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Historically, small heat shock proteins (sHSPs) have been extensively studied in the context
of being intracellular molecular chaperones. However, recent studies looking at the role of
sHSPs in neurological diseases have demonstrated a near universal upregulation of certain
sHSPs in damaged and diseased brains. Initially, it was thought that sHSPs are pathological
in these disease states because they are found in the areas of damage. However, transgenic
overexpression and exogenous administration of sHSPs in various experimental disease
paradigms have shown just the contrary – that sHSPs are protective, not pathological.
This review examines sHSPs in neurological diseases and highlights the potential for using
these neuroprotective sHSPs as novel therapeutics. It first addresses the endogenous
expression of sHSPs in a variety of neurological disorders. Although many studies have
examined the expression of sHSPs in neurological diseases, there are no review articles
summarizing these data. Furthermore, it focuses on recent studies that have investigated
the therapeutic potential of sHSPs for neurological diseases. Finally, it will explain what we
think is the function of endogenous sHSPs in neurological diseases.
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OVERVIEW OF SMALL HEAT SHOCK PROTEINS
Small heat shock proteins (sHSPs) have molecular weights between
12 and 43 kDa, distinguishing them in size from large heat shock
proteins (Ganea, 2001; Arrigo et al., 2007). There are 10 human
sHSPs: HSPB1–HSPB10 (Kappé et al., 2003). They share common
structural characteristics, including a highly conserved 90 amino
acid long HSP20 domain, often referred to as the alpha-crystallin
domain, and the capacity to form large dynamic oligomers
(Poulain et al., 2010). sHSPs are intracellular molecular chaper-
ones (Horwitz, 1992; Van Montfort et al., 2001). As chaperone
proteins, sHSPs bind misfolded proteins and prevent them from
aggregating. However, they are unable to actively re-fold the pro-
tein themselves due to their lack of ATPase activity. Instead, sHSPs
sequester the misfolded proteins within the cell to prevent aggre-
gation until a large heat shock protein can assist in refolding (Jakob
et al., 1993).

Although sHSPs share both common structural and functional
characteristics, they differ in tissue distribution and expression
patterns (Table 1). HSPB1, HSPB5, HSPB6, HSPB7, and HSPB8
are ubiquitously expressed, and are constitutively present in the
brain at low levels (Quraishe et al., 2008). HSPB4 is expressed in
the lens of the eye, composing nearly 50% of the protein mass in
the human lens (Andley, 2007). HSPB2 and HSPB3 are expressed
in muscle and heart (Quraishe et al., 2008), although a recent study
indicates that they also have some expression in the brain (Kirbach
and Golenhofen, 2011). HSPB9 and HSPB10 are expressed in the
testes (Quraishe et al., 2008). Notably, only three members of the
sHSP family (HSPB1, HSPB5, and HSPB8) are induced in response
to challenges such as heat (Morimoto and Santoro, 1998; Zhang
et al., 2002), glucocorticoids (Nédellec et al., 2002), prostaglandins

(Ito et al., 1997), and interferon-gamma (Oba et al., 2008), render-
ing them true sHSPs that are upregulated in response to cellular
stress.

Biochemical, biophysical, and crystallography studies have elu-
cidated the structure of HSPB5 and key residues important for
quaternary structure and chaperone function (Bagnéris et al.,
2009; Jehle et al., 2009, 2010, 2011). Naturally occurring muta-
tions in conserved regions in several human sHSPs have functional
consequences including myopathies (Vicart et al., 1998; Simon
et al., 2007), cataracts (Litt et al., 1998), and Charcot Marie
Tooth disease (Evgrafov et al., 2004; Ackerley et al., 2006). The
crystal structures of sHSPs give us insights into understanding
how some of these mutations have pathological consequences.
However, mounting evidence over the past two decades sug-
gests that sHSPs may not only play a role in maintaining a
healthy body, but that they also have protective functions in
disease or injury to the central nervous system (CNS; Sun and
MacRae, 2005; Arrigo et al., 2007; Steinman, 2008). This insight
has illuminated the possibility of using sHSPs as a novel class of
neuroprotective agents.

ROLE OF ENDOGENOUS sHSPs IN NEUROLOGICAL DISEASES
Altered regulation of sHSPs has been seen in many neurodegener-
ative and neuroinflammatory diseases in both human and rodent
brain tissue. A summary of published studies is shown in Table 2.

TAUOPATHIES: ALZHEIMER’S DISEASE AND PICK’S COMPLEX
Tauopathies are neurological diseases that involve abnormal aggre-
gation of the tau protein in the brain (Ballatore et al., 2011). The
healthy tau protein stabilizes microtubules, which are necessary
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Table 1 | Endogenous expression of sHSPs in the brain.

sHSP Alternate name Constitutive expression in brain

Bl Hsp 27 (human) Quraishe et al. (2008)

Hsp 25 (mouse) Armstrong et al. (2001), Kirbach and

Golenhofen (2011)

B2 MKBP Kirbach and Golenhofen (2011), limited

expression

B3 – Kirbach and Golenhofen (2011), limited

expression

B4 Alpha-A crystallin (cryaa)

B5 Alpha-B crystallin (cryab) Quraishe et al. (2008), Kirbach and

Golenhofen (2011), Dubin et al. (1989)

B6 Hsp 20 Quraishe et al. (2008), Kirbach and

Golenhofen (2011)

B7 – Quraishe et al. (2008), mRNA, not

protein

B8 Hsp 22 Quraishe et al. (2008), Kirbach and

Golenhofen (2011)

B9 –

B10 –

for the proper transportation of proteins and neurotransmitters
along neuronal axons. However, when tau becomes defective and
hyperphosphorylated, it can aggregate and forms neurofibrillary
tangles (NFTs) that interfere with normal neuronal function and
ultimately lead to cell death.

The most common tauopathy is Alzheimer’s disease, a neu-
rodegenerative disease characterized by NFTs and amyloid-rich
plaques in the brain that ultimately results in cognitive decline
and dementia (Ballard et al., 2011). The endogenous regulation
of sHSPs in Alzheimer’s disease has been well examined. HSPB1
levels are elevated in the cortex of Alzheimer’s patients, with
higher levels corresponding to increased severity and duration
of dementia (Renkawek et al., 1994a). In fact, HSPB1 levels cor-
relate significantly with levels of phosphorylated tau (Shimura
et al., 2004; Björkdahl et al., 2008), suggesting that it may play
a role in protecting the cell from the pathological effects of
hyperphosphorylated tau.

HSPB5 is also upregulated in Alzheimer’s disease (Iwaki et al.,
1992; Shinohara et al., 1993; Renkawek et al., 1994b) and highly
expressed in ballooned neurons (Lowe et al., 1992). Mao et al.
(2001) found that HSPB5 is highly expressed in neurons in the
vicinity of extracellular NFTs, but less so in classical senile plaques,
diffuse plaques, and intracellular NFTs.

Three other sHSPs have been shown to be elevated in
Alzheimer’s disease: HSPB2, HSPB6, and HSPB8. Using immuno-
histochemistry, Wilhelmus et al. (2006b) found small, but not
significant, elevations in HSPB2 and HSPB6 in Alzheimer brains.
HSPB6 localizes to both diffuse and classic senile plaques, whereas
HSPB2 was only present in the classic senile plaques. An addi-
tional study by Wilhelmus et al. (2006a) showed that HSPB8 is
found in classic senile plaques from AD brains. These data col-
lectively indicate that certain members of sHSPs are elevated in
Alzheimer’s disease, but it is unknown whether they are playing
a protective or pathological role in the disease process and there

are no studies to date that investigate the therapeutic potential of
sHSPs in Alzheimer’s disease.

Less common tauopathies include Pick’s complex, which is now
more commonly referred to as frontotemporal dementia (FTD;
Weder et al., 2007). This collection of tauopathies includes fron-
totemporal lobar degeneration, corticobasal degeneration (CBD),
progressive supranuclear palsy (PSP), and familial tauopathy FTD
with parkinsonism linked to chromosome 17 (FTDP-17; Kertesz,
2003; Tolnay and Probst, 2003).

In many of these conditions, tau pathology is not limited to
neurons and instead extends to glial cells such as astrocytes and
oligodendrocytes (Komori, 1999). Both HSPB1 and HSPB5 were
found to be elevated in brains of patients with olivary hypertro-
phy, a condition characterized by the enlargement of neurons and
neuronal loss in response to a lesion in the dentatoolivary path-
way. This can occur as a result of trauma, tumors, cerebrovascular
disease, and PSP, a component of Pick’s Complex (Hanihara et al.,
1998). HSPB5 has been shown to be upregulated early in disease
progression in neurons and later in astrocytes, but HSPB1 was
only elevated in astrocytes later in the disease course (Fukushima
et al., 2006). However, another study did not find upregulation
of HSPB1 or HSPB5 in neurons, but rather that localization of
these sHSPs is specific to glial cells in sporadic CBD and PSP and
familial FTDP-17 (Dabir et al., 2004). The specificity to astrocytes
was confirmed by a study that found elevated levels of HSPB1 in
astrocytes in PSP and CBD (Schwarz et al., 2010). It is currently
unknown why there are elevated levels of sHSPs in these diseases;
there have been no published studies determining the effects that
a loss of sHSP (i.e., using genetically deficient mice) or a gain of
sHSP (i.e., exogenous administration or overexpression) would
have on these diseases.

OTHER PROTEIN AGGREGATION DISEASES: PARKINSON’S AND ALS
Parkinson’s disease is a neurodegenerative disease that is caused by
the loss of dopamine-producing neurons in the substantia nigra.
The decrease in dopamine is accompanied by an accumulation
of alpha-synuclein protein, forming inclusions called Lewy bodies
(Burn, 2006). Clinical features of Parkinson’s disease are described
by the acronym TRAP: tremor at rest, rigidity, akinesia or bradyki-
nesia (loss of movement and slowness of movement, respectively),
and postural instability (Jankovic, 2008).

HSPB1 and HSPB5 are upregulated in the cortex of Parkinson’s
disease patients (Renkawek et al., 1994a, 1999). These sHSPs are
associated with an increased number of tangles in the hippocam-
pus of these patients. Mouse data corroborated the human data,
and showed similar elevations in both HSPB1 and HSPB5 using
the transgenic Parkinson’s model, alpha-SynA53T (Wang et al.,
2008).

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s
disease, is a neurodegenerative disease characterized by the pro-
gressive loss of motor neurons. ALS is associated with the for-
mation of intraneuronal proteinaceous inclusions that are non-
amyloid, many of which include hyperphosphorylated and ubiq-
uitinated TAR DNA-binding protein 43 (TDP-43; Perry et al.,
2010). Approximately 95% of ALS cases appear to be sporadic
and the remaining 5% are familial (Traub et al., 2011). Twenty
percent of the familial cases can be attributed to a mutation
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Table 2 | Small heat shock protein expression in human and rodent models of neurological diseases.

Disease sHSP Model system Regulation

Up Down

Amyotrophic lateral sclerosis (ALS) B1 Mouse Vleminckx et al. (2002), Wang et al. (2008) Maatkamp et al. (2004)

B5 Mouse Vleminckx et al. (2002), Wang et al. (2008) –

Human Iwaki et al. (1992) –

Alexander’s disease B1 Human Head et al. (1993), Iwaki et al. (1993) –

B5 Human Head et al. (1993), Iwaki et al. (1989), Iwaki

et al. (1992), Iwaki et al. (1993)

–

Alzheimer’s disease B1 Human Renkawek et al. (1994b), Björkdahl et al.

(2008), Shinohara et al. (1993), Wilhelmus

et al. (2006b)

–

B2 Human Wilhelmus et al. (2006b) –

B5 Human Björkdahl et al. (2008), Shinohara et al.

(1993), Lowe et al. (1992), Renkawek et al.

(1994a), Iwaki et al. (1992), Wilhelmus et al.

(2006b)

–

B6 Human Wilhelmus et al. (2006b) –

B8 Human Wilhelmus et al. (2006a) –

Epilepsy B1 Human Bidmon et al. (2004) –

Huntington’s disease B5 Mouse – Zabel et al. (2002)

Multiple sclerosis B1 Human Aquino et al. (1997), Han et al. (2009) –

B5 Human Sinclair et al. (2005), Bajramovic et al. (1997),

Iwaki et al. (1992)

–

Other tauopathies B1 Human Fukushima et al. (2006), Dabir et al. (2004),

Schwarz et al. (2010)

–

B5 Human Fukushima et al. (2006), Dabir et al. (2004),

Lowe et al. (1992), Iwaki et al. (1992), Kato

et al. (1992)

–

Parkinson’s disease B1 Human Renkawek et al. (1994b), Renkawek et al.

(1999)

–

Mouse Wang et al. (2008) –

B5 Human Renkawek et al. (1999), Iwaki et al. (1992) –

Mouse Wang et al. (2008) –

Prion disease B1 Mouse Tortosa et al. (2008) –

Sheep Vidal et al. (2009) –

B5 Human Renkawek et al. (1992), Kato et al. (1992),

Iwaki et al. (1992)

–

Spinocerebellar ataxias B1 Human cell lines Chang et al. (2005) Tsai et al. (2005), Wen et al. (2003),

Chang et al. (2005)

B1 Mouse Chang et al. (2005) –

B1 Human Chang et al. (2005) –

Stroke B1 Rat Imura et al. (1999) –

B5 Rat Piao et al. (2005) –

Human Minami et al. (2003), Lowe et al. (1992) –

in the superoxide dismutase 1 (SOD1) enzyme (Rosen et al.,
1993).

Iwaki et al. (1992) found that eight human ALS brains had
higher immunoreactivity against HSPB5 compared with healthy
brains. This result is corroborated in a study using the mutant
SOD mouse model of familial ALS, in which SOD1G93A mice
exhibited higher levels of HSPB5 in the cytoplasm of reactive
glial cells (Vleminckx et al., 2002). This study found that levels

of HSPB1 were upregulated in mouse neurons and glial cells as
well. However, the story is complicated by the fact that Maatkamp
et al. (2004) found that protein levels of HSPB1 were downregu-
lated just before the degeneration of motoneurons in the mutant
SOD mouse model. They also found that mRNA levels of HSPB1
remained unchanged despite lower protein levels, highlighting the
need for further studies to clarify what the role of sHSPs might
be in ALS.
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POLY-GLUTAMINE DISEASES: HUNTINGTON’S AND SPINOCEREBELLAR
ATAXIAS
Poly-Q diseases are caused by genetic mutations that lead to a
trinucleotide repeat of CAG, the triplet that encodes the amino
acid glutamine. This increases the number of glutamines in the
protein from as few as 20 to as many as 306 residues depending
on the disease. These diseases are known as poly-Q diseases based
on the one letter amino acid abbreviation of glutamine, and they
include Huntington’s disease (HD), dentatorubral-pallidoluysian
atrophy (DRPLA), spinobulbar muscular atrophy (SBMA), and
the spinocerebellar ataxias (SCAs; Paulson et al., 2000).

Huntington’s disease is a neurodegenerative disease caused by
a poly-glutamine expansion of the huntingtin (Htt) gene (Eidel-
berg and Surmeier, 2011). It typically appears during middle age
and is characterized by chorea, or involuntary, explosive, fidgeting
movements.

The SCA diseases are a group of neurodegenerative disorders
that are also caused by an expanded poly-glutamine repeat. They
manifest as a loss of gait and coordination difficulties. There are
distinct subtypes, each caused by a specific mutation in a gene
encoding an ataxin protein; around 30 different genes have been
identified to date (Di Donato et al., 2001).

Contrary to findings in other protein aggregation diseases of
the CNS, elevation of sHSPs have not been observed in the poly-Q
diseases. One study using the R6/2 mouse model of HD found
reduced levels of HSPB5 at the end of the disease course (Zabel
et al., 2002). However, studies on HSPB1 in SCA found that HSPB1
is downregulated early in the disease (Wen et al., 2003; Chang
et al., 2005; Tsai et al., 2005), but upregulated during later stages
of the disease (Chang et al., 2005). These controversial data might
uncover a dynamic property in the expression of sHSPs, indicating
the need to examine sHSP expression at multiple time points in
all diseases discussed above.

INFECTIOUS PROTEIN AGGREGATION DISEASE: PRIONS
Misfolded prions are infectious proteins that are responsible for
the transmissible spongiform encephalopathies (Prusiner, 1998;
DeArmond and Prusiner, 2003). These include bovine spongi-
form encephalopathy (BSE, commonly referred to as “mad cow
disease”) in cattle, scrapie in sheep, and Creutzfeldt–Jakob disease
(CJD) in humans.

Small heat shock proteins are elevated in prion disease. HSPB1
is increased in scrapie in sheep (Vidal et al., 2009) and in a
mouse model of BSE (Tortosa et al., 2008). Research on HSPB5
has been limited to humans; HSPB5 has been shown to be dra-
matically elevated in both glia and neurons from CJD brains
(Kato et al., 1992; Renkawek et al., 1992). Given the similari-
ties in protein aggregation between tauopathies and prions, it
is likely that sHSPs are playing similar roles in both disease
states.

LEUKODYSTROPHIES: ALEXANDER’S DISEASE
Alexander’s disease is a rare genetic disease, a leukodystrophy with
abnormal development of the myelin sheath, resulting from a
mutation in the glial fibrillary acidic protein (GFAP; Messing et al.,
2010). Alexander’s disease is typified by the appearance of Rosen-
thal fibers – fibrous, eosinophilic deposits in the brain that are

involved in the pathogenesis of the disease. It is a progressive,
neurodegenerative disease that is usually fatal.

Both HSPB1 and HSPB5 are upregulated in Alexander’s dis-
ease. Head et al. (1993) showed that both mRNA and protein
levels of HSPB1 and HSPB5 were elevated in Rosenthal fibers in
astrocytes taken from human patients, which was corroborated by
Iwaki et al. (1989, 1993). Additionally, mouse models of Alexan-
der’s disease that lacked HSPB5 demonstrated greater mortality,
indicating that the presence of alpha-B crystallin in the astrocytes
is protective (Hagemann et al., 2009).

AUTOIMMUNE DISEASES: MULTIPLE SCLEROSIS
Multiple sclerosis (MS) is an autoimmune demyelinating disease
of the CNS that manifests as lesions predominantly in the white
matter (Rejdak et al., 2010). It is characterized by a T cell mediated
attack on the myelin sheath surrounding the axons of neurons.
Although protein aggregation has not been observed in MS, sHSPs
are elevated and appear to play a protective role during the course
of the disease.

van Noort et al. (1995) first identified that HSPB5 is involved
in MS pathogenesis when they pinpointed this molecule as the
most immunodominant myelin T cell antigen in this disease.
These findings suggested that HSPB5 might be an autoantigen
in MS and that immune cells attacked endogenous HSPB5 as part
of the pathology of the disease. This theory was supported by
data that showed high levels of HSPB5 in astrocytes and oligo-
dendrocytes in MS lesions (Iwaki et al., 1992; Bajramovic et al.,
1997). Although subsequent studies found that HSPB5 was the
most abundant transcript in MS lesions (Chabas et al., 2001),
attempts to induce experimental autoimmune encephalomyelitis
(EAE), the predominant mouse model of MS, with HSPB5 as an
antigen, rather than using a myelin antigen, were never successful
(Verbeek et al., 2007). Further research indicated that although
HSPB5 is upregulated during the course of the disease, its purpose
is protective rather than pathological. A 2007 study conducted by
Ousman et al. (2007) found that mice deficient in HSPB5 suffered
from more severe EAE than wild type mice and that treatment with
exogenous HSPB5 ameliorated EAE. This study demonstrated that
the absence of HSPB5 results in a more pro-inflammatory state of
immune cells and a higher level of immune cell infiltration into
the brain. Furthermore, treatment of HSPB5 deficient EAE mice
or WT EAE mice with exogenous HSPB5 decreases immune infil-
tration into the brain and shifts the phenotype of these immune
cells to an anti-inflammatory state. Additional studies have vali-
dated the initial reports that HSPB5 is elevated in the MS brain
(Sinclair et al., 2005) and that HSPB5 is elevated in the blood of
MS patients (Rothbard et al., 2012).

HSPB1 has also been shown to be upregulated in MS. Using
immunohistochemistry, HSPB1 was found to be elevated in astro-
cytes and oligodendrocytes in the plaques (Aquino et al., 1997).
A recent study found elevated levels of HSPB1 circulating in the
blood of MS patients, peaking during relapses (Ce et al., 2011).

ACUTE NEUROLOGICAL INSULT AND INFLAMMATION: STROKE AND
EPILEPSY
Small heat shock proteins are not just upregulated in long-
term, chronic diseases of the CNS; recent studies have shown an
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upregulation in acute inflammatory conditions such as stroke and
epilepsy.

Stroke is the result of the lack of blood supply to the brain,
leading to brain injury. The most common type is ischemic stroke,
which is defined as a blocked blood vessel to the brain. Inflamma-
tory mediators exacerbate acute stroke. These mediators infiltrate
the injured area upon reperfusion. Several studies have been con-
ducted that examine the expression of HSPB5 in human and
mouse models of stroke. HSPB5 is found in ballooned neurons
at the edge of cerebral infarcts (Lowe et al., 1992) and elevated in
68% of human stroke brains, specifically in the neurons (Minami
et al., 2003). Studies using rodent models of cerebral ischemia
indicate that HSPB5 is transiently upregulated in neurons a few
hours after reperfusion and followed by gradual sustained increase
in astrocytes (Piao et al., 2005). HSPB5 has also been shown to be
elevated in human and mouse plasma post-stroke (Arac et al.,
2011). Notably, HSPB1 is also upregulated in both rat and mouse
models of ischemia (Imura et al., 1999) and overexpression of
HSPB1 is neuroprotective in cerebral ischemia models (van der
Weerd et al., 2010).

Epilepsy is a neurological disorder characterized by seizures.
These are due to abnormal, excessive, or synchronous neuronal
activity in the brain (Vezzani et al., 2011). Only one study has
found that HSPB1 is elevated in epileptic human neocortex (Bid-
mon et al., 2004). Using immunohistochemistry, they found that
HSPB1 was located in both astrocytes and the walls of blood
vessels.

PROOF OF CONCEPT THERAPEUTIC EXPERIMENTS
Many studies have shown that endogenous sHSPs are elevated in
neurological diseases, with some studies showing the lack of sHSPs
leads to worse disease, implying a protective role for these mole-
cules. This has led to the examination of these molecules as poten-
tial novel therapeutics with proof of concept experiments in mice
using three routes of administration: transgenic overexpression,
viral administration, and exogenous treatment (Table 3).

PARKINSON’S DISEASE AND ALS
Using a viral vector, HSPB1 has been shown to have a positive effect
in an in vitro model of Parkinson’s disease by protecting against
alpha-synuclein induced cell death (Zourlidou et al., 2004). How-
ever, no studies have been conducted on the therapeutic effects of
HSPB1 on in vivo models of PD.

Overexpression studies using transgenic mouse models of ALS
have shown mixed results. One study demonstrates that overex-
pression of transgenic HSPB1 in the SOD1G93A mouse model of
ALS by crossing SOD1G93A mice with HSPB1 overexpressing mice
did not delay disease onset or decrease disease severity (Krishnan
et al., 2008), despite the fact that HSPB1 overexpression was pro-
tective in acute motor neuron injury (Sharp et al., 2006). However,
another study by Sharp et al. (2008) indicates that HSPB1 does
have a positive effect early in the disease course in the same mouse
model of ALS. They show that SOD1G93A/HSP27 double trans-
genic mice had delayed decline in motor strength and increased
survival of spinal motor neurons compared to SOD1G93A single
transgenics during the early phase of disease. In vitro experi-
ments using SOD1 mutant cells demonstrate that HSPB1 has

an anti-apoptotic function (Patel et al., 2005). This suggests that
HSPB1 does have an effect, but the levels in the overexpressing
mouse may not be high enough to combat the chronic disease state.
It may also suggest that the cellular upregulation of sHSPs repre-
sents only one part of the protective response and that the presence
of sHSPs in the plasma may be a crucial factor in ameliorating
disease.

ALEXANDER’S DISEASE
A study conducted by Hagemann et al. (2009) using a mouse model
of Alexander’s disease demonstrated that mice lacking HSPB5
exhibited increased mortality, but restoring HSPB5 specifically in
astrocytes using a GFAP promoter reversed this effect. Addition-
ally, transgenic overexpression of HSPB5 protects mice from death
in a second model of Alexander’s disease that typically causes the
mice to die at one month of age (Hagemann et al., 2009).

MULTIPLE SCLEROSIS
Mice lacking HSPB5 were found to suffer from more severe disease
in the experimental autoimmune encephalomyelitis (EAE) model
of MS, and intravenous administration of exogenous HSPB5 ame-
liorated disease (Ousman et al., 2007). EAE mice treated with
HSPB5 showed a dampened immune response, including less
proliferation of immune cells and a lower production of pro-
inflammatory cytokines (Ousman et al., 2007). Furthermore, we
believe that this anti-inflammatory effect is based on HSPB5’s abil-
ity to act as a chaperone extracellularly, binding pro-inflammatory
molecules, including members of the acute phase, coagulation, and
complement pathways (Rothbard et al., 2012). Additional exper-
iments using other members of the sHSP family have indicated
that all members are therapeutic in EAE and they act through anti-
inflammatory effects (unpublished data). This further expands the
research supporting the therapeutic possibilities of sHSPs in MS
(Steinman, 2008).

STROKE
Transgenic mice that overexpress HSPB1 exhibited 30% smaller
lesion sizes after undergoing a permanent MCAO model of stroke
(van der Weerd et al., 2010). This corroborated previous work con-
ducted in a cardiac ischemia model that showed that transgenic
overexpression of HSPB1 was protective (Hollander et al., 2004).
Virally administered HSPB1 was also shown to be protective in
cerebral ischemia, although the mechanism was not clear (Badin
et al., 2006). The researchers of that study speculated that the pro-
tective effect of HSPB1 might be due to its chaperone function.
Finally, recent work has shown that HSPB5 is therapeutic when
treating mouse models of stroke 12 h post-insult (Arac et al., 2011).

MECHANISMS OF sHSP NEUROPROTECTION
A substantial number of studies have indicated that endoge-
nous sHSPs, particularly HSPB1 and HSPB5, are upregulated in
CNS injury and disease. Studies investigating both sHSP defi-
ciency and overexpression support the conclusion that these mol-
ecules are serving neuroprotective roles rather than pathological
ones.

A caveat to the studies done using the HSPB5 deficient mice:
these mice also lack the sHSP HSPB2. HSPB2 is not thought to be

www.frontiersin.org May 2012 | Volume 3 | Article 74 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Inflammation/archive


Brownell et al. sHSPs and neurological diseases

Table 3 | Overexpression and exogenous administration of sHSPs.

Disease sHSP Model system Treatment type Therapeutic efficacy

ALS B1 SOD1G93A mouse model of ALS Tg overexpression No effect (Krishnan et al., 2008)

Effective in early, but not late

disease (Sharp et al., 2008)

SOD1 mutant neuronal cell lines Viral vector Anti-apoptotic (Patel et al., 2005)

Alexander’s disease B5 GFAPTg and GFAPTg; GFAP+/R236H mouse

models of Alexander’s disease

Tg overexpression Rescue of lethal phenotype in

GFAPTg/cryab null mice by

induction of Cryab under GFAP

promoter (Hagemann et al., 2009)

Huntington’s disease B1 R6/2 mouse model of Huntington’s disease Tg overexpression No effect (Zourlidou et al., 2007)

COS-7 (monkey kidney) or SK-N-SH (human

neuroblastoma) cells transfected with

huntingtin exon 1 (httEx1) fused to EGFP

Cellular co-transfection Prevented poly-Q mediated cell

death, but did not prevent protein

aggregation (Wyttenbach et al.,

2002)

Multiple sclerosis B5 EAE mouse model of MS Exogenous administration Decreased clinical score when

administered at peak of disease

(Ousman et al., 2007; Rothbard

et al., 2012)

Reduced apoptosis in CNS

(Ousman et al., 2007)

Parkinson’s disease B1 Cells expressing alpha-synuclein Viral vector Anti-apoptotic (Zourlidou et al.,

2004)

Ischemia/reperfusion (stroke) B1 Permanent middle cerebral artery occlusion

(MCAO) mouse model of cerebral ischemia

Tg overexpression Reduced infarct size (van der

Weerd et al., 2010)

Viral vector Reduced infarct size (Badin et al.,

2006)

Exogenous administration Reduced infarct size (Arac et al.,

2011)

Acute nerve injury B1 Neonatal nerve injury, mouse Tg overexpression Rescues motor neurons

5–6 months following injury (Sharp

et al., 2006)

inducible, so the levels of HSPB2 are typically not elevated in neu-
rological diseases (for an exception see Wilhelmus et al., 2006b).
Although we believe that the phenotype we see in HSPB5 deficient
mice is due to the lack of HSPB5 alone, it is possible that the lack
of HSPB2 is contributing to the effects observed in these mice.
However, HSPB5/HSPB2 deficient mice have worse disease, which
supports the idea that sHSPs are serving protective roles whether
that is due to HSPB2 or HSPB5. An additional point to consider is
whether the phenotype observed in HSPB5/HSPB2 deficient mice
is due to the lack of the sHSPs or the altered levels of another
molecule that is dependent on normal sHSP function. If isogenic
mouse strains are not used as controls, then it is possible that poly-
morphisms in other genes could be the cause of differences seen
between the WT and HSPB5/HSPB2 deficient mice.

How sHSPs are neuroprotective is still a subject of debate.
It could be due to its molecular chaperone properties that pre-
vent protein aggregation, in particular for protein aggregation
diseases such as Alzheimer’s or Parkinson’s. However, sHSPs are
also protective in non-aggregation diseases such as acute ischemia.
Several studies have indicated an anti-apoptotic role for sHSPs,
which might be the reason they are protective. HSPB5 and HSPB1
have been shown to be anti-apoptotic when overexpressed by
either a transgene or virus (Akbar et al., 2003; Kalwy et al.,
2003; Li et al., 2005). HSPB5 confers protection against apop-
tosis through the regulation of caspase-3, a proapoptotic fac-
tor (Shin et al., 2009) and has also been shown to sequester
the p53 tumor suppressor, thus preventing apoptosis (Liu et al.,
2007).
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However, in light of recent studies that have indicated that
sHSPs have an anti-inflammatory role (Ousman et al., 2007; Arac
et al., 2011), the anti-apoptotic effects of sHSPs are unlikely to be
the whole story. Although historically the brain was thought to be
immune privileged, research over the past few decades has shown
that the immune system is an important factor in many neurolog-
ical diseases previously thought to be independent of the immune
system, including Alzheimer’s and stroke. Endogenously upregu-
lated sHSPs may be playing dual roles as both anti-apoptotic and
anti-inflammatory molecules in these diseases. In fact, Arac et al.
(2011) investigated the relative effects of the deficiency of HSPB5
in the immune system and the brain post-stroke by doing a bone
marrow chimera experiment. By irradiating WT and HSPB5−/−
mice, depleting their immune systems, and reconstituting their
immune systems with immune cells from either WT or HSPB5
deficient mice, they created four different types of mice: WT mice
with WT immune cells, WT mice with HSPB5−/− immune cells,
HSPB5−/− mice with WT immune cells, and HSPB5−/− mice with
HSPB5−/− immune cells. After inducing stroke and comparing
infarct size, they found that deficiencies of HSPB5 in either the
brain or immune system alone increases infarct size and together
result in a synergistic effect (Arac et al., 2011). They did not
demonstrate any specificity to particular brain cells and this is an
area of future investigation to fully understand the contribution
of HSPB5 in the brain compared to the immune system.

The mechanism of action by which sHSPs are anti-
inflammatory is currently under investigation. A study conducted
by Rothbard et al. (2012) suggests that HSPB5 acts extracellularly
as a molecular chaperone, binding acute inflammatory mole-
cules. Notably, they showed that HSPB5 binding was temperature-
dependent and binding increases with an increase in temperature,
making HSPB5 more effective at sites of inflammation. Exactly
how endogenous HSPB5 is released from cells is currently a matter

of speculation. HSPB5 does not possess a signal sequence, so it is
not secreted by the normal secretory pathway. However, a recent
paper showed that HSPB5 could be released via exosomes (Gan-
galum et al., 2011). Additionally, if damage is occurring in the
brain, it is very likely that cells are undergoing apoptosis or necro-
sis and releasing HSPB5 upon death. However, whether HSPB5 is
released in a regulated manner through a specific process or leaked
out of damaged or dying cells, the specific mechanism by which
it becomes extracellular does not affect our interpretation that it
can act as an extracellular chaperone.

Although we do see higher endogenous levels of sHSPs in neu-
rological diseases, in particular at the site of damage, studies inves-
tigating the therapeutic effect of sHSPs using exogenous adminis-
tration of sHSPs have been focused only on mouse models of MS
and stroke. Using varying concentrations of human recombinant
HSPB5 administered both intravenously and intraperitoneally, a
therapeutic effect of HSPB5 has been shown in mouse models
of MS (Ousman et al., 2007; unpublished data). This therapeutic
effect has been demonstrated in EAE mice with different genetic
backgrounds and we have seen a similar therapeutic effect from
the administration of other members of the sHSP family (unpub-
lished data). HSPB5 has also been shown to be therapeutic when
administered intraperitoneally in a mouse model of stroke (Arac
et al., 2011). We believe that it is likely that exogenous administra-
tion of HSPB5 will be therapeutic in other neurological diseases,
but the experiments have yet to be done.

The vast literature indicating that endogenous sHSPs, partic-
ularly HSPB1 and HSPB5, are protective in neurological diseases
opens the door for the possibility that these molecules could be
developed as novel therapeutics. To date, therapeutic strategies uti-
lizing sHSPs have been conducted solely in mice; however, the data
generated from these experiments have provided the foundation
to pursue this exciting avenue of therapy.
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