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A B S T R A C T   

Background: Therapies targeting PD1/PD-L1 pathway have revolutionized the treatment of lung 
cancer. However, anti-PD1/PD-L1 therapies have proven beneficial for only a select group of lung 
adenocarcinoma (LUAD) patients and generally do not work for immuno-cold tumors charac-
terized by a lack of immune cell infiltration. Identifying novel biomarkers is vital to broad 
therapeutic options for LUAD patients with no response to anti-PD1/PD-L1 immunotherapies. 
Methods: Our study has developed a novel strategy to identify a promising biomarker that ad-
dresses the limitations of anti-PD1/PD-L1 immunotherapy in treating immunological cold tumors. 
We exacted LUAD RNA-seq data from the Cancer Genome Atlas database (TCGA). Using several 
machine learning methods, we identified the candidate biomarker. Based on the expression level 
of PD-L1 and the identified biomarker, samples were categorized into four groups. We further 
used ESTIMATE, ssGSEA, and CIBERSORT algorithms to calculate the immune infiltration level of 
each group. The results were validated in three independent bulk datasets and one scRNA-seq 
dataset. Immunohistochemistry (IHC) assessments were performed in clinical samples to 
further evaluate the coexpression of CNKSR1 and PD-L1, and to compare CD8 + T cell infiltration 
among groups. 
Results: After comprehensive analyses, CNKSR1 was identified as a novel promising biomarker for 
immuno-cold LUAD. CNKSR1 mRNA expression levels exhibited a negative correlation with both 
PD-L1 mRNA expression and the extent of immune cell infiltration in LUAD. Besides, in contrast 
to the significant association between the expression of PD-L1 and the majority of other well- 
established or widely studied immune checkpoint molecules, a mutually exclusive expression 
pattern is observed between CNKSR1 and these molecules. The aforementioned results were 
consistent in validation datasets. The prognostic model built based on the CNKSR1 coexpression 
module also showed robust predictive performance. Additionally, IHC assessments have 
confirmed that the coexpression of CNKSR1 and PD-L1 is rare in LUAD samples. Notably, LUADs 
in the high-CNKSR1 group, characterized by high CNKSR1 but low PD- L1 expression, demon-
strated reduced infiltration of CD8+ T cells. 
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Conclusions: In summary, CNKSR1 emerges as a promising biomarker for immune-cold LUADs, 
and the study into CNKSR1 modulating T-cell infiltration may lead to the identification of 
compensatory molecules to enhance the effectiveness of current immunotherapy for LUAD.   

1. Introduction 

Immunotherapy has ushered in significant advancements in the treatment of advanced or metastatic non-small cell lung cancer 
(NSCLC) in recent years [1]. PD1/PD-L1 immune checkpoint inhibitors (ICIs) have already shown promising therapeutic outcomes and 
become the first-line treatment for advanced NSCLC patients [2,3]. However, it is important to note that only a relatively small 
percentage of advanced NSCLC patients have experienced tangible benefits from ICI therapy. PD1/PD-L1 monotherapy, for instance, 
has consistently yielded an objective response rate (ORR) of approximately 20% in unselected NSCLC patients [4–8]. Among patients 
with a PD-L1 tumor proportion score (TPS) of 50% or higher, there has been a notable improvement in overall survival, with 29.6% of 
treatment-naive and 25.0% of previously treated NSCLC patients deriving substantial benefits in overall survival [9]. This observation 
underscores the fact that the PD1/PD-L1 axis represents only a fraction of the broader immune response against cancer. Consequently, 
multiple checkpoint molecules, such as IDO1, LAG3, TIM3, SIGLEC15, and others, have been identified and demonstrated encouraging 
prospects in clinical application [10,11]. Inhibiting these checkpoint proteins has been shown to provide complementary advantages 
when used alongside PD1/PD-L1 blockade therapy or exert antitumor effects in PD-L1 negative cases of human cancers. 

The effectiveness of ICIs in combating tumors hinges on the levels of PD-L1 expressed within the tumors and the ability of effector 
immune cells to recognize and eliminate cancer cells. The remarkable success of ICIs in NSCLC has spurred a surge in research, 
underscoring the growing necessity to characterize the immune landscape within the tumor-associated microenvironment. Tumor- 
infiltrating immune cells constitute a vital component and provide a reflection of the actual state of the tumor immune microenvi-
ronment [12]. Generally, tumors exhibiting high levels of effector immune cell infiltration and increased PD-L1 expression are clas-
sified as “hot” tumors [13]. In clinical practice, this phenotype tends to exhibit greater responsiveness to ICIs [14]. In contrast, the 
immunotherapy of “cold” tumors is an enduring conundrum due to the exclusion of immune cells. Numerous efforts have been 
dedicated to unraveling the underlying mechanisms and exploring therapeutic strategies for these immune “cold” tumors [13]. A prior 
study demonstrated that B7–H4 expression was mutually exclusive with PD-L1 in gliomas, and elevated B7–H4 expression could 
identify “cold” tumors. The discovery suggests the promising role of B7–H4 in glioma immunotherapy, offering a complementary 
option alongside PD- L1 [15]. Motivated by this insight, we embarked on a quest to identify the potential new biomarker for PD-L1 
negative NSCLC patients. 

In this study, we devised a comprehensive workflow to identify a biomarker exhibiting a negative correlation with both PD-L1 and 
immune cell infiltration in lung adenocarcinoma (LUAD). Leveraging genome-wide analyses based on data from The Cancer Genome 
Atlas (TCGA) database, we identified CNKSR1 as a gene with high expression levels that could effectively distinguish the immuno-cold 
subtype within LUAD. To enhance the credibility of our findings, we undertook a validation process involving three independent bulk 
RNA-seq datasets, one scRNA-seq dataset, and conducted immunohistochemistry (IHC) assessments using tissue samples. Our col-
lective results solidify the significance of CNKSR1 as a pivotal component within the immune escape mechanism in LUAD. 

2. Materials and methods 

2.1. Data collection and preprocessing 

We extracted LUAD bulk mRNA expression data with corresponding clinical information from TCGA database, Gene Expression 
Omnibus (GEO) databases (GSE50081, GSE40419), and IMvigor 210 cohort [16] (Atezolizumab treatment of bladder cancer research). 
Additionally, single nucleotide polymorphism (SNP) data from TCGA database were downloaded to acquire the mutation profiles of 
samples. RNA-seq data from TCGA and GSE40419 were downloaded in fragments per kilobase per million (FPKM) or reads per 
kilobase per million (RPKM) formats. mRNA data in GSE50081 were sequenced using a microarray-based sequencing approach. The 
TCGA-LUAD dataset encompassed a total of 526 samples of LUAD and 59 associated normal tissues, GSE40419 included 87 LUAD and 
77 normal tissues, GSE50081 included 126 LUAD tissues, and IMvigor 210 cohort included 284 bladder cancer samples with 
immunological phenotype information verified by histopathological assessment. For the purposes of subsequent analyses, all the 
aforementioned RNA-seq data were converted to transcripts per million (TPM) values. In addition, scRNA-seq data from Bischoff et al. 
[17] including ten normal LUAD and ten normal lung tissues were obtained. 

2.2. Bulk transcriptome data analysis 

2.2.1. Marker identification 
TCGA-LUAD transcriptome data were employed to identify a biomarker that met the following criteria: (1) Demonstrated high 

expression in LUAD tissues, (2) Showed mutual exclusivity with PD-L1 expression, and (3) Displayed increased expression associated 
with poor lymphocyte infiltration. The differentially expressed gene (DEG) analysis was performed through the Limma package. DEGs 
were identified based on an false discovery rate (FDR) < 0.05 and a log fold change >1. Subsequently, Spearman correlation analysis 
was applied to assess the correlations between PD-L1 and genes in TCGA-LUAD dataset. The intersection of the up-regulated DEGs was 
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taken with the genes which exhibited a correlation coefficient r < − 0.1 and an FDR <0.05 for further analyses. The R package ES-
TIMATE (Estimation of STromal and Immune cells in MAlignant Tumour tissues using Expression data) was utilized to calculate 
stromal scores, immune scores, and ESTIMATE scores of each sample [18]. 

Feature selection was performed using WEKA software to determine the most crucial genes associated with ESTIMATE scores. 
Multiple methods, including information gain, gain ratio, symmetrical uncertainty, and reliefF were utilized. During this process, 
ESTIMATE scores were converted into categorical variables, and categorized into three subgroups based on tertile points. Each al-
gorithm was executed with a 10-fold cross-validation approach. Finally, we took the intersection of the top 15 scoring genes obtained 
by the four algorithms as candidate genes. 

2.2.2. Immune infiltration analysis 
The ESTIMATE algorithm was applied to compute stroma, immune, ESTIMATE scores, as well as tumor purity for the samples [18]. 

For LUAD samples with available genomic sequencing data from TCGA, additional tumor purity data calculated using the ABSOLUTE 
algorithm based on somatic DNA alterations were also obtained from prior research [19,20]. Single sample gene set enrichment 
analysis (ssGSEA) was used to assess the infiltrating scores for 28 tumor-infiltrating lymphocytes (TILs). To mitigate potential bias 
arising from a single algorithm, CIBERSORT (Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts) algorithm 
was utilized to calculate the absolute cell fractions for 22 different immune cell populations [21]. The results were subsequently 
corrected by tumor purity of each sample to obtain the final cell proportions. 

2.2.3. Analysis based on clinical traits 
Log-rank analysis was conducted on the TCGA dataset to investigate the prognostic significance of CNKSR1 in lung adenocarci-

noma. Additionally, the relationships between CNKSR1 expression and clinical parameters, including AJCC stage, T stage, N stage, M 
stage, EGFR mutation status, and KRAS mutation status, were analyzed. 

2.2.4. Gene coexpression module identification, functional annotation, and prognostic model construction 
To learn about the underlying biological roles of CNKSR1, we identified CNKSR1-related gene coexpression module using biweight 

midcorrelation (bicor) [17]. Genes with the top 1% bicor values were included in the module. Then, Gene Ontology (GO) enrichment 
analysis assessed the biological processes (BP), molecular functions (MF), and cellular components (CC) of the module. Subsequently, 
to further evaluate the prognostic impact of the CNKSR1-related module, we utilized univariate Cox regression analysis and least 
absolute shrinkage and selection operator (LASSO)-penalized Cox regression to identify key prognostic genes and built a risk score 
formula to predict the prognosis of LUAD patients. Log rank test was used to determine the survival difference between the low- and 
high-risk groups, and the receiver operating characteristic (ROC) curve was used to evaluate the model performance. The prognostic 
model was trained in TCGA dataset, and validated in GSE50081 dataset. The two datasets were normalized to eliminate batch effects 
using sva package in this procedure. 

2.3. Single-cell RNA sequencing data analysis 

If not stated otherwise, scRNA-seq data were analyzed using Seurat v5 [22]. The data preprocessing, filtering, and normalization 
schemes were followed previous study by Bischoff et al. [17]. In more detail, raw scRNA-seq gene expression data of all patients were 
merged and converted to a Seurat object. Cells were retained if they had 500–10,000 genes detected, 1000–100,000 unique molecular 
identifiers (UMIs) counted, less than 30% mitochondrial reads, and less than 5% hemoglobin reads. Then the expression matrix was 
normalized with SCTransform function using the default parameters. We performed principal component analysis (PCA), and the top 
20 principal components were used as input to constructed the shared nearest neighbor (SNN) graph. The SNN graph was further 
embedded in two-dimensional space using Uniform Manifold Approximation and Projection (UMAP). Main cell clusters were anno-
tated using canonical cell type markers. For epithelial cells, we performed CopyKAT [23] analysis to infer the genomic copy number. 
Clusters with aneuploidy alterations in more than half of the cells were annotated as tumor cells. Epithelial cells were classified into 
subpopulations based on marker genes (Supplementary Table 1). Immune cell clusters were firstly identified by cell type markers of 
Habermann et al. [24]. Subsequently, the T cell cluster was subdivided into more detailed subgroups using CellTypist [25] algorithm in 
Python 3.7. 

2.4. Clinical samples 

The study adhered to the ethical guidelines of the 1975 Declaration of Helsinki and was approved by the Ethics Committees of the 
Second Xiangya Hospital of Central South University (2020-609). During September 2020 and January 2022, a total of 51 paraffin- 
embedded LUAD specimens that had been surgically removed at our department were obtained. Prior to participating in the study, 
all patients provided their written informed consent to participate and publish by signing the necessary documents. Detailed clini-
copathological characteristics are provided in Supplementary Table 2. 

2.5. Protein immunohistochemistry (IHC) and semi-quantitative analysis 

The processing of paraffin sections obtained from LUAD patient samples involved several steps. Initially, these sections were 
deparaffinized and hydrated using xylene and ethanol. Subsequently, the deparaffinization and hydration of these sections were 
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Fig. 1. The flowchart of the current study.  
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carried out using xylene and ethanol. After that, the antigen retrieval process was carried out using a solution of Tris-Ethylene Diamine 
Tetraacetie Acid (EDTA, pH = 9.0). The sections were subjected to incubation with specific antibodies, including anti-CNKSR1 
antibody (#10885-1-AP; ProteinTech, Wuhan, China) at a 1/1000 dilution, anti-PD-L1 antibody (#66248-1-Ig; ProteinTech, 
Wuhan, China) at a January 2000 dilution, and anti-CD8 antibody (#RMA-0514; MXB Biotechnology, Fuzhou, China) using a working 
solution. Then the slides were washed extensively three times using PBS solution, with each wash lasting for 2 min, followed by a 15- 
min incubation with the corresponding MaxVision kit (#KIT-5001 or #KIT-5004; Maixin Biol, Fuzhou, China) at room temperature. 
Afterward, the slides were thoroughly rinsed with PBS and then dehydrated using gradient ethanol concentrations. Finally, we 
controlled the whole slides using xylene and coverslipped. Microscopic imaging of the slides was carried out using a CX41 microscope 
(OLYMPUS, Tokyo, Japan), equipped with the Microscope Digital Camera System DP-72 (OLYMPUS, Tokyo, Japan). The obtained 
images were surveyed and captured for subsequent analysis. IHC staining for CNKSR1 and PD-L1 was assessed semi-quantitatively 
using the immunoreactivity score (IRS) criterion, which considered both the staining intensity and the percentage of staining [26]. 
Based on the intensity of staining, CNKSR1/PD-L1 expression levels were manually graded into four groups: negative (0), weak (1), 
moderate (2), and strong (3). The percentage scores reflected the coverage percentage of immunoreactive tumor cells and ranged from 
0 to 4, corresponding to 0%, 1–25%, 26–50%, 51–75%, and 76–100% coverage, respectively. Overall IHC scores were calculated by 
multiplying the intensity and percentage scores and ranged from 0 to 12. Low and high expression of CNKSR1/PD-L1 were defined as 
IHC score ≤4 and > 4, respectively. For assessing the extent of CD8 positive (CD8+) cells, a semiquantitative scoring method, as 
previously published was used [27]: 1 for absence or scarce CD8+ cells (less than five CD8+ cells throughout the entire section); 2 for 
CD8+ cells accumulated in localized field of view (Only single areas had CD8+ cells infiltration); 3 for infiltration of CD8+ cells 
throughout the entire section, but scattered sporadically; and 4 for high quantities of CD8+ cells accumulated throughout the entire 
section. The immunohistochemical evaluation and scoring were performed by two independent pathologists. 

2.6. Statistical analysis 

All statistical analyses were conducted using R version 4.1.1. Default parameters were used for the algorithms unless specifically 
mentioned otherwise. Correlation analysis was performed using Spearman’s rank correlation coefficient. For categorical variables, the 
χ2 test was applied, while differences in continuous variables between groups were assessed using either the Wilcoxon rank-sum test or 
Kruskal-Wallis test. Repeated measures were corrected using the Benjamini and Hochberg FDR method. Statistical significance was 
established with a two-tailed P-value <0.05 unless specified otherwise. 

3. Results 

3.1. Identification of a biomarker associated with cold tumors in LUAD 

The flowchart of this study was illustrated in Fig. 1. Initially, a total of 5969 up-regulated and 4194 down-regulated DEGs were 

Fig. 2. CNKSR1 was identified as the candidate biomarker. (A) Volcano plot of DEGs. (B) Overview of correlation coefficients (y-axis) and FDR 
values (color depth) of Spearman correlation analysis. A total of 37941 genes were included in the diagram. (C) Venn diagram of the upregulated 
DEGs and genes significantly negatively correlated with PD-L1. FDR, false discovery rate. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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identified in TCGA dataset (Fig. 2A, Supplementary Table 3). Spearman correlation analysis identified 4330 genes that exhibited a 
noteworthy negative correlation with PD-L1 (Fig. 2B–Supplementary Table 4). Subsequently, 1144 DEGs were intersected for further 
analysis (Fig. 2C). To pinpoint the most promising biomarker, four distinct feature selection approaches were employed: information 
gain (IG), gain ratio (GR), symmetrical uncertainty (SU), and reliefF (RF). These approaches were designed to select a biomarker that 
not only displayed a negative correlation with PD-L1 but also served as an indicator of limited immune cell infiltration within the 
LUAD immune microenvironment. Subsequently, the top 15 ranked genes identified by each approach were considered, and their 
intersections were used to identify the final biomarker, as presented in Table 1. Ultimately, through this comprehensive approach, 
CNKSR1 was selected as the candidate biomarker with the most promising potential for association with cold tumors in LUAD. 

3.2. High-CNKSR1 identifies immuno-cold tumors 

In accordance with the classification method used in a prior study [28], high-expressed samples were defined as those with the gene 
exceeding one standard deviation above the mean expression level. For datasets with tumor sample numbers smaller than 100, to 
mitigate the impact of limited size of samples with high expression on subsequent statistical analyses, we classify high expression 
samples as those ranking in the top 25% of gene expression levels. Consequently, the samples within each dataset were categorized into 
four groups: high-CNKSR1, high-PD-L1, double-low, and double-high, based on the expression levels of CNKSR1 and PD-L1. Among the 
526 patients in the TCGA dataset, 400 (76.05%) were assigned to the double-low group, 80 (15.21%) were in the high-CNKSR1 group, 
43 (8.17%) were categorized as the high-PD-L1 group, and only 3 (0.57%) were in the double-high group Supplementary Fig. 1A. The 
coexpression of PD-L1 and CNKSR1 was found to be limited. In addition to the mutually exclusive relationship between PD-L1 and 
CNKSR1, our analysis revealed that most other well-established or widely studied checkpoint immune molecules, exhibited a sig-
nificant association with PD-L1 while displaying mutually exclusive expression with CNKSR1 (Fig. 3A). Besides, the expressions of 
most of these checkpoint molecules were lowest in high-CNKSR1 group, while highest in the high-PD-L1 group (Fig. 4). Furthermore, 
when assessing the results analyzed by ESTIMATE, it became evident that LUAD samples in the high-PD-L1 group exhibited the highest 
level of immune infiltration, whereas the high-CNKSR1 group displayed the lowest level of immune infiltrating scores (Fig. 3B). The 
high-CNKSR1 group demonstrated the highest tumor purity, as supported by transcriptome data (Fig. 3C) and somatic mutation data 
(Supplementary Fig. 1B). This higher tumor purity contributed to the reduced tumor immune activity observed in this group. 
Furthermore, the ssGSEA score, which indicates the extent of infiltration by 28 immune cell types, suggested the least TILs infiltration 
in the high-CNKSR1 group (Fig. 3D). CIBERSORT evaluation reflecting the absolute proportions of different types of immune cells 
corroborated that tumors in the high-PD-L1 group had the highest proportion of CD4+ T cells, CD8+ T cells, and tumor-associated 
macrophages (TAMs) infiltration, whereas the high-CNKSR1 group had the least (Fig. 5A). 

The above results were further validated in two independent datasets: GSE50081 and GSE40419. Notably, the GSE40419 dataset 
included RNA-seq data of 77 adjacent normal tissues in addition to LUAD samples. CNKSR1 exhibited significantly higher expression 
levels in LUAD tissues compared to normal tissues (Supplementary Fig. 2B). The results consistently demonstrated that CNKSR1 mRNA 
expression was significantly mutually exclusive with PD-L1 and most other checkpoint immune molecules (Supplementary Figs. 3A 
and 4A). Patients displaying co-high expression of CNKSR1 and PD-L1 were rare in both datasets. Among the 127 patients in the 
GSE50081 dataset, 85 (66.93%) fell into the double-low group, 20 (15.75%) were classified as high-CNKSR1, 21 (16.54%) were high- 
PD-L1, and only 1 (0.79%) was in the double-high group (Supplementary Fig. 2A). Among the 87 patients in the GSE40419 dataset, 46 
(52.87%) belong to the double-low group, 19 (21.84%) to high-CNKSR1, 19 (21.84%) to high-PD-L1, and 3 (3.45%) were in the 
double-high group (Supplementary Fig. 2C). Similarly, we conducted ESTIMATE analysis, ssGSEA analysis, and CIBERSORT analysis in 
the two validation datasets, which consistently indicated that the high-CNKSR1 group LUADs had a deficiency of TILs especially CD8+

T cells in the tumor microenvironment (TME) when compared with the other two groups (Supplementary Figs. 3 and 4; Fig. 5B and C). 
Although the profiles of immune cell infiltration described above were analyzed using multiple reliable algorithms, these results 

Table 1 
Top 15 ranked genes identified by different feature selection methods for ESTIMATE scores in TCGA-LUAD dataset.  

SU RF IG GR 

OVOL2 RAB25 OVOL2 CPE 
CNKSR1 DHODH GSTP1 FKBP2 
GSTP1 OVOL2 POLR1C RAB25 
POLR1C TM7SF2 GRHL2 CLDN7 
C6orf136 GSTP1 MRPS26 NAXE 
CLDN7 PRSS8 RCCD1 LINC02313 
C2orf15 ELMO3 C2orf15 ICA1 
GRHL2 PPP1R1B C6orf136 TXNL4A 
MRPS26 MANBAL MRPS9 HGD 
BLOC1S4 TCEA3 CNKSR1 C6orf136 
NELFA TMC4 PITPNA-AS1 MRPS18A 
RAB25 AKAP1 PET117 CNKSR1 
MTA3 CNKSR1 EPCAM SOX12 
PITPNA-AS1 SLC22A31 BLOC1S4 GRTP1 
PET117 C2orf15 KRTCAP3 MTA3 

Abbreviation: SU, symmetrical uncertainty. RF, relief. IG, information gain. GR, gain ratio. 
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were obtained through mathematical models rather than histopathological assessments. However, in the IMvigor 210 cohort of 
bladder cancer, which comprises 284 samples with histopathologically verified tumor-immune phenotype, we analyzed the distri-
bution of immunological phenotypes among patients in the high-CNKSR1, high-PD-L1, and double-low groups. Significant differences 
in tumor-immune phenotype were observed among these groups (Supplementary Fig. 5). Consistent with the aforementioned analyses, 
the high-CNKSR1 group displayed the poorest CD8+ T cell infiltration, with the highest proportion of immune desert phenotype 
(46.81%), while the high-PD-L1 group demonstrated the most abundant CD8+ T cell infiltration with the highest proportion of immune 
inflamed phenotype (60.71%). 

3.3. Results validation at single-cell resolution 

We analyzed scRNA-seq data to explore the expression pattern of CNKSR1 in LUAD, and its relationship with tumor immune 
microenvironment. After data preprocessing and filtering, a total of 114489 single-cell transcriptomes were subjected to further 
analysis. Samples of different origins were clustered and visualized by UMAP (Fig. 6A). After cell population annotation using ca-
nonical marker gene, 19517 epithelial, 90735 immune, and 4237 stromal transcriptomes were covered (Fig. 6B). As shown in Fig. 6C 
and D, CNKSR1 was expressed predominantly in cells of epithelial origin, and was scarcely expressed in lung immune and stromal cells. 
We further reclustered epithelial cell population. Epithelial cells were divided into diploid and aneuploid clusters by CopyKAT al-
gorithm (Supplementary Fig. 6A), followed which malignant cells were discriminated from normal cells (Fig. 6E). As for normal cells, 
we identified alveolar type 1 (AT1), alveolar type 2 (AT2), basal, club, cilated, goblet, and neuroendocrine cells (Fig. 6E). Fig. 6F and G 
depicted the expression of CNKSR1 and PD-L1 in normal epithelial and tumor cells. CNKSR1 showed comparable expression levels in 

Fig. 3. The analysis of TCGA-LUAD dataset revealed the correlation between CNKSR1 and PD-L1 as well as other checkpoint immune molecules, 
and the immune infiltration profile of LUAD samples according to the PD-L1/CNKSR1 classifier. (A) Correlations among CNKSR1 and immune 
checkpoint factors. P values in the Spearman correlation matrix were FDR-corrected. (B) Stromal score, immune score, and ESTIMATE score among 
different groups evaluated by ESTIMATE algorithm. (C) Differences in tumor purity among groups. (D) ssGSEA evaluation demonstrated the 
infiltration differences of different types of immune cells among double-low, high-CNKSR1, and high-PD-L1 groups. In B-D, the comparisons were 
conducted among three groups by Kruskal-Wallis test. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. 
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different types of epithelial cells (Fig. 6F). The coexpression pattern of CNKSR1 and PD-L1 in LUAD cells was displayed in Fig. 6H, 
indicating a mutually exclusive expression between CNKSR1 and PD-L1. After removing LUAD cell without expression of both genes, a 
strong negative correlation (R = − 0.959, P < 2.2e-16) was shown between the two genes (Supplementary Fig. 6B). Besides, compared 
with normal samples, the average expression levels of CNKSR1 were higher in LUAD cells (Fig. 6I). 

To assess the tumor immune microenvironment, immune transcriptomes were reclustered and annotated (Fig. 6J). T cell popu-
lation was further subdivided and CD8+ T cells were identified using CellTypist algorithm. We performed pseudobulk analysis to 
calculate the aggregated expression of CNKSR1 in each LUAD sample, and the correlation analysis between CNKSR1 expressions and 
the fractions of CD8+ T cells in immune cells was performed. As shown in Fig. 6K, the aggregated expressions of CNKSR1 had a 
negatively correlated trend (R = − 0.534, P = 1.12e-01) with the fractions of T cells. Using canonical immune signatures including the 
cytotoxic signature (GZMA, GZMB, GZMK, GNLY, IFNG, PRF1, and NKG7) and the exhausted signature (LAG3, TIGIT, PCCD1, 
HAVCR2, CTLA4, LAYN, and ENTPD1), we also calculated the correlation between CNKSR1 levels with the cytotoxic or exhausted 
score of T cells. Results showed the aggregated expression of CNKSR1 had strong negative correlation (R = − 0.903, P = 8.8e-04) with 
the cytotoxic score, and represented a negatively correlated trend (R = − 0.600, P = 7.31e-02) with the exhausted score, suggesting 
that CNKSR1 had a role in negatively regulating immune infiltration (Fig. 6K). To assess whether CNKSR1 exhibits an association with 
TAMs at the single-cell resolution, we analyzed the correlation between CNKSR1 expressions and the fractions of TAMs (R = 0.435, P 
= 2.09e-01; Supplementary Fig. 6C). Additionally, using the M1 and M2 macrophage signatures summarized by Bagaev et al., we 
further examined the correlations between CNKSR1 and M1/M2 macrophage signature scores (R = − 0.503, P = 1.43e-01; R = 0.261, 
P = 4.37e-01; Supplementary Fig. 6C). However, no clear association between CNKSR1 and TAMs was observed in the scRNA-seq 
dataset. 

3.4. Coexpression of PD-L1 and CNKSR1 is limited in LUAD clinical samples 

In the cohort subjected to IHC analysis (N = 51), the distribution of LUAD patients based on their expression of PD-L1 and CNKSR1 
revealed the following patterns: 23.53% had low expression of both PD-L1 and CNKSR1 (double-low group), 49.02% displayed high 
expression of PD-L1 but low expression of CNKSR1 (high-PD-L1 group), and 21.57% exhibited high expression of CNKSR1 but low 
expression of PD- L1 (high-CNKSR1 group). Remarkably, only 5.88% of the patients demonstrated high expression of both PD-L1 and 
CNKSR1 (double-high group) (Fig. 7A). Representative samples of these subgroups are depicted in Fig. 7B. 

Fig. 4. Boxplot showing the differential expression of important checkpoint immune molecules in double-low, high-CNKSR1, and high-PD-L1 
groups. The comparisons were conducted among three groups by Kruskal-Wallis test. ****P < 0.0001; ns, not significant. 
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3.5. PD-L1/CNKSR1 classifier identified LUAD subtypes with different degrees of CD8+ T cell infiltration 

Given that CD8+ T cells consistently exhibited higher infiltration in the high-PD-L1 group and lower infiltration in the high- 
CNKSR1 group in the previous analyses, and CD8+ T cells are pivotal players in current cancer immunotherapy [29,30], we con-
ducted IHC staining for CD8+ T cells in LUAD clinical samples. Our findings revealed that LUAD samples in the high-CNKSR1 group 
exhibited the lowest levels of CD8+ T-cell infiltration compared to both the high-PD-L1 group and the double-low group (Fig. 8). This 
discrepancy may contribute to the establishment of the TME of “cold” tumors. 

3.6. Relationship of CNKSR1 and clinical traits 

The Kaplan Meier survival curve analysis showed no significant correlation between CNKSR1 expression and survival time (P =
4.38e-01; Supplementary Fig. 7A). Additionally, there were no significant changes observed in CNKSR1 expression between subgroups 
divided by AJCC stage, T stage, N stage, M stage, EGFR mutation status, and KRAS mutation status (P > 0.05; Supplementary Fig. 7B). 
CNKSR1 expression was significantly higher in the EGFR mutation group (P = 2.00e-02; Supplementary Fig. 7B), conforming to the 
previous finding that CNKSR1 has close association with tyrosine phosphorylation [31,32]. This also suggests that CNKSR1 may be 
implicated in the immune-inert status of EGFR-mutant lung adenocarcinoma. 

Fig. 5. Differences of absolute immune cell fractions for immune cell populations among high-CNKSR1, high-PD-L1, and double-low groups in (A) 
TCGA-LUAD, (B) GSE50081, and (C) GSE40419 datasets. Cells with no presence in more than half of the samples were not presented in the figures. 
The comparisons were conducted among three groups by Kruskal-Wallis test. 
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Fig. 6. scRNA-seq analysis revealed the expression pattern of CNKSR1 and its relationship with tumor immune microenvironment in high- 
resolution. (A, B) UMAPs of the 114489 cells, with each cell color-coded for: type of sample source (A), main cell type (B). (C) Expression and 
distribution of CNKSR1 in the 114489 cells visualized by FeaturePlot. (D) Expression levels of CNKSR1 in epithelial, immune, and stromal cells. (E) 
UAMP of the 19517 epithelial cells color-coded by cell type. (F, G) Expression and distribution of CNKSR1(F) and PD-L1(G) in all epithelial cells. (H) 
Heatmap represented the coexpression pattern of CNKSR1 and PD-L1 in tumor cells. (I) Expression levels of CNKSR1 in tumor and normal lung 
epithelial cells. (J) UAMP of the 90735 immune cells color-coded by cell type. (K) Correlations of the aggregated expressions of CNKSR1 with the 
fraction of CD8+ T cells in immune cells (top), average cytotoxic scores (bottom left), and average exhausted scores (bottom right). (For inter-
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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3.7. Identification of CNKSR1 coexpression module, functional enrichment analysis, and generation and validation of prognostic signature 

A total of 204 genes (Supplementary Table 5) were identified in the CNKSR1-related coexpression module, and were subsequently 
mapped to the GO database. In the BP ontology, protein catabolic process, regulation of GTPase activity, and protein deacylation were 
the most enriched terms. In the MF ontology, small GTPase binding, serine/threonine kinase activity, and Ras guanyl− nucleotide 
exchange factor activity were the most enriched terms. In the CC ontology, site of polarized growth, SCF ubiquitin ligase complex, and 
recycling endosome were the most enriched terms (Fig. 9A). 

To explore the prognostic impact for LUAD of these genes, we performed univariate Cox proportional hazards regression analysis, 
and 13 genes were selected as survival-related genes (Supplementary Table 6). Afterward, LASSO regression model was used to 
variable reduction. Finally, a ten-gene multivariate survival model was established (Supplementary Table 6). Using the optimal 

Fig. 7. IHC analysis showed both CNKSR1 and PD-L1 co-expressed at a high level was rare. (A) The distribution of the high-PD-L1, high-CNKSR1, 
double-high, and double-low groups in the IHC cohort. (B) Representative images of PD-L1/CNKSR1 groups. Magnification, × 400, Bar = 50 μm. 
IHC, Protein immunohistochemistry. 

Fig. 8. Disparities in the infiltration of CD8+ T cells among the high-CNKSR1, high-PDL1, and double-low groups. (A) Representative cases of CD8+

T cell infiltration with IHC score. (B) The high-CNKSR1 group showed significantly less CD8+ T cell infiltration than the high-PD-L1 group. 
Magnification, × 200, Bar = 50 μm *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. 
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cutpoint identified by R package survminer, samples in the train set (TCGA-LUAD dataset) were divided into high- and low-risk groups. 
As shown in the Kaplan-Meier survival curves, patients in the high-risk group had higher mortality rates than those in the low-risk 
group (P = 1.152e− 11; Fig. 9B). The prognostic performance of the model was measured by ROC curves, and the area under the 
curves (AUC) for 1, 3, 5, and 10 years were 0.770, 0.715, 0.696, and 0.703 (Fig. 9B), respectively. GSE50081 was used as the test set for 
the prognostic model, and the Kaplan-Meier survival curves showed LUAD patients with higher risk scores had lower survival 
probability than those with lower risk scores (P = 1.187e− 03; Fig. 9C). The AUC of the test set for 1, 3, 5, and 10 years were 0.723, 
0.695, 0.662, and 0.895, respectively, indicating the robustness of the signature. To precisely evaluate the predictive performance of 
the risk score model, we conducted a stratified log-rank analysis, considering factors such as age, smoking history, AJCC stage, lymph 
node metastasis, distant metastasis, KRAS mutation, and EGFR mutation. The results revealed that the high-risk group was consistently 
associated with unfavorable survival outcomes across all subgroups (P < 0.05; Supplementary Fig. 8). 

4. Discussion 

The absence of immune checkpoints and limited immune cell infiltration are critical factors that reduce the effectiveness of cancer 
immunotherapy [33]. In many cases, the expression of PD-L1 on LUAD cells serves as a crude measure of an ongoing tumor-specific 
immune response. Nonetheless, immune evasion mechanisms in solid tumors exhibit a significant degree of heterogeneity, with the 
PD1/PD-L1 pathway accounting for immune dysfunction in less than 40% of human solid tumors [34]. One potential solution for 
immunotherapy in PD-L1 negative cancers is to deepen our understanding of the mechanism governing tumor immune responses and 
explore new therapeutic targets. For instance, Chen et al. have identified Siglec-15 as an immune-suppressive molecule that is mutually 
exclusive to PD-L1 and is broadly upregulated on human cancer cells, making it a potential target for normalizing cancer immuno-
therapy [10]. Likewise, Zhou et al. discovered that PD- L1 and B7– H4 may function as mutually compensatory immune checkpoint 
molecules in gliomas, providing avenues for alternative immunotherapy strategies [15]. In recent years, the advancement of 
high-throughput sequencing has led to an explosion of transcriptomic information, enhancing our understanding of various cancers. 
Alongside this development, various algorithms for data mining have emerged. Notably, algorithms like ESTIMATE can accurately 
infer the fraction of stromal and immune cells in tumor samples based on gene expression data [18]. Increasingly more single-cell 
datasets being publicly available makes the results from bulk data well-validated. In our current study, we primarily employed 
three algorithms (ESTIMATE, ssGSEA, and CIBERSORT) to evaluate immune cell infiltration in the TCGA-LUAD dataset. We utilized 
several feature selection approaches to identify a promising biomarker that exhibited mutually exclusive expression with PD-L1 and 
had a close association with “cold” tumors. CNKSR1 emerged as a candidate biomarker, and subsequent validation in three datasets, 
one scRNA-seq dataset, and clinical samples highlighted its potential as a complement to PD-L1. The absence of a double-high sub-
group (high expression of both PD- L1 and CNKSR1) in our study suggests the existence of unique immune evasion pathways within the 
LUAD subgroups we examined. Our findings offer a new perspective into the exploration of potential alternative immunotherapy 
targets in subgroups with low PD-L1 expression. 

CNKSR1 is known as a multidomain scaffold protein [35,36]. Via its specific domains, CNKSR1 binds with various signaling 
molecules and is important for cell proliferation, survival, and migration [37]. CNKSR1 promotes the Ras/Raf/Mek/Erk and PI3K/AKT 
signaling cascade in a mutually exclusive manner upon different growth factor stimulation signal intensities [38,39]. At low signal 
intensity, CNKSR1 engages with CRAF, leading to the activation of ERK. In contrast, when the signal becomes more intense, CNKSR1 
acts as a scaffold for AKT/RAF crosstalk, ultimately resulting in the AKT-driven phosphorylation of the inhibitory site within Raf [40]. 
Additionally, the acetylation of CNKSR1 serves as a positive feedback regulator for the Erk signaling pathway [40]. Furthermore, 
CNKSR1 collaborates with AKT to activate the alternative NF-κB pathway, leading to the upregulation of matrix metalloproteinase 14 

Fig. 9. Functional enrichment analysis and survival analysis. (A) Gene ontology (GO) analysis for CNKSR1 coexpression module based on biological 
process (BP), molecular function (MF), and cellular compartment (CC). (B) Kaplan-Meier curves (left) and ROC curves (right) of the prognostic 
model in the training set. (C) Kaplan-Meier curves (left) and ROC curves (right) of the prognostic model in the test set. 
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(MMP14) expression, thereby enhancing cancer invasiveness [41]. Additionally, CNKSR1 mediates the initiation of the c-Jun N-ter-
minal kinase (JNK) pathway by binding to Rho guanine nucleotide exchange factors, the GTPase Rho, and downstream molecules of 
Rho [26,42]. CNKSR1 has been implicated as an oncogene in various cancers [41,43,44], and its potential role in immunotherapy for 
bladder and liver cancers has also been suggested [45,46]. However, there has been a lack of in-depth investigation into the role of 
CNKSR1 in tumor immunity. Our study has revealed that the CNKSR1/PD-L1 classifier can effectively stratify “hot” and “cold” tumors 
in LUAD. We observed a decrease in CD8+ T-cell infiltration in the high-CNKSR1 group, indicating that CNKSR1-mediated immune 
escape mechanisms may hold promise for the treatment of “cold” tumors. While extensive research has been conducted to identify 
potential immunotherapy biomarkers in cancers, many of the discoveries involve gene signatures composed of multiple molecules, and 
the expression levels of the signatures were parallel to that of PD-L1 [47,48]. In contrast, we believe that the identification of a specific 
immune-related gene that is mutually exclusive with PD-L1 holds greater significance for future research and application. The 
methodology employed in our current study offers a novel approach to uncover new immunological targets in cancers. 

Various algorithms and feature selection methods were utilized in the current study, and it is necessary to provide more details 
about them. ssGSEA, ESTIMATE, ABSOLUTE, and CIBERSORT are all well-validated algorithms to infer cell fractions in tumor bulk 
data. ssGSEA is an extened algorithm of GSEA, capable of computing a resultant score based on the input gene expression data of a 
specific gene signature. The score reflects the overall upregulation or downregulation of the gene signature. Therefore, using cell- 
specific gene signatures, ssGSEA can estimate the abundance of individual cell types in bulk data [49]. Through the utilization of 
pre-defined signatures, ESTIMATE employs ssGSEA to calculate tumor purity and the proportions of stromal and immune cells from 
gene expression data [18]. Unlike ESTIMATE, ABSOLUTE algorithm utilizes copy-number alteration data to predict tumor purity, 
ploidy, and absolute copy numbers [19]. CIBERSORT is also a robust algorithm to infer the relative proportions of each cell type from 
mixtures of cells. It uses support vector regression (SVR) to accomplish the deconvolution of bulk tissue gene expression profiles based 
on reference expression signatures [19]. Integrating ssGSEA, ESTIMATE, ABSOLUTE, and CIBERSORT can enhance the robustness of 
the results from various aspects such as data sources and computational approaches. CopyKAT is an advanced Bayesian segmentation 
approach to estimate genomic copy number profiles from scRNA-seq data. An important application of CopyKAT is to discern ma-
lignant cells amidst a heterogeneous mixture of normal cells in scRNA-seq analysis. It achieves a high average genomic resolution of 5 
Mb, facilitating the precise detection of copy number alterations with fine granularity [23]. CellTypist offers automated annotation of 
immune cell types and subtypes in scRNA-seq data. The machine learning model utilized by CellTypist was trained on cells originating 
from 20 distinct tissues sourced from 19 reference datasets [25]. This comprehensive training enhances the accuracy and robustness of 
cell type annotation across diverse tissues and organisms. Information gain, gain ratio, symmetrical uncertainty, and reliefF are major 
rank-based feature selection methods in WEKA software. Information gain, gain ratio, and symmetrical uncertainty ranked features 
using the concept of entropy drawn from information theory [50]. Meanwhile, reliefF assigned a score to each feature using the 
K-nearest neighbor method [51]. 

The limitations of our study should also be mentioned. Firstly, we did not explore the effects of CNKSR1 knockdown or over-
expression on TILs in mouse models, as human CNKSR1 is not orthologous to mouse Cnksr1. Cause-effect experiments are crucial for 
validating the function of CNKSR1 in tumor immune evasion and assessing its potential as a target in immunotherapy. Secondly, the 
specific molecular mechanisms governing the relationship between CNKSR1 and TME in LUAD remain unknown. We would conduct 
further in-depth investigations into these aspects in our future research. 

In conclusion, our study has identified CNKSR1 as a gene that strongly negatively correlated with PD-L1 expression and the 
infiltration of immune cells, particularly CD8+ T cells in LUAD. By utilizing PD-L1 and CNKSR1 as biomarkers, we can demarcate 
distinct immune microenvironments. Unraveling the regulatory network underlying CNKSR1-related immune evasion may offer a 
promising pathway for the advancement of immunotherapeutic strategies for LUAD. 
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D. Carano, P. Eriksson, M. Höglund, L. Somarriba, D.L. Halligan, M.S. van der Heijden, Y. Loriot, J.E. Rosenberg, L. Fong, I. Mellman, D.S. Chen, M. Green, 
C. Derleth, G.D. Fine, P.S. Hegde, R. Bourgon, T. Powles, TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells, Nature 554 
(2018) 544–548, https://doi.org/10.1038/nature25501. 

Q. Cai and M. Peng                                                                                                                                                                                                   

https://doi.org/10.1016/j.heliyon.2024.e29126
https://doi.org/10.1186/s12943-023-01740-y
https://doi.org/10.1200/JCO.21.01497
https://doi.org/10.1200/JCO.21.01497
https://doi.org/10.1038/s41423-020-00577-5
https://doi.org/10.1038/s41423-020-00577-5
https://doi.org/10.1016/S0140-6736(16)32517-X
https://doi.org/10.1016/S0140-6736(15)01281-7
https://doi.org/10.1056/nejmoa1507643
https://doi.org/10.1056/nejmoa1504627
https://doi.org/10.1056/nejmoa1504627
https://doi.org/10.1016/S0140-6736(16)00587-0
https://doi.org/10.1016/S0140-6736(16)00587-0
https://doi.org/10.1200/JCO.19.00934
https://doi.org/10.1038/s41591-019-0374-x
https://doi.org/10.1016/j.jtho.2018.03.002
https://doi.org/10.1158/1078-0432.CCR-18-1967
https://doi.org/10.7150/thno.58390
https://doi.org/10.7150/thno.58390
https://doi.org/10.1038/s41573-018-0007-y
https://doi.org/10.1136/jitc-2019-000154
https://doi.org/10.1038/nature25501


Heliyon 10 (2024) e29126

15

[17] P. Bischoff, A. Trinks, B. Obermayer, J.P. Pett, J. Wiederspahn, F. Uhlitz, X. Liang, A. Lehmann, P. Jurmeister, A. Elsner, T. Dziodzio, J.C. Rückert, J. Neudecker, 
C. Falk, D. Beule, C. Sers, M. Morkel, D. Horst, N. Blüthgen, F. Klauschen, Single-cell RNA sequencing reveals distinct tumor microenvironmental patterns in 
lung adenocarcinoma, Oncogene 40 (2021) 6748–6758, https://doi.org/10.1038/s41388-021-02054-3. 

[18] K. Yoshihara, M. Shahmoradgoli, E. Martínez, R. Vegesna, H. Kim, W. Torres-Garcia, V. Treviño, H. Shen, P.W. Laird, D.A. Levine, S.L. Carter, G. Getz, 
K. Stemke-Hale, G.B. Mills, R.G.W. Verhaak, Inferring tumour purity and stromal and immune cell admixture from expression data, Nat. Commun. 4 (2013), 
https://doi.org/10.1038/ncomms3612. 

[19] S.L. Carter, K. Cibulskis, E. Helman, A. McKenna, H. Shen, T. Zack, P.W. Laird, R.C. Onofrio, W. Winckler, B.A. Weir, R. Beroukhim, D. Pellman, D.A. Levine, E. 
S. Lander, M. Meyerson, G. Getz, Absolute quantification of somatic DNA alterations in human cancer, Nat. Biotechnol. 30 (2012) 413–421, https://doi.org/ 
10.1038/nbt.2203. 

[20] D. Aran, M. Sirota, A.J. Butte, Systematic pan-cancer analysis of tumour purity, Nat. Commun. 6 (2015) 1–11, https://doi.org/10.1038/ncomms9971. 
[21] A.M. Newman, C.L. Liu, M.R. Green, A.J. Gentles, W. Feng, Y. Xu, C.D. Hoang, M. Diehn, A.A. Alizadeh, Robust enumeration of cell subsets from tissue 

expression profiles, Nat. Methods 12 (2015) 453–457, https://doi.org/10.1038/nmeth.3337. 
[22] T. Stuart, A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi, W.M. Mauck, Y. Hao, M. Stoeckius, P. Smibert, R. Satija, Comprehensive integration of single-cell 

data, Cell 177 (2019) 1888–1902.e21, https://doi.org/10.1016/j.cell.2019.05.031. 
[23] R. Gao, S. Bai, Y.C. Henderson, Y. Lin, A. Schalck, Y. Yan, T. Kumar, M. Hu, E. Sei, A. Davis, F. Wang, S.F. Shaitelman, J.R. Wang, K. Chen, S. Moulder, S.Y. Lai, 

N.E. Navin, Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes, Nat. Biotechnol. 39 (2021) 599–608, https:// 
doi.org/10.1038/s41587-020-00795-2. 

[24] A.C. Habermann, A.J. Gutierrez, L.T. Bui, S.L. Yahn, N.I. Winters, C.L. Calvi, L. Peter, M.-I. Chung, C.J. Taylor, C. Jetter, L. Raju, J. Roberson, G. Ding, L. Wood, 
J.M.S. Sucre, B.W. Richmond, A.P. Serezani, W.J. McDonnell, S.B. Mallal, M.J. Bacchetta, J.E. Loyd, C.M. Shaver, L.B. Ware, R. Bremner, R. Walia, T. 
S. Blackwell, N.E. Banovich, J.A. Kropski, Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary 
fibrosis, Sci. Adv. 6 (2020), https://doi.org/10.1126/sciadv.aba1972 eaba1972. 

[25] C. Domínguez Conde, C. Xu, L.B. Jarvis, D.B. Rainbow, S.B. Wells, T. Gomes, S.K. Howlett, O. Suchanek, K. Polanski, H.W. King, L. Mamanova, N. Huang, P. 
A. Szabo, L. Richardson, L. Bolt, E.S. Fasouli, K.T. Mahbubani, M. Prete, L. Tuck, N. Richoz, Z.K. Tuong, L. Campos, H.S. Mousa, E.J. Needham, S. Pritchard, 
T. Li, R. Elmentaite, J. Park, E. Rahmani, D. Chen, D.K. Menon, O.A. Bayraktar, L.K. James, K.B. Meyer, N. Yosef, M.R. Clatworthy, P.A. Sims, D.L. Farber, 
K. Saeb-Parsy, J.L. Jones, S.A. Teichmann, Cross-tissue immune cell analysis reveals tissue-specific features in humans, Science 376 (2022) eabl5197, https:// 
doi.org/10.1126/science.abl5197. 

[26] A.B. Jaffe, A. Hall, A. Schmidt, Association of CNK1 with Rho guanine nucleotide exchange factors controls signaling specificity downstream of Rho, Curr. Biol. 
15 (2005) 405–412, https://doi.org/10.1016/j.cub.2004.12.082. 
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