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ABSTRACT: Automation and digitalization solutions in the field
of small molecule synthesis face new challenges for chemical
reaction analysis, especially in the field of high-performance liquid
chromatography (HPLC). Chromatographic data remains locked
in vendors’ hardware and software components, limiting their
potential in automated workflows and data science applications. In
this work, we present an open-source Python project called
MOCCA for the analysis of HPLC−DAD (photodiode array
detector) raw data. MOCCA provides a comprehensive set of data
analysis features, including an automated peak deconvolution
routine of known signals, even if overlapped with signals of
unexpected impurities or side products. We highlight the broad applicability of MOCCA in four studies: (i) a simulation study to
validate MOCCA’s data analysis features; (ii) a reaction kinetics study on a Knoevenagel condensation reaction demonstrating
MOCCA’s peak deconvolution feature; (iii) a closed-loop optimization study for the alkylation of 2-pyridone without human control
during data analysis; (iv) a well plate screening of categorical reaction parameters for a novel palladium-catalyzed cyanation of aryl
halides employing O-protected cyanohydrins. By publishing MOCCA as a Python package with this work, we envision an open-
source community project for chromatographic data analysis with the potential of further advancing its scope and capabilities.

1. INTRODUCTION
Synthetic chemistry enables discovery of new chemical
reactivity, access to new molecules of interest, and develop-
ment of corresponding chemical processes. Ever more
demanding regulatory and sustainability requirements on
small molecules’ synthesis and development make this
endeavor complex and cost-intensive.1−5 Increasing emphasis
is given to automation and digitalization in synthetic chemistry
to address today’s complex challenges while decreasing
development time and cost.6−8 Automation approaches aim
to facilitate chemical synthesis while increasing its safety,
robustness, and efficiency.9−11 Digitalization approaches focus
mainly on reducing the number of synthetic experiments until
a given goal is reached by predicting experimental outcomes or
molecular properties. For that, data science techniques are
applied to existing data for experimental design and decision
making.12−15 In both areas, generalization to the complexity
and diversity of chemical reaction processes remains the main
challenge. As stated by Hein and co-workers,16 “automation
isn’t automatic,” and automated experimental setups are too
often tailored to a given synthetic problem.17−19 Digitalized
approaches toward machine learning design algorithms suffer
from a highly unstructured data foundation in literature, since

data was not collected and reported with data science
applications in mind.20 Therefore, recent approaches focus
on the community-based standardization of synthetic lab data
(Open Reaction Database), increasing the robustness of
experimental protocols against noise, or the augmentation of
literature data by systematic experiments performed by
automated machines.21−24

Interestingly, chemical reaction analysis has received less
attention in recent automation and digitalization efforts despite
its importance for the overall synthetic process.25 Analytical
raw data generation and analysis remain locked in vendor-
specific proprietary hardware and software components,
especially in the field of high-performance liquid chromatog-
raphy (HPLC), a standard analytical method for chemical
reaction analysis. Most HPLC systems in academic and
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industrial research laboratories are equipped with photodiode
array detectors (DAD) that record full UV−Vis spectra at
every chromatogram time point. For analysis, the dimension-
ality of the HPLC−DAD data is classically reduced to
chromatograms by vendor data analysis software, i.e.,
absorbance at a single wavelength as a function of retention
time. In such data analysis software, HPLC−DAD raw data are
often only used by expert users to check for peak purity or to
identify a compound by comparison of the UV−Vis spectrum
with a reference spectrum. Most workflows access chromato-
gram analysis results by vendor software in the form of peak
tables. In extreme cases, a full HPLC−DAD raw data array is
recorded only to extract one value out of a peak table, e.g., the
area of the product signal, while all of the other information is
discarded. This is incongruous with modern data-centered
automation and digitalization approaches.

Commercial software solutions from Virscidian (Analytical
Studio26) or ACD/Labs (Katalyst D2D, Spectrus27) have
already filled the gap of modern multivariate raw data analysis.
However, as commercial products, they provide limited
flexibility in workflow implementation. For example, Virscidian
had to implement a construct called expressions in their
software to allow the user to extract relevant information in a
customizable and flexible manner. The analytical chemistry
community is also adopting multivariate data analysis, but code
availability is limited.28−31 For example, Arase et al. explored
with the Shimadzu Corporation as an HPLC instrument
vendor the potential of HPLC−DAD data in the context of
peak deconvolution.32

In this work, we present the open-source Python project
MOCCA (Multivariate Online Contextual Chromatographic
Analysis), which enables the direct processing and analysis of
HPLC−DAD raw data in Python, the de facto standard
programming/scripting language for data science projects in
chemistry.33−36 As a ready-to-use Python package, it is easily
implemented into existing automated and nonautomated
workflows. By making the Pythonic library of data analysis
toolkits accessible, MOCCA enables its users to develop new
and powerful data analysis features. Here, we present a peak
deconvolution feature that allows for automated deconvolution
and quantification of known signals which overlap with signals
of unexpected impurities. This overcomes a common
limitation of available commercial software: the requirement
for manual control of the automatic integration routine to
account for overlapping peaks. With this feature implemented,
MOCCA could play a major role toward autonomous
laboratories by providing open actionable analytics, i.e.,
enabling data-based decisions without human intervention or
control by putting HPLC−DAD data in the correct context for
analysis.19

Other open-source toolkits exist for chromatographic data
analysis, e.g., HappyTools37 and Aston38 in Python or
chromatographR39 in R. The authors of the Alsace package
for R emphasized the potential of DAD data for metabolomics
profiling.40 Notably, Jason Hein and co-workers recently
developed a Python-based automated data processing routine
and made the code available online.41 However, all these
efforts do not make consistent use of the multidimensionality
of the HPLC−DAD data or are developed with a specific use
case in mind so that they are not ready-to-use for a synthetic
chemist. We envision MOCCA to serve as a basis for a joint
community effort toward an open multivariate analytical raw
data analysis toolkit.

MOCCA serves as a plug-and-play module and is not
restrained by a specific project scope. To highlight MOCCA’s
general applicability and versatility for chemical reaction
analysis, we introduce and investigate MOCCA’s data analysis
features in four different case studies. First, the features are
validated using a large set of simulated chromatograms
including overlapping signals for a quantitative investigation
of the peak deconvolution feature. Then, the potential of
MOCCA and its peak deconvolution feature is highlighted in
an experimental reaction kinetics study on a Knoevenagel
condensation reaction. In the third study, MOCCA is
employed in a closed-loop process optimization for the
alkylation of 2-pyridone where the peak deconvolution feature
keeps the optimization cycle running despite the signal of an
unexpected side product overlaps with the product signal.
Finally, a newly developed cyanation of aryl halides is
presented and categorical reaction parameters are screened
on a well plate with MOCCA tracking all known and unknown
signals.

2. METHODS
Our proposed analytical workflow employing the MOCCA
package in automated, semiautomated, or nonautomated
workflows is shown in Figure 1. In research laboratories,
HPLC systems from a number of different vendors are used in
combination with corresponding vendor-specific control
software. The HPLC−DAD raw data (time−wavelength
absorbance array) are typically stored in proprietary formats
inaccessible to the user. To obtain open, nonproprietary
HPLC−DAD raw data files, each of the softwares has its own
native raw data export routine. Therefore, MOCCA includes
raw data parsers for data exported from Agilent’s ChemStation,
Shimadzu’s LabSolutions, and Water’s Empower software.
However, we highly encourage, if possible, exporting to
standardized and metadata-enriched data formats such as the
Allotrope data format,42 for which a parser is implemented in
the MOCCA package. These standardized data formats ensure

Figure 1. Proposed analytical workflow starting with HPLC systems controlled by vendor-specific software. HPLC−DAD raw data are exported in
nonproprietary and open data formats, preferably, a metadata-enriched standardized format (Allotrope) implementing FAIR data principles. After
parsing in Python, HPLC−DAD data sets are analyzed in context to each other by MOCCA. From the analysis results, structured data sets are
generated for data-based decision making.
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the implementation of FAIR (findability, accessibility,
interoperability, reuse) principles in analytical data and
promote reuse of data for future scientific projects (details in
SI section S2).43

After parsing the exported data in Python, HPLC−DAD raw
data sets are analyzed by MOCCA. An automated procedure
extracts relevant information for a specific scientific question
from the information-rich analysis results. The obtained
structured (tabular) data sets are used for data-based decision
making.

A summary of the single data analysis features of the
MOCCA package is presented in Figure 2 (details in SI
sections S3 and S4). The features are assigned to three
hierarchy levels: the raw data level, the aggregate data level,
and the user or automated workflow interaction level. On the
raw data level, most features are known from common vendor
software and include raw data preprocessing with baseline
correction as well as peak picking and integration. Other
features like the algorithms for automated peak purity checking
and peak deconvolution can complement vendor software
capabilities. These two features are discussed and validated in
detail in the following sections. On the aggregate data level,
information is created by analyzing data sets in context to each
other. By mimicking and automating routine steps a scientist
would perform in the lab, compound and calibration libraries
are created to allow for peak assignment and peak
quantification. Moreover, MOCCA allows for the automated
handling of internal standards for retention time correction as
well as for relative quantification. Finally, interaction with the
tool takes place on the highest hierarchy level, which provides
control over certain settings of the data analysis and provides
interactive reports on the analysis. The reports include the
most crucial information for the user, such as chromatogram
visualizations and peak tables (examples in chromatogram
report in HTML SI files).

3. RESULTS AND DISCUSSION
3.1. Validation of Data Analysis Features in Simu-

lated Chromatograms. Collecting large-scale experimental
HPLC−DAD data for validation is time-consuming and
inefficient. Moreover, experimental data sets with overlapping
signals do not provide a ground truth against which
deconvolution results can be quantitatively compared. To
solve this problem, we turned to the Chromatography Analysis
and Design Toolkit (CADET), a tool that simulates retention
processes on LC separation columns.44 With CADET, a wide

variety of elution profiles can be simulated (including
nongaussian shapes) while taking into account nonlinear
retention effects of coeluting analytes.

To imitate a real situation and systematically explore the
limitations of MOCCA’s peak deconvolution feature, chroma-
tograms with two compounds (a known main compound and
an unknown impurity) were generated in-silico. The resulting
retention profiles were enriched with compound-specific UV−
Vis spectra to obtain synthetic HPLC−DAD data sets. The
similarity of UV−Vis spectra of the main compound and the
impurity were varied in three levels of correlation coefficients r,
high (r ≈ 0.86), medium (r ≈ 0.47), and low (r ≈ − 0.06). To
obtain statistically relevant results, we simulated 1000 different
chromatograms and enriched them with UV−Vis spectra of
each similarity level resulting in 3000 HPLC−DAD data sets
(details in SI section S7). These synthetic raw data were fed
into MOCCA for data analysis. This allowed for the testing
and validation of all other features shown in Figure 2. We
provide the simulated data sets in the Supporting Information
as a benchmark for future developments.

The obtained results were assigned to four possible
categories: (i) separate peaks where the simulated pair of
retention profiles is baseline-separated and the peak purity
checker labels the two peaks as pure; (ii) successful
deconvolution of an overlapping signal where the main
compound is correctly assigned and quantified; (iii)

Figure 2. Summary of the data analysis features implemented in MOCCA.

Table 1. Results of the MOCCA Analysis of Synthetic
HPLC−DAD Data Assigned to the Following Categories:
(i) Retention Profiles of Main Compound and Impurity
Were Baseline-Separated and Analyzed Correctly; (ii)
Overlapping Retention Profiles Where the Peak
Deconvolution Feature Was Triggered and the Main
Compound Was Identified and Quantified; (iii) Peak
Deconvolution Feature Was Triggered for the Overlapping
Signal but the Main Compound Could Not Be Identified;
(iv) the Signals Were Overlapping but Were Not Labelled
As Impure by the Peak Purity Checker

UV−Vis spectral similarity

Result category High Medium Low

(i) 86 86 86
(ii) 794 868 890
(iii) 2 0 0
(iv) 118 46 24
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unsuccessful deconvolution where the peak is labeled as
impure but the deconvolution feature is not able to assign any
deconvoluted component to the main compound; (iv) no
trigger of the peak deconvolution feature due to the peak
purity check returning a false positive result. In general, cases
(i) and (ii) are considered as desired outcomes, while cases
(iii) and (iv) are considered as misinterpretations (examples in
SI section S7). Table 1 summarizes the obtained results
highlighting that a vast majority of the simulated cases were
processed correctly while almost all of the failing cases are
attributed to category (iv).

Cases of the category (iv) are not attributed to a failure of
the peak deconvolution feature, but rather to a permissive peak
purity checker returning false positive outcomes on strongly
coeluting signals. These cases cannot be solved analytically,
and the only solution would be the development of an HPLC
method with higher chromatographic resolution to separate (at
least partially) the elution profiles. MOCCA enables a shift
toward shorter gradient times and faster sample processing, but
the category (iv) failure rate shows that the user is still required
to have expertise in HPLC method development to balance
method time vs chromatographic resolution.45

For a quantitative investigation of the devonvolution results,
we looked at the results assigned to category (ii) and compared
them to the ground truth. For all three levels of spectral
similarity, the median quantification error was smaller than 2%,
while the third quartile error ranged around 6% (examples and
details in SI section S7). The results obtained validate that
MOCCA’s deconvolution feature works robustly enough for
typical lab screenings, but should be treated with caution for

regulated environments and process development scenarios
where lower margins of error are required.

3.2. Kinetics Study of Knoevenagel Condensation
Reactions. A reaction kinetics study of a Knoevenagel
condensation, a well-established test reaction,46,47 was
conducted to highlight the potential of MOCCA’s peak
deconvolution feature. Benzaldehydes (1a−c) were simulta-
neously reacted with malononitrile (2) to their corresponding
benzylidenemalonitriles (3a−c) in the same reaction mixture
(Scheme 1).

Reactions were performed in an HPLC vial in a temper-
ature-controlled (25 °C) autosampler, and reaction progress
was followed via reversed-phase HPLC with different gradient
lengths. Five different HPLC methods were developed with
gradient lengths of 0.5, 0.75, 1.0, 1.5, and 2.5 min (water/
acetonitrile 95:5 → 0:100 v/v) to induce different degrees of
overlap between the substrate signals. For quantification,
calibration curves were recorded for all substrates with all

Figure 3. (a) Results of the competition experiment with two benzaldehydes (1a and 1b). (b) Results of the competition experiment with three
benzaldehydes (1a−c). Top: Chromatographic signals of the benzaldehydes using different gradient lengths. MOCCA indicates results of purity
checks (green passed, red failed) and centers of retention profiles modeled by the deconvolution algorithm (vertical black dashed lines). Bottom:
Deconvolution results of the overlapping signal recorded with a gradient length of 0.5 min. The modeled retention profiles (left, colored lines)
described the retention profile of the impure peak (black dashed line). The modeled UV−Vis traces (right, colored lines) correspond to the UV−
Vis spectra of the benzaldehydes as exemplified for 1a (black dashed line).

Scheme 1. Knoevenagel Condensation Reactions of
Benzaldehyde (1a), 4-Methoxybenzaldehyde (1b) and 4-
(Dimethylamino)benzaldehyde (1c) with Malononitrile (2)
in Methanol (MeOH) to Yield Benzylidenemalononitriles
3a−c
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HPLC methods. These measurements were used to validate
the quantification features of MOCCA in the case of pure and
baseline-separated signals against traditional manual data
analysis. The results of both analysis methods correlated very
precisely (details in SI section S5).

Two competition experiments were performed: malononi-
trile (2) was reacted with two (1a, 1b), and with three (1a−c)
benzaldehyde substrates, respectively. For data analysis,
benzaldehyde (1a) was treated as the main compound, i.e.,
only its calibration runs were added to MOCCA for
quantitative analysis while the functionalized benzaldehydes
1b and 1c were treated as “unknown” impurities. Figure 3a and
b illustrate results from the two competition experiments. The
top panels show the different degrees of signal overlap induced
by the gradient variation. Here, the peak purity check feature
correctly labeled the peaks as pure for the long gradient (green
background area) and correctly labeled the overlapping peaks
as impure for the short gradients (red background area). In the
latter cases, the peak deconvolution feature was triggered. As a
first step of the deconvolution routine, a principal component
analysis is performed on the absorbance array of an impure
peak to estimate the number of overlapping components. With
this number as an input, a newly developed iterative algorithm
using parallel factor analysis (PARAFAC)48 is employed for
deconvolution (details in SI section S4). The bottom panels in
Figure 3 show the deconvolution results for the peaks recorded
with a gradient length of 0.5 min.

To investigate the ability of MOCCA to automatically
recognize impure peaks and decompose a known signal from
coeluting impurities, reaction progress was followed by
sampling out of the same reaction vessel repeating each of
the five HPLC methods iteratively (details in SI section S6).
The resulting reaction kinetics plots of the main compound
benzaldehyde (1a) are shown in Figure 4 and exhibit the
expected second-order kinetics.46,49 As expected from the
simulation study, the results of chromatograms with baseline-
separated signals agree with the results of chromatograms
where signals were heavily overlapping. The deconvolution
feature successfully identified the benzaldehyde (1a) signal in
all given impure peaks and returned modeled peaks for
quantification.

3.3. Closed-Loop Optimization of the Alkylation of 2-
Pyridone. Closed-loop optimization studies have gained
tremendous attention in recent years due to their relevance
for chemical discovery as well as process optimization.50−54 In
such closed-loop processes, the optimization platform runs
without human intervention and control of HPLC data
analysis. Here, the peak purity check and peak deconvolution
feature of MOCCA are of particular interest. Overlapping
peaks or inaccurate integration routines (examples in SI
section S5) lead to wrong analytical results fed back to the
experimental design algorithm. The setup of the closed-loop
optimization platform of this study is shown in Figure 5. For
the experimental design, we employed a Python package called
Experimental Design via Bayesian Optimization (EDBO)
published by Doyle and co-workers.55 The suggested
optimization parameter values were fed into a LabVIEW
program controlling a microfluidic droplet platform, which was
developed in the Jensen group for the simultaneous screening
of both categorical and continuous reaction parameters.56−60

After reaction completion in an oscillatory droplet reactor, the
droplet was diluted with acetonitrile and moved to an internal
injection valve (0.02 μL injection volume) to inject a sample

directly on a reversed-phase separation column of the HPLC
system. The HPLC system automatically exported HPLC−
DAD raw data for MOCCA data analysis after each run. The
optimization objective, as well as process control parameters
were extracted from the MOCCA analysis results via a project-
specific script.

As a test reaction, we examined the alkylation of 2-pyridone
(4) using 1-iodobutane (5) to yield the two regioisomers 1-
butylpyridone (6) and 2-butoxypyridine (7). As shown in
Scheme 2, the optimization was performed on two continuous
variables, the reaction time (10−60 min) and temperature
(35−100 °C). Additionally, two categorical optimization
parameters were screened: the base (1,8-diazabicyclo[5.4.0]-
undec-7-ene (DBU), 1,1,3,3-tetramethylguanidine (TMG),
N,N-diisopropylethylamine (DIPEA)), and the solvent (n-
butanol, N,N-dimethylformamide (DMF), toluene). The
maximization of the yield of 1-butylpyridone (6) served as
the objective function for the optimization. For quantification,
the desired product 6 was calibrated relative to an internal
standard in an automatic fashion by the platform (details in SI
section S8).

The optimization cycle was run with a batch size of one, i.e.,
the feedback loop was closed after each experiment. At any
point during the optimization campaign, the user was able to
extract MOCCA reports to follow the optimization process.
Figure 6a summarizes the results of the optimization campaign.
The optimal conditions found for the reaction were DBU in

Figure 4. Second-order reaction kinetics plots of benzaldehyde (1a)
in the Knoevenagel condensation recorded with five different HPLC
methods employing varying gradient lengths. (a) Competition
experiment with two benzaldehydes (1a and 1b). (b) Competition
experiment with with three benzaldehydes (1a−c).
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toluene for 60 min at 100 °C. We validated the obtained
optimization results with batch reactions that screened all
categorical parameter combinations at 35 and 100 °C (details
in SI section S8). For all reactions with DBU, the HPLC signal

of an unexpected side product, butylated DBU (8), started
overlapping with the signal of the calibrated product 6, whose
yield served as the objective value for the optimization. Figure
6b shows the chromatogram of the reaction at optimal
conditions with the impure peak at ∼1.7 min resulting from an
overlap of signals from 6 and 8. As shown in Figure 6c,
MOCCA was able to deconvolute this impure peak in an
automated fashion and to feed back corrected yields to the
design algorithm EDBO. This highlights MOCCA’s ability to
keep closed-loop cycles running even when unexpected
coelution of calibrated signals occurs in the HPLC analysis.

3.4. Palladium-Catalyzed Cyanation of Aryl Halides.
With this study, we highlight MOCCA’s application for the
analysis of HPLC−DAD data originating from a novel
palladium-catalyzed cyanation of aryl halides, where side
products were unknown. Palladium-catalyzed cyanation
reactions are a prominent and well-investigated reaction
class.61−63 They proceed via oxidative addition of an aryl
halide to a Pd(0)/ligand complex, subsequent halide/cyanide
exchange, followed by a reductive elimination which closes the
catalytic cycle.64 A particular challenge with this reaction class
resides in the rapid deactivation of the catalytically active
palladium species in the presence of excess amounts of
cyanide.65,66 To overcome this issue, many procedures were
developed with the aim of keeping a low effective
concentration of cyanide in solution. Common strategies
include the use of hardly soluble metal salts,67−69 employing
cyanide transfer agents,70 and the slow addition of
trimethylsilyl cyanide71 or acetone cyanohydrin.72,73 The use
of butyronitrile in combination with a nickel catalyst allows for
cyanide release through a reverse hydrocyanation reaction.74

Giumond et al.73 developed a protocol for palladium and
nickel catalyzed cyanation reactions to overcome upscaling
issues associated with the use of metal cyanides under
heterogeneous conditions.68,75−77 A homogeneous reaction is
obtained by adding acetone cyanohydrin via syringe pump to a
solution of the substrate, a palladium catalyst, a ligand, and
N,N-diisopropylethylamine (DIPEA) in isopropyl alcohol or n-
butanol (Scheme 3a).73 Based on these results, we envisioned
to make use of O-protected cyanohydrins as cyanation reagents
which release cyanide in situ upon deprotection (Scheme 3b).
This approach maintains a fully homogeneous liquid system
but the need for slow reagent addition is avoided.

To investigate our proposed synthetic strategy, we prepared
a number of protected cyanide-releasing agents 10a−10g
(Figure 7b). In situ deprotection by transesterification or TMS
cleavage yields acetone cyanohydrin or lactonitrile which
rapidly eliminate the cyanide required for cross-coupling. We
screened suitable reaction conditions for the conversion of 2-
chlorotoluene (9) to o-tolunitrile (11) in a 96 well plate
(Figure 7a) by combining these reagents with one of three
different ligands (Figure 7d), XPhos, tBuXPhos, or CM-Phos,
and one of four different bases (Figure 7c), DBU, TMG, 4-
(dimethylamino)pyridine (DMAP), or DIPEA (details in SI
section S9). The choice of ligands and [Pd(cinnamyl)Cl]2 as
the catalyst precursor was based on previous literature
reports.73,78−80

After the reaction was run under the given conditions and
subsequent internal standard addition, samples of the reactions
were subjected to HPLC analysis. The HPLC−DAD raw data
were exported as text files and parsed for subsequent MOCCA
analysis, which took ∼10 min on a standard personal laptop for
the whole data set including 42 deconvolutions of impure

Figure 5. Closed-loop optimization cycle employed in this work. Blue:
Experimental Design via Bayesian Optimization (EDBO) Python
package from the Doyle group55 and translation of the suggested
parameters to a LabVIEW experimental protocol. Yellow: Exper-
imental execution by a microfluidic reactor platform employing an
oscillatory droplet reactor design. 0.02 μL HPLC samples are taken
out of the droplet after diltution with acetonitrile. Green: HPLC
system with a photodiode array detector (DAD) and an automated
HPLC−DAD raw data export routine. Red: Data analysis by the
MOCCA tool and a project-specific script for the extraction of
objective values and process control values.

Scheme 2. Optimization Campaign on the Alkylation of 2-
Pyridone (4) with 1-Iodobutane (5) Yielding 1-
Butylpyridone (6)a

aThe domain space of the optimization campaign spans over two
continuous variables, reaction time (low boundary: 10 min, high
boundary: 60 min), and temperature (low boundary: 35 °C, high
boundary: 100 °C), as well as two categorical variables, identity of
base (DBU, TMG, DIPEA) and solvent (DMF, toluene, n-butanol).
The objective value of the optimization is the yield of 6. Two side
products were identified with 2-butoxypyridine (7) and butylated
DBU (8).
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peaks. The MOCCA analysis results enabled following product
and substrate concentrations and, importantly, unknown
signals over the data sets, thus supporting the identification
of side products and impurities (example in SI section S9).
These data were used for heatmap visualization in Python
using standard toolkits (Plotly81). For example, the obtained
yields of o-tolunitrile (11) are visualized based on their
location in the well plate (Figure 7e). This again highlights the
potential of moving HPLC−DAD data analysis to Python with
its powerful package library for data analysis and visualization.

As discussed above, a successful reaction requires the release
of cyanide anions to proceed at a rate that is sufficient to be
productive but not outpace the catalyst turnover. This rate is
controlled through the rates of deprotection of the cyanide-
releasing agents 10, which were examined experimentally for a
better understanding of our results (details in SI section S9).

The screening provided three parameter combinations with
yields >90% indicating a good harmonization between cyanide
release and turnover, the TMG/XPhos base−ligand combina-
tion with the precursor 10c, DMAP/XPhos with 10e, and
DMAP/XPhos with 10f. The outcome of these experiments
together with a selection of the other experiments were verified
by repeating the reactions in standard reaction flasks (details in
SI section S9). For other parameter combinations, e.g., when
using trifluoroacetylated cyanohydrin 10g, the release of
cyanide is too fast, leading to a quick catalyst deactivation.
In contrast, a slow release of cyanide is observed with the use
of DIPEA, a weak base, leading to low conversions (detailed
mechanistic discussion in SI section S9).

HPLC analysis represents a typical bottleneck in well plate-
based screenings. Typically, HPLC methods are developed to
be as short as possible for maximum throughput while
resolving all known compounds. When screening categorical
variables like ligands or bases, unexpected side products often
overlap with known signals in the chromatogram. This also
happened in the described screening campaign, but MOCCA
reliably deconvoluted these overlapping peaks and enabled an
efficient data analysis without the need for HPLC method
optimization or resorting to multiplexing techniques (examples
and details in SI section S9).82,83

4. CONCLUSIONS
In this work, we have presented MOCCA, an open-source
Python project, for the comprehensive analysis of HPLC−
DAD raw data. Compared to typical data analysis method-
ologies on one signal wavelength, the analysis of the full time−
wavelength absorbance array gives multiple advantages. These
include robust peak assignment and quantification, as well as
peak purity checks and the deconvolution of overlapping
peaks. We investigated MOCCA in four case studies, (i) a
simulation study, (ii) a reaction kinetics study, (iii) a closed-
loop optimization, (iv) a well plate screening and demon-

Figure 6. Results of the closed-loop optimization on the alkylation of 2-pyridone (4). (a) Objective values as a function of optimizer choices in
each round. Top: Objective value (yield of 6) with marker shape indicating the chosen solvent and marker color indicating the chosen base; middle:
Chosen reaction temperature; bottom: Chosen reaction time. (b) Chromatogram of the reaction under optimal conditions with an impure product
peak (∼1.7 min). (c) Modeled retention profiles (dashed line: impure peak) and UV−Vis spectra (dashed line: reference UV−Vis spectrum of (6)
of the product 6 (yellow) and the unexpected impurity 8 (blue).

Scheme 3. (a) Palladium-Catalyzed Cyanation of Aryl
Chlorides Developed by Guimond et al. Based on the Slow
Addition of Acetone Cyanohydrin via Syringe Pump.73 (b)
Newly Developed Cyanation Method Using Protected
Cyanohydrins (PG: protecting group) for in Situ Release of
Cyanide
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strated MOCCA’s broad applicability and the benefit of
moving chromatographic data analysis to an open environment
like Python.

In this spirit, we envision MOCCA becoming a community
project with a significant user base eager to adapt, curate, and
further advance the tool. With community support, MOCCA
can overcome limitations of vendor software especially with
regard to FAIR data principles and implementation in
automated workflows. The development of additional data
analysis features such as the implementation of a mass
spectrometry module could extend the scope of the tool by
adding orthogonal analysis dimensions. Another interesting
development could be a connection MOCCA to chemical
structure representations, or even to chemical reaction entries
in electronic lab notebooks. This would make synthetic
chemistry data and the corresponding analytical data directly
accessible for machine learning in data science applications.

To enable new users to implement MOCCA easily in their
laboratories, we packaged MOCCA and published it in the
Python Package Index (PyPI). For a quick start, example
JupyterLab notebooks together with the corresponding
HPLC−DAD data sets are provided in the notebooks folder
of the package’s GitHub repository.84 This includes a tutorial

as well as the complete data analysis of the well plate screening
presented in this manuscript.
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