZ1 (TFs), as well as MAPK8/14, CDK1/4 and AKT1 (kinases), were central hub
proteins in the co-upregulatory network. Similarly, MYC, RELA, KAT2A, TAF1/7, CEBPD,
KLF4, SOX2, NELFE, and ZMIZ1 (TFs), and MAPK1/3/8/14, ERK2, CDK1/4, HIPK2,
and JNK1 (kinases), were central hubs in the co-downregulatory network, respectively
(Figure 6a,b and Tables S10 and S11).

2.4. Signatures of Co-Deregulated Genes in Single-Drug Perturbation Experiments

We reanalyzed 12 independent GEO datasets to identify the co-DEGs in samples
undergoing a single-drug perturbation. The co-upregulated genes were enriched in “SRP-
dependent co-translational protein targeting to membrane”, “co-translational protein tar-
geting to membrane”, “cytoplasmic translation”, “protein targeting to ER” and “nuclear-
transcribed mRNA catabolic process, nonsense-mediated decay” (GO biological process),
“cytosolic small ribosomal subunit”, “cytosolic large ribosomal subunit”, “large ribosomal
subunit”, “small ribosomal subunit” and “ribosome” (GO cellular component), as well as
in “retinal dehydrogenase activity”, “large ribosomal subunit rRNA binding”, “oxidoreduc-
tase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor”,
“ubiquitin ligase inhibitor activity” and “ubiquinol-cytochrome-c reductase activity” (GO
molecular function) (Figure 7a and Table S12). Alternated patterns of protein synthesis
are observed in controlling their production machinery, as well as the roles the proteins
perform. Regarding the molecular processes, the co-upregulated genes were related to
biosynthetic biochemical events, and took part in the transmission of intracellular signals.
Indeed, in certain cases of non-small cell carcinoma, the expression of retinal dehydroge-
nase is particularly high and plays a role in the synthesis of increased ATP being used by
cancer lung cells [23]. Ubiquinol-cytochrome-c protein reductase is actively implicated in
the electron transport chain, but even though it has been suggested as a possible diagnostic
biomarker in pulmonary adenocarcinomas [24], its usefulness remains under investigation.
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In addition, the co-downregulated genes were enriched in “cytoplasmic translation”,
“SRP-dependent co-translational protein targeting to membrane”, “protein targeting to ER”,
“nuclear-transcribed mRNA catabolic process, nonsense-mediated decay” (GO biological
process); “cytosolic small ribosomal subunit”, “small ribosomal subunit”, “Cytosolic large
ribosomal subunit”, “ribosome” and “large ribosomal subunit” (GO Cellular component);
and in “RNA binding”, “ubiquitin ligase inhibitor activity”, “C3HC4-type RING finger
domain binding”, “ubiquitin–protein transferase inhibitor activity” and “mRNA 5’-UTR
binding” (GO molecular function) (Figure 7b). The “C3HC4-type zinc finger” region of
the RING protein complex is part of several proteins involved in a variety of cell growth
and differentiation functions, justifying its transcriptional regulatory application in lung
oncogenesis. This factor has been reported to be important in facilitating cell prolifer-
ation in lung tissue, diverting ubiquitination pathways in combination with metastatic
penetration [25]. The 5’-UTR mRNA binding process reduces the expression of the five
untranslated regions of mature mRNA which are responsible for the gene expression
post-transcriptional activities necessary for cellular homeostasis. The non-expression of
these regulatory elements provokes the consequent deregulation of the normal expression
pattern, enhancing pathogenetic effects in lung cancer.
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Furthermore, similar to the single-gene perturbation experiments, KEGG analysis
for both co-DEGs in this category, revealed enrichment in “Ribosome” and “Coronavirus
disease” (Figure 7c,d and Table S13).

The TFs MYC, KAT2A and CEBPB seem to be the most significant hubs among the co-
upregulated genes, while MYC, PML, ATF2 and E2F1 seem to be the most significant hubs
among the co-downregulated genes in single-drug perturbation experiments (Figure 8a and
Table S14). Additionally, MAPK14, CDK1, ERK1/2, HIPK2 and CDK4 were the main hub
kinases regulating the expression of the co-upregulated genes, whereas MAPK14, CDC2,
DNAPK and CDK4 were the main hubs across the co-downregulated genes in this group
(Figure 8b and Table S15).
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3. Discussion

In the present work, we used a Systems Biology approach to detect the co-deregulated
genes across different lung cancer studies, orchestrated by an extended network of TFs
and kinases. We investigated these co-deregulated gene signatures in-depth and classified
them into three different categories, focusing on their upstream regulators, networks, hub
proteins and interactions. The new signatures of co-DEGs recovered prior knowledge, but
also discovered new connections, adding significant information to the pathobiological
basis of lung carcinogenesis.

Assembling the co-DEG signatures in lung cancer and exploring their pathways, we
found that they are primarily enriched in immunological destabilization, a major hit in the
lung. Immune deregulation is a determining point in the development of tumorigenesis in
the lungs, alongside presenting a deteriorating clinical status among patients. Cancerous
cells attempt to reverse this protective function by controlling primary cellular signals to
deviate from the well-orchestrated immune system. In particular, the perception of the
extracellular and intercellular microenvironment is of vital significance for a coordinated
immunological response. A similar bioinformatics analysis highlighted the enrichment of
the down-regulated genes in angiogenesis in calcium ion binding and cell adhesion [26],
whereas the up-regulated genes were significantly enriched in the extracellular matrix
disassembly, collagen catabolic process, chemokine-mediated signaling pathway, and en-
dopeptidase inhibitor activity. Our study demonstrates the existence of a strong correlation
between the disruption of canonical immunological procedures in co-upregulated and
down-regulated genes, respectively. Similar to our results, Yu et al. found enriched critical
factors in the regulation of immune responses, inducing tumor growth and metastasis [26].
In a broader context, both studies address the importance of deregulated inflammatory
responses in lung cancer, and any differences should be attributed to the different sample
numbers analyzed in each GEO dataset or the methodological plan followed.

The co-upregulated genes negatively affect cancerous transformation, as their presence
at key topological sites of protein synthesis and transcription has a substantial impact on
the expression of genetic information. The enriched terms referring to the molecular
function also showed a strong association with lung cancer. In addition, platelet-derived
growth factor (PDGF) signaling contributes to a wide variety of developmental procedures,
and multiple abnormalities have been documented to occur during lung tumorigenesis.
Interestingly, “Relaxin signaling pathway” and “ECM–receptor interaction” were found
to be enriched in KEGG pathway analysis. Relaxin is a peptide hormone that acts both
in an autocrine and paracrine manner by stimulating the nitric oxide (NO) guanosine
pathway after binding to its RXFP1 receptor [27]. Relaxin is involved in the processes of
lung structure and remodeling [28], but it seems that its upregulation is also associated with
tumor invasion [29]. Furthermore, enhanced RXFP1 activation mediates anti-apoptotic and
angiogenetic events [30] through ECM degradation [31], providing several implications
in the development of chemoresistance [29]. In addition, the metastatic tendency of lung
cancer is of high concern owing to the cellular structural changes taking place within the
ECM architecture, as the process of malignant establishment continues to occur.

The expression of co-downregulated genes is directly related to dysregulated immuno-
logical pathways, ensuring that immune tolerance to malignant cells is upheld and no
antioncogenic action occurs. At a biochemical level, the addition of NO to cysteine residues
(S-nitrosylation) has been demonstrated to amplify tumor progression and provide no
effective response to anticancer medication [32]. Tumor-infiltrating leukocytes are known
to have a major, yet antagonistic, role in cancer surveillance and appear to disrupt epithelial
tissues during inflammation. More specifically, angiogenetic events happen during the
onset of tumorigenesis, as the infiltrated leukocytes produce pro-angiogenic agents that
maintain a favorable tumor microenvironment. Likewise, cell adhesion molecules are
the main membrane glycoproteins that regulate immune cell migration and activation,
through which malignant cells can spread to secondary tissues. In addition, it was recently
proposed that leukocyte aggregates are associated with high thrombosis risk in lung cancer
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patients [33], corresponding to the fact that leukocytes accumulate in the tumor microenvi-
ronment in order to facilitate their progression and survival. In this context, it is assumed
that a high leukocyte aggregation triggers a metastatic profile of lung cancer to distant
sites, and is correlated with fatal cardiovascular incidents. Indeed, in a recent observational
study, cancer patients were shown to have a high mortality risk due to cardiovascular
disease [34]. Thus, the co-downregulated genes were mainly enriched in “cytolytic granule”
(GO cellular component) and took part in molecular processes such as “RAGE receptor
binding”, “arachidonic acid binding”, “icosatetraenoic acid binding”, “eicosanoid binding”
and “Toll-like receptor binding”.

The co-downregulated genes were enriched in “RAGE receptor functions of glycosyla-
tion end products”, which are mainly presented in diabetic pathogenesis, but the RAGE
receptor is associated with lung carcinogenesis through the induction of multiple intra-
cellular oxidative stress pathways [35]. Nevertheless, RAGE receptors appear to exhibit
multiligand characteristics by activating responses in inflammatory conditions, and they are
involved in the maturation process of dendritic cells, T cell proliferation, and polarization
to CD4+ cells. At the same time, there is a functional relationship with the TLR receptor
family through the initiation of innate immune responses because of the joint interaction
ligands. TLRs have regulatory features to mediate cancer cell growth, secondary tissue
penetration, angiogenesis, and cancerous conversion in different molecular mechanisms.

In addition, the metabolic pathway of arachidonic acid is linked to the biological
basis of lung cancer due to the involvement of biosynthetic cyclooxygenases (COX-2) and
phospholipase A2 (PLA2) in the MAPK/ERK and EGFR pathways [36]. Regarding the
binding function of eicosapentaenoic acid, omega-3 fatty acid supplements are well-known
to have anti-inflammatory properties against cancer cachexia syndrome [37], playing a
beneficial role in the inhibition of cell proliferation and the reversal of the arachidonic
acid metabolism [38]. This correlates with previous findings, reinforcing the need for the
co-prescription of supplements in lung cancer patients. Finally, similar effects are revealed
in eicosanoid acid-binding processes that act as lipid mediators of arachidonic acid, the
production of which is higher both in tumor cells and their surrounding microenviron-
ment [39,40], hinting towards a new treatment approach that targets the biochemical cycle
of lung cancer cells.

Diabetic cardiomyopathy may be associated with lung carcinogenesis via the activa-
tion of the AGE–RAGE signaling pathway. The disease also associates with the intracellular
stimulation of oxidative stress, whereas the RAGE receptor modulates immune responses in
the lungs [41]. Pathogenic Salmonella infection is not correlated with tumorigenesis in the
lung, but the organ remains vulnerable to infections. This finding warrants further investi-
gation in the lung microbiome to better understand the properties of its drug resistance.

ECM is a highly complex structure of biologically active macromolecules that con-
trol key cellular functions. The interaction between ECM and tumor cells underlines the
tendency of the latter to infiltrate the tumor microenvironment. The dynamic and organiza-
tional structure of ECM is considered to be the basis of cellular behavior. Tumor-associated
macrophages (TAMs) and neutrophils also play a key role in the onset of carcinogenesis,
performing phagocytic processes (“phagosome”) through lysosomal digestion. In the
majority of different cancer types, antiphagocytic signals are expressed to escape immune
surveillance, and thus malignant proliferation is not eliminated.

The terms that we found to correspond to the KEGG pathway analysis for the co-
downregulated genes refer to certain immunological procedures taking place during histo-
compatibility and the development of an acute inflammation response. After all, lung is a
target organ of the graft-versus-host disease response due to the consecutive emergence of
cytotoxic T-lymphocytes and NK cells influenced by the cytokines IL-1/TNFα [42]. The
interleukin 17 (IL-17) signaling pathway may be enriched because of its participation in
tumor-associated inflammation. In fact, IL-17 is a pro-inflammatory cytokine [43] that
contributes to the metastasis of lung cancer cells [44].
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PPI networks contribute to a further understanding of the transcriptional machinery
and phosphorylation reactions driving the pathobiological events of lung carcinogenesis.
Here, we sought to investigate the interactions among the co-DEGs in lung cancer and
certain hub proteins as critical mediators in the signaling pathways. We highlight EZH2,
CTCF, RAD21, HDAC2, RUNX1 and PPARG as the principal hubs closely connected to
this disease. Of these, we emphasize on the enhancer of Zeste Homologue 2 (EZH2), the
CCCTC-binding factor (CTCF), and the RAD21 Cohesin Complex Component (RAD21),
across the main co-upregulated TFs.

EZH2 possesses a crucial role in chromosomal remodeling, as well as in the regulation
of the silencing of several tumor suppressor genes and those involved in immune cell
development [45]. The overexpression of EZH2 allows cancer cells to divide uncontrollably
and plays an important role in the acquired chemoresistance of cancer cells [46].

CTCF has multiple functional roles in chromosomal interactions, leading to gene
expression, while its rs60507107 variant correlates with an increased risk of lung can-
cer [47]. As a chromatin architecture mediator, it epigenetically regulates transcription and
CTCF-binding alterations can be considered as epigenomic signatures of cancer develop-
ment. A cancerous transition mechanism in lung fibroblasts relies upon the deregulated
expression of Rb2/p130, which is controlled by CTCF, and has been shown to promote
the progression and recurrence of lung cancer after treatment. Thus, CTCF upregulation
promotes carcinogenetic effects, as it ultimately organizes the genome structure and can
alter gene expression.

RAD21 normally participates in sister chromatid cohesion and separation when
needed during transcription, DNA replication, or DNA damage repair mechanisms. RAD21
knock down shows resistance to DNA-damaging chemotherapeutic drugs in vitro [48],
and its increased expression is evident in poorly differentiated lung cancers due to its
contribution to the regulation of the cell cycle [49].

On the other hand, among the co-downregulated transcription factors in lung cancer,
we focused on RUNX1, histone deacetylase 2 (HDAC2), and peroxisome proliferator-
activated receptor gamma (PPARG).

RUNX1 participates in different hallmarks of cancer, such as the developmental dif-
ferentiation of multiple human cell lines. Its downregulation was recently linked with
poor lung cancer patient survival [50], while its altered methylation pattern is used as a
biomarker in non-small cell lung cancer (NSCLC) [51]. Furthermore, RUNX1 is known to
inhibit the transcription of YAP [52] in breast cancer, a molecular interplay that leads to
immunosuppressive events during lung tumorigenesis [53].

HDAC2 functions as a part of large multiprotein complexes that repress transcription
through the deacetylation of lysine residues on the N-terminal part of histones. In NSCLC,
HDAC2 knock down correlates with a low expression of fibronectin (FN) [54] and enhances
the metastatic potential of lung cancer cells [55]. The functional alteration and imbalance in
epigenetic modulation affects major pleiotropic cellular events and growing interest has
been raised towards clinical utility.

A decreased expression of PPARG is a prognostic marker for NSCLC. PPARs regulate
cancer-relevant processes, such as cell differentiation, proliferation and apoptosis [56,57].
In colorectal cancer, emerging evidence has shown that PPARG signaling is downregulated
due to the regulatory actions of EZH2 and HDAC1 [58]. In fact, our results come in
accordance with this statement and we, therefore, consider that the axis between PPARs,
EZH2 and HDACs is a novel transcriptional interplay underlying lung carcinogenesis, and
thus needs further investigation.

Moreover, we detected specific repurposing drugs to potentially extend the therapeutic
opportunities in lung cancer. A beneficial effect in lung cancer treatment could result from
the pharmacological regulation in the expression of co-DEGs. Here, we paid specific
attention to valproic acid (VPA), betonicine, and astemizole.

Valproic acid is a histone deacetylase (HDAC) inhibitor used in the treatment of
epilepsy because of its mood-stabilization properties. As such, VPA can regulate the expres-
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sion of genes in small cell lung cancer (SCLC), as well as balance apoptotic modulators and
suppress cell growth via the activation of the Notch 1 signaling pathway [59]. VPA was also
recently reported to effectively inhibit the proliferation of lung cancer cells in vivo, when
combined with arsenic trioxide, via the induction of apoptotic signals [60]. In addition, VPA
was shown to improve a second-line regimen of small cell lung carcinoma in preclinical
models, opening new prospects for improved therapies [61]. The anticancer activity of
VPA was also shown in non-small cell lung cancer (NSCLC) cell lines when combined with
a new cyclin-dependent kinase (CDK) inhibitor (P276-00) [62]. Therefore, our findings
corroborate previous reports that VPA is a promising new molecularly targeted therapeutic
approach for the treatment of lung cancer.

Betonicine is a pyrolidine alkaloid isolated from Achillea millefolium that inhibits
bacterial signaling molecules being used as an adjuvant to anti-infective treatments. It
targets several enzymes involved in drug metabolism (mainly CYPs). Some types of
betonicine’s inhibitory activity are against a and β glucosidases, as well as β-manosidase
and eukariotic DNA polymerases. The toxic effect of pyrolidine alkaloids is generally
manifested in the liver [63,64]; nevertheless, betonicine’s anti-tumor effects in lung cancer
are widely unknown.

As for the repurposing drugs that seem to induce the co-downregulated genes in
lung cancer, here we highlight astemizole. This drug has been commonly used in the
treatment of allergies as an antihistamine, but it was reported to cause arrythmias when
administrated in high doses. Astemizole targets several proteins involved in tumor cell
proliferation [65], and its combined pharmacological action with gefitinib was recently
shown to have promising results in lung cancer [66]. Our findings corroborate these reports
and strongly suggest that astemizole could be used as a repurposing therapeutic drug
for lung cancer patients. Together, these findings identify the necessity of integrating
repurposed drugs into therapeutic efforts to treat lung cancer.

All in all, here, we analyzed pooled data sets across heterogenous subtypes of lung
cancer and identified the top co-DEGs and their hubs along with targeted therapeutic
drugs. Our results show that all of the three signature categories recover prior knowledge
associations between genes, drugs, and diseases.

4. Materials and Methods
4.1. GEO Data Extraction and Filtering

We first assorted 24 studies from the Gene Expression Omnibus (GEO) to extract
differentially expressed genes using GEO2Enrichr [67,68]. The studies were classified into
three categories: (1) those assessing gene expression profiles in LC vs. healthy samples
(2 GEO studies), (2) those subjected to single-gene perturbation (10 GEO studies), and
(3) those observing any therapeutic effect through single-drug perturbation (12 GEO stud-
ies) in lung cancer. The selection process was strictly focused on gene expression studies
containing tissue samples or cell lines of human or mouse origin. The standard naming
of genes, diseases, and drugs was provided as an autocomplete option in the submission
forms created from HGNC [68], Disease Ontology [69], and DrugBank [70], respectively.

The corresponding mined data sets were as follows: GDS4794, consisting of 23 lung
carcinoma tissue samples and 2 normal tissue samples; GDS3837, containing 60 samples
of healthy tissue and 60 samples of non-small cell lung cancer from women; GDS5418,
containing 4 normal A456 cell lines and 4 SRC-/- A456 cell lines; GDS5391, consisting
of 4 NCI-H1299 and NCI cell lines samples (2 for each line) of pulmonary adenocarci-
noma not expressing the protein kinase of tyrosine PTK7 and 4 normal samples (control);
GDS2489, consisting of 18 normal samples of lung airway epithelial cells and 26 samples
of the same cell line from smokers; GDS3510, composed of CL1-5-derived cells overex-
pressing Claudin-1 (CLDN1) derived from pulmonary adenocarcinoma tissue; GDS3029,
having 27 small cell lung cancer cell samples resistant to Bcl-2 antagonist ABT-737 and
7 normal samples (control); GDS3826, containing 5 transgenic SP-C/c-raf lung samples
and 10 healthy samples; GDS5206, consisting of 9 samples of A549 epithelial cell line from
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pulmonary adenocarcinoma and 9 healthy controls; GDS4847, containing 40 lung samples
from B6C3F1 mice that were given chloprene and 10 normal tissue samples; GDS5067,
consisting of 5 control samples and 9 A549 cell line samples treated with oligopiperazines
(OOPs) BB2-125, BB2-162 and BB2-282; GDS3101, composed of A459-derived cis-platinum-
resistant cells, 3 samples that were treated with cis-platinum, and 3 more samples that were
not; GDS5496, consisting of 2 NCI-H441 lung-derived cancer cells expressing hsa-miR-
365-2 and 2 normal samples; GDS3825, analyzing 5 transgenic SP-C/c-raf cancerous lung
cells, 5 non-transgenic SP-C/c-raf samples and 5 completely normal samples; GDS5201,
containing 4 tumor samples resulting from activation of the Wnt/beta-catenin signaling
pathway in combination with the expression of KRAS protein and 2 samples of normal lung
tissues; GDS2966, consisting of A549 lung cancer cells, of which 2 samples were exposed
to resveratrol and 2 more remained intact; GDS5648, consisting of 5 K-RAS-driven mouse
tissue and 5 controls; GDS1649, containing 15 samples of mouse lung cancer and 29 samples
that were subjected to iodine urethane; GDS3321, consisting of 4 mouse lung tumors which
had undergone transgenic intervention in alveolar epithelial cells to overexpress c-Myc
proto-oncogene and 4 control samples; GDS2958, using 2 samples of HCC827-derived cells
with inactive PTEN inhibitor and 2 normal samples; GDS2298, containing 7 samples of
NSCLC-derived cell lines sensitive to Gefitinib and 11 control samples; GDS4840, contain-
ing 3 samples of CCR5-/-mutant mouse-derived lung tissue and 3 samples from normal
tissues; GDS2604, consisting of 14 samples from epithelial and mesothelial lung cancer cell
lines and 13 control samples; GDS5247, using 3 samples of H460 parent-derived lung cell
line and 3 samples of the same cell line with cis-platin resistance; GDS2499, containing 3 cell
samples were cultured in mannitol, 3 samples cultured in actinomycin D, and 6 maintained
in saffron PCI-2050 (Table S2).

We re-processed the extracted expression signatures to filter their quality and check
data integrity, as previously explained in detail [3,66]. We also quantified batch effects
with variance component analysis [71] and corrected them with surrogate variable analysis
(SVA) [68].

4.2. Differentially Expressed Genes and Co-DEGs

Genes presenting a differential expression profile (cutoff of 500 genes) were estimated
based on the Characteristic Direction (CD) algorithm [12]. The GEO2Enrichr extracted gene
sets of the over- and under-expressed genes were manually sorted based on the CD metric.
In the event of single-gene perturbation (i.e., knock out, knock down, knock in, RNAi,
or overexpression) experiments, the differential expression signatures were considered
against their normal (wt) alleles. Regarding single-drug experiments, DEGs were calculated
against the non-treated cells or tissues. Differentially expressed genes that were found only
in one study were excluded from further analysis. For each group, the DEGs that were
identified between at least two independent studies were termed as “co-upregulated” or
“co-downregulated”, respectively (co-DEGs).

4.3. Upstream Regulators of co-DEGs and Protein–Protein Interaction Networks

Expression2Kinases (X2K) was utilized to investigate the upstream regulatory net-
works from the co-DEGs signatures within each group. Transcription factors (TFs), inter-
mediate proteins and protein kinases participating in the regulation of transcriptional and
expression processes of the inputted co-DEGs were produced as previously described [72].
X2K detects the expected elements within each category using an integrated promoter
analysis of ChIP-X to construct a complete network between TFs and known protein inter-
actions [73]. Kinase enrichment analysis was used to locate the upstream protein kinases,
which are critical for carrying out phosphorylation reactions that regulate the expression
of the identified co-DEGs. We then used Enrichr [74] to create protein–protein interaction
networks (PPI) for each group of co-DEGs, involving the implicated TFs, kinases and their
intermediated proteins, indicating the nodes (genes) and edges (lines) in each network. The
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interacting proteins along with the phosphorylation paths involved were also included for
the visualization purposes of each PPI network.

4.4. GO and KEGG Enrichment Analysis

We performed Gene Ontology (GO) enrichment analysis to reveal the overrepresented
GO terms, focusing on the molecular-level activities performed by the top co-DEGs, the
locations relative to the cellular structures in which their gene products perform their
functions, and the biological processes accomplished by multiple molecular activities using
Enrichr [74].

In addition, we used the Kyoto Encyclopedia of Genes and Genomes (KEGG) [75–77]
to assess the pathway information of the top co-DEGs in each group. Results were sorted
using a combined score, defined as c = log(p)*z, i.e., the log of the BH-adjusted p-value from
the Fischer’s exact test, multiplied by the z-score of the deviation from the expected rank.
An adjusted p-value (adj-p) of 0.05 was used as the threshold of statistical significance.

4.5. Connectivity Map Analysis

Connectivity Map (CMap, https://clue.io/cmap, accessed on 21 September 2021) is a
large-scale database including shareable data on pharmaceutical agents [78] and substances
with a previously defined pharmacological action. These are statistically correlated with
provided gene expression signatures, and could potentially induce or reverse LC based on
this. We used CMap to identify repurposing drugs for lung cancer based on a connectivity
score ranging from −1 to +1. The given range indicates that values closer to +1 have a
positive connectivity, as drugs enhance the carcinogenic effects in the lung. In contrast,
values closer to −1 have a reversable gene–drug relationship, suppressing the growth of
lung cancer cells. We submitted the lists of co-DEGs (over- and under-expressed genes
related to lung cancer), and found a group of substances that act reversibly on the studied
expression patterns of the co-DEGs. A hypergeometric probability test was used to associate
drugs with disease.

4.6. Validation of the Co-Deregulated Gene Signatures and Hub Genes in the TCGA and the
Human Protein Atlas

We validated the calculated expression signatures in lung cancer after extracting the
read counts of RNA-seq data from the Cancer Genome Atlas of lung squamous cell carci-
noma (TCGA-LUSC) (486 tumor samples and 338 controls) and the lung adenocarcinoma
(LUAD) (483 tumors and 347 controls) datasets using the Genomic Data Commons data
portal (https://portal.gdc.cancer.gov/, accessed on 23 January 2022). We then normalized
the read counts to log2 (TPM + 1) values, as previously described [79]. To increase the sam-
ple number of the controls, the TCGA normal data were matched with normal lung samples
from the Genotype-Tissue Expression (GTEx) project (https://gtexportal.org/home/, ac-
cessed on 23 January 2022). The expression levels of the “UP genes” signature, composed
of 54 genes, and of the “DOWN genes” signature, composed of 48 genes, were explored
with Limma [80] using log2FC = 1 and q-value = 0.01 as thresholds of significance.

In addition, we explored the expression of the top deregulated genes in lung cancer
across different molecular subtypes in LUSC (basal, classical, primitive, secretory), as well
as different immune subtypes in LUSC and LUAD (C1, wound healing; C2, IFN-gamma
dominant; C3, inflammatory; C4, lymphocyte depleted; C5, immunologically quiet; C6,
TGF-b dominant) [13].

To further investigate the hub genes and associate their expression with patient sur-
vival, we used the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) [14] and
immunohistochemistry (IHC) data from the Human Protein Atlas (HPA) [81]. Regarding
the IHC protocol that was followed, in brief, FFPE sections (4 µm) were heated at 50 ◦C
overnight. Then, they were deparaffinized in xylene and rehydrated in graded ethanol
to distilled water. During hydration, a 5 min blocking for endogenous peroxidase was
completed in 0.3% H2O2 in 95% ethanol. Prior to immunostaining, the sections were im-
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mersed in 10mM citrate buffer (pH 6.0), rinsed in Tris-buffered saline (TBS) and subjected to
heat-induced epitope retrieval (HIER) using a pressure boiler. Sections were then incubated
overnight at 4 ◦C with mouse monoclonal antibodies (mAbs) against MYC (1:20, Atlas An-
tibodies Cat#HPA055893, RRID: AB 2682960), TP63 (1:75, Atlas Antibodies Cat#HPA006288,
RRID: AB_1080334). The UltraVision LP HRP polymer®, Ultra V Block and DAB quanto
substrate system® (Thermo scientific, La Jolla, CA, USA) were used for detection. Finally,
slides were rinsed in tap water, counterstained with hematoxylin, dehydrated in grade
ethanol and cover-slipped. Slides were then assessed independently by two observers.

4.7. Patient Survival Analysis

Disease-free survival analysis and corresponding maps for the patients in the TCGA-
LUSC and TCGA-LUAD datasets were further constructed using two gene signatures: one
containing the hub TFs (MYC, STAT3, TP63, KLF4, SOX2, CHD1 and FOSL2) and another
containing the hub kinases (JNK1, HIPK2, CSNK2A1, MAPK3, CDK1, CDK4, GSK3B,
ERK1 and MAPK14). For the Kaplan–Meier curves we used hazard ratio (HR), which
was calculated based on the Cox PH model and a 95% confidence interval (CI). For the
survival maps, we used an FDR-adjusted p-value = 0.05 as the threshold of significance
and median value cutoff. All experiments were performed in accordance with the TCGA
relevant guidelines and regulations.

5. Conclusions

Overall, the study of commonly deregulated pathways and molecular interactions
reveals the dynamic processes taking place during lung carcinogenesis.
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