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Abstract

Inhibition of Return (IOR) is one of the most consistent and widely studied effects in experimental psychology. The effect
refers to a delayed response to visual stimuli in a cued location after initial priming at that location. This article presents a
dynamic field model for IOR. The model describes the evolution of three coupled activation fields. The decision field,
inspired by the intermediate layer of the superior colliculus, receives endogenous input and input from a sensory field. The
sensory field, inspired by earlier sensory processing, receives exogenous input. Habituation of the sensory field is
implemented by a reciprocal coupling with a third field, the habituation field. The model generates IOR because, due to the
habituation of the sensory field, the decision field receives a reduced target-induced input in cue-target-compatible
situations. The model is consistent with single-unit recordings of neurons of monkeys that perform IOR tasks. Such
recordings have revealed that IOR phenomena parallel the activity of neurons in the intermediate layer of the superior
colliculus and that neurons in this layer receive reduced input in cue-target-compatible situations. The model is also
consistent with behavioral data concerning temporal expectancy effects. In a discussion, the multi-layer dynamic field
account of IOR is used to illustrate the broader view that behavior consists of a tuning of the organism to the environment
that continuously and concurrently takes place at different spatiotemporal scales.
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Introduction

Inhibition of Return (IOR) is a phenomenon related to spatial

orientation behavior. The phenomenon consists of an increase in

Response Time (RT) for targets appearing at a peripheral location

after spatially informative cues, as compared to targets appearing

after uninformative cues. The inhibitory effect is observed if the

Cue-Target Onset Asynchrony (CTOA) is longer than a certain

task-dependent value. For shorter CTOAs priming occurs: cued

targets lead to faster responses than uncued ones. Since Posner

and Cohen’s foundational work [1], IOR has been investigated

with a wide variety of experimental procedures, leading to a

substantial body of knowledge about the circumstances under

which the effect occurs (see [2–4] for reviews). IOR has been

related to sensorimotor interactions in the oculomotor system. The

aim of our modeling efforts is to precisely formalize a sensorimotor

hypothesis. To describe the motivation for the model in more

detail we briefly review the evidence that relates IOR to the

oculomotor system.

A first line of evidence that relates IOR to the oculomotor

system is provided by clinical studies. One of the main

neurophysiological structures of the saccadic control system is

the superior colliculus. Patients with midbrain degeneration due to

progressive supranuclear palsy, who can be assumed to have the

superior colliculus affected, show abnormal RTs in IOR tasks [5].

On the contrary, IOR is preserved in patients with hemianopsia,

for who the retinotectal system—which includes the superior

colliculus—is intact [6]. Relatedly, IOR is observed in studies with

newborns, whose vision is predominantly mediated by the

retinotectal system [7]. To summarize, these clinical studies

indicate that IOR is observed for individuals with an intact

superior colliculus, but not for individuals with a damaged

superior colliculus, hence providing evidence for the implication

of the superior colliculus in IOR.

More direct evidence is provided by single-unit recordings in the

superior colliculus of monkeys [8–11]. The saccadic behavior of

monkeys in IOR tasks is qualitatively similar to the behavior of

humans, with early facilitation and late inhibition at cued

locations. This behavior is paralleled by the activity of visuomotor

neurons in the intermediate layer of the superior colliculus. The

effect of the target, measured as the difference between the activity

of the neurons before and after the presentation of the target, is

consistently depressed in cue-target-compatible stimulations, even

at the shortest CTOAs. This depression does not lead to IOR at

short CTOAs because the cue increases the pretarget activity. The

cue-induced pretarget activity adds to the target-induced increase

in activity, overcompensating the depressing effect of the cue and

hence resulting in a faster response. IOR is observed at longer

CTOAs because the increase in pretarget activity caused by the

cue decays more quickly than the depressing effect of the cue.

Neurons in the intermediate layer of the superior colliculus are

not less sensitive to electrical stimulation in cue-target-compatible

situations [9]. This indicates that the depression of the effect of the

target in cue-target-compatible situations is due to the fact that the

intermediate layer of the superior colliculus receives less intense

stimulation, and thus that factors that contribute to IOR are
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located earlier in the sensory stream. Fecteau and Munoz analyzed

the activity of visual neurons located in the superficial layer of the

superior colliculus [11]. The activity of these neurons is indeed

depressed in the cue-target-compatible situations, supporting the

view that IOR reflects a habituated response in earlier sensory

areas.

The above-mentioned neurophysiological studies were used by

Dukewich as support for her reconceptualization of IOR [12].

Dukewich’s work is based on the concept of orienting response,

which is traditionally used to describe the orienting of the sensory

organs toward novel events in the environment. Examples of such

events are the cues and targets in IOR experiments. It is well

known that the strength of the orienting response decreases with

the repeated presentation of stimuli. In other words, the orienting

response shows habituation. Dukewich’s portrayal of IOR is as

follows: A spatially informative cue leads to habituation of the

orienting response, causing a slower reaction to targets that are

presented at the same location as the cue.

In sum, the available evidence indicates that IOR is related to

oculomotor interactions in the superior colliculus and to earlier

sensory habituation. Our multi-layer model for IOR is inspired by

this evidence. In line with the portrayal of Dukewich [12], the

model relies on the concept of habituation, and in line with single-

unit recordings [8–11], the habituation is included in one of the

layers of the model (the sensory layer) but not in another layer (the

decision layer). More broadly, we developed the model inspired by

the view that behavior consists of a multi-scale tuning of the

organism to the environment—an issue that is addressed in more

detail in the Discussion.

Modeling
Dynamic Field Models and IOR. Sensorimotor accounts of

IOR hold that the inhibitory effect emerges from complex

interactions in the oculomotor system. Dynamical models

provide useful conceptual insights and mathematical tools to

study such interactions, because these models allow one to

quantitatively and qualitatively inspect the spatiotemporal

evolution of the interactions and to propose concrete and

falsifiable hypotheses. The specific dynamic modeling approach

that we use in this study is referred to as dynamic field approach [13].

The starting point of a dynamic field model is a continuous

space that is in many cases hypothesized to correspond to a

spatially organized map in a specific brain area. Two closely

related functions are defined on the space: A first function

describes the internal activation of loci in the space, referred to as

neurons, and a second function describes the external activation,

or firing rate, of the neurons. The goal of the modeling is to

describe how these activation functions evolve over time. Factors

that contribute to the evolution are: (1) spontaneous decay of the

activation, (2) lateral interaction among loci in the continuous

space, and (3) input from other brain regions. The input from

other brain regions is usually divided in exogenous and

endogenous input to indicate their relative proximity to sensory

surfaces. A precise description of each of these factors results in a

system of integro-differential equations that is solved numerically

so as to determine the behavior of the system.

A dynamic field model for IOR that is closely related to ours has

recently been reported by Satel and colleagues [14]. The model of

these authors consists of a single layer and the model assumes

habituation (as observed in [11]) as an ad hoc modification of the

sensory input. The main contribution of our model beyond the

one presented by Satel and colleagues is that our model consists of

multiple layers (cf. [15]). Multi-layer models allow one to explain

phenomena that arise from the interaction of processes with

different time-scales. In our view IOR is such a phenomenon

because it arises from the fact that the decay of the cue-induced

pretarget activity is quicker than the decay of the cue-induced

depression of the effect of the target. An additional contribution of

our model is that it includes a dynamic account of habituation.

Model Equations. Figure 1 presents a schematic diagram of

the interactions within our model, using the fields obtained in a

sample simulation. We next describe these interactions in more

detail. The internal and external activation of the decision field are

denoted as D(x,t) and aD(x,t), respectively, with x and t indicating

the spatial and temporal dimensions. The decision field

implements accumulating evidence for a motor decision. A

decision is triggered when the external activation reaches the

threshold of 80% of the maximal activation. The decision field is

inspired by the intermediate layer of the superior colliculus and

does not suffer habituation; rather, in cue-target-compatible

situations the field receives reduced sensory input. The reduced

input comes from the second field, the sensory field, which is

assumed to reflect earlier sensory processes. The internal and

external activation of the sensory field are denoted as S(x,t) and

aS(x,t). The sensory field suffers habituation, meaning that with a

sustained activation of the field the same internal activation comes

to lead to less and less intense external activation. The habituation

of the sensory field is implemented with a third field, the habituation

field, denoted as H(x,t).

The equations of our model are closely related to the ones in

previous dynamic field models [13,14,16]. The evolution of D(x,t),

S(x,t), and H(x,t) is described by:

tD D
:

(x,t)~{D(x,t)zhDz

CD?D(x,t)zCS?D(x,t)zIendo(x,t)
ð1Þ

tS S
:

(x,t)~{S(x,t)zhSzIexo(x,t) ð2Þ

tH H
:

(x,t)~{H(x,t)zhHzkH aS(x,t) ð3Þ

The constants tD = .328 s21, tS = .048 s21, and tH = 1.620 s21

encode the relative timing of the processes: The higher a t, the

Figure 1. Schematic representation of the structure of the
model. Input into the model is received by a sensation field, which is
mutually coupled to an activation-dependent habituation field. The
decision field receives input from the sensation field and triggers a
response upon reaching a threshold. Time and space are represented
by left-right and in-depth dimensions, respectively.
doi:10.1371/journal.pone.0033169.g001
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lower the temporal derivative that it multiplies, and, as a

consequence, the slower the process. The constants that we used

were chosen so as to optimize the fit with data reported by Posner

and Cohen [1].

The first two terms on the right-hand sides of Equations 1 to 3

determine the decay of the fields to their resting levels. The used

resting levels were: hD = 230, hS = 21, and hH = 0. The remaining

terms in the equations are described in sequential order, starting

with the connectivity terms, CD?D(x,t) and CS?D(x,t), and

proceeding with the endogenous and exogenous input terms,

Iendo(x,t) and Iexo(x,t). However, because the connectivity terms are

defined with the external activation functions, we first describe

these activation functions and their relation to the habituation.

Remember that D(x,t) and S(x,t) represent the internal activation

of the fields, or, more precisely, the internal activation of the

neurons, or x-loci, of the fields. The internal activation is related to

the external activation, or spike rate, through the equations:

aD(x,t)~
1

1ze{bD(D(x,t){D0)
ð4Þ

aS(x,t)~
1{H(x,t)

1ze{bS (S(x,t){S0)
ð5Þ

where the constants are bD = 1.4, bS = 6, D0 = 0, and S0 = 0. These

functions are sigmoids with slopes parameters bD and bS. If the

slopes are high, then the internal activation is transformed into an

approximately bistable system that is either close to 1 or close to 0,

to be interpreted as a neuron that either spikes or does not spike.

Equation 5 includes the habituation. With our parameter

settings the habituation always remains between 0 and 1. No

habituation occurs with H(x,t) = 0, in which case the maximum

achievable spike rate is 1. The more H(x,t) approaches the value of

1, the lower the maximum achievable spike rate. Reciprocally, the

habituation H(x,t) depends on the activation aS(x,t), as defined in

Equation 3. The habituation increases when the sensory field is

spiking. To implement the behaviorally observed asymmetry in

habituation, with a relatively fast build-up and a slow decay, we

used kH = 7. A similar way to implement activation-dependent

habituation can be found in [17]. Having defined Equations 4 and

5 we are now in the position to address the connectivity terms.

The term CD?D(x,t) in Equation 1 represents the overall

excitation or inhibition received by a neuron in the decision field

from other neurons in the decision field. This is referred to as

lateral interaction. The lateral interaction is given by a

convolution:

CD?D(x,t)~

ð
W (x{x0)aD(x0,t)dx0 ð6Þ

with

W (d)~a:e
{ d2

2s2
a{b:e

{ d2

2s2
b{c ð7Þ

where a = 11, b = 4.5, c = 1, sa = 4 and sb = 7. The function W(d)

encodes the connectivity among neurons in the decision field.

Following [16], we used a Mexican hat pattern defined with a

double Gaussian function, which depends only on the distance

between the neurons. The Mexican hat operator implements

excitation for near loci and inhibition for distant loci.

For the influence of the sensory field on the decision field we

used a 1-to-1 projection:

CS?D(x,t)~wS?DaS(x,t)

in which wS?D = 95. We now turn to the encoding of the input,

again largely following previous work [13,14,16].

Stimuli were encoded as Gaussian distributions of excitation.

Exogenous stimuli decayed. This decay models the fact that

exogenous stimuli affect the sensory field mainly when they

appear. The equations of the stimuli, or input, are:

Iexo(x,t)~Imaxe{bstimte
{

(x{l)2

2s2
stim

Iendo(x)~Imaxe
{

(x{l)2

2s2
stim

The location l corresponds to the center of the input and t gives

the time since the stimulus onset. The used value of the decay

parameter was bstim = .07 s21. Exogenous input was included for

cues (Imax = 40; sstim = 8) and targets (Imax = 60; sstim = 8). The

duration of the cues was 50 ms. Targets lasted until the model

reached the response threshold. A small endogenous preactivation,

constant over time, was included at the fixation point (Imax = 10;

sstim = 4). The widths of the input distributions are given in units

that correspond to the distance between successive neurons in our

numerical approximations.

A final endogenous effect included in the model concerns the

expectation or foreperiod effect [18]. In typical IOR tasks, cues are

either informative or not informative about the spatial properties

of the target, but they are always informative about the temporal

properties of the target. That is, a target usually appears a certain

time-interval after the cue, even though the length of that time

interval may vary. This means that the conditional probability that

a target appears, given that it has not appeared yet, increases

during the interval after the cue in which the target may appear.

Experimentally observed RTs parallel this increase in probability:

the longer after the cue the target appears, the shorter the RT. To

model this expectation effect we included endogenous signals

(sstim = 8) at each of the possible locations of the target (cf. [14]).

The Imax of these signals increased over time:

Imax(t)~m:tzI0 ð8Þ

where m = 50 s21 and I0 = 18.

Following previous work [14], perceptual delays were used to

represent the time needed for the input to reach the respective

fields. For exogenous input the delay was 70 ms and for

endogenous input the delay was 120 ms. A motor delay of

80 ms was used to represent the time between a decision (i.e.,

aD[x,t] reaching threshold) and the registration of a response.

Dynamic fields can show different types of attractors. A first

type of attractor consists of a region with a high level of activation

that sustains itself with nearby excitation of the loci in the region,

while the activation of the rest of the field is depressed with long-

range inhibition. A more trivial attractor occurs when all neurons

approximate the resting level. With our parameter settings the self-

sustained type of attractors did not occur. This means that the

model operated in the input-driven regime: In the absence of input

A Dynamic Field Model for Inhibition of Return
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the fields decayed toward their respective resting levels (as can be

seen in Figure 1).

Methods

Parameters were optimized with data estimated from Figure

32.2 of the influential chapter by Posner and Cohen [1]. In the

considered experiment, the outlines of three squares appeared at

the start of each trial. Cues were implemented by the brightening

of the outline of the left or right square. Targets were implemented

by a smaller square that appeared in one of the outlines. The task

consisted in responding with a manual keystroke to the target.

Instructions were to move as fast as possible while fixating the

center square. Six CTOAs were used: 0, 50, 100, 200, 300, and

500 ms.

To numerically simulate the behavior of the coupled fields we

considered 100 equidistant nodes, or neurons, per dynamic field.

We used two exogenous signals: one each for cue and target,

centered at Node 25 or Node 75. Catch trials at which the target

appeared at Node 50 were not included in the analyses.

Endogenous expectation signals were used at each position at

which a target could appear in the experiment: Nodes 25, 50, and

75. An additional endogenous signal at Node 50 represented the

fixation instruction.

The differential system that defines the model is well behaved

with regard to integration techniques (cf. [13]). We therefore used

a first-order Euler algorithm for the integration, with a step-size of

5 ms. This is a fast algorithm that requires only the first temporal

derivative.

The models were fitted to the experimental data with a

deterministic evolutionary algorithm [19] that optimized the

differences in the RTs for cued and uncued trials—which is to

say that it optimized the predicted IOR. More precisely, the fitness

function, F, was:

F~
100

1zRMSE
ð9Þ

The Root Mean Squared Error (RMSE) in this formula was

defined as follows:

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i~1

PIi{OIið Þ2
s

where n is the used number of CTOAs (n = 6), the subscript i

indicates a particular CTOA, PIi is the inhibition (RTcued-

RTuncued) predicted by the model for a particular CTOA, and

OIi is the experimentally observed inhibition for that CTOA.

Hence, the lower the differences between the predicted and

observed inhibition, the higher the fitness, with the theoretical

maximum of the fitness being 100.

The parameters included in the evolutionary optimization were:

tD (ranging from .01 to 1 s21), tS (ranging from .01 to 1 s21), tH

(ranging from .01 to 2.5 s21), wS?D (ranging from 0 to 100), m

(ranging from 1 to 100), and I0 (ranging from 0 to 20). The delay

parameters were taken from [14]. The remaining parameters were

set by hand.

The hardware platform used to perform the simulations was an

Intel i7-930 processor with 12 GB of RAM running a Debian

GNU/Linux 6.0 environment. All simulations and analyses were

performed using Python scripting language, Scipy/Numpy for

multidimensional array manipulation, and Matplotlib for plotting.

Integration of differential equations was implemented in a self-

developed Python C library extension. Genetic algorithm code was

also self-developed.

Results

Our main challenge in this research is to explain the basic

mechanisms underlying IOR using a multi-scale dynamics

paradigm. Simulations were performed to replicate behavioral

data, to compare the simulated activation of neurons in the model

to measured neurophysiological data, to analyze habituation, and

to analyze the expectation effect.

Simulating Behavioral Data
Figure 2 shows simulated RT increments plotted against

experimental RT increments (estimated from [1]). The increments

reflect RTs for uncued trials subtracted from RTs for cued trials,

Figure 2. Comparison of simulated and experimental IOR. RT increments for simulated data plotted against RT increments for experimental
data. Each dot reflects a single CTOA. Experimental data were estimated from Figure 32.2 in [1]. The figure indicates that the optimization resulted in
good fits.
doi:10.1371/journal.pone.0033169.g002
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hence providing a measure of IOR. The dots closely approximate

the diagonal, indicating that the simulated data closely approx-

imate the experimental data. The achieved fitness value (Equation

9) is 99.1. The average absolute difference between simulated and

experimental RT increments is 8.0 ms (SD = 3.3). Also shown in

the figure are the Pearson product-moment correlation between

simulated and experimental data (r = .95) and the associated

significance level (p = .004). Model parameters were optimized

with the data shown in this figure; all subsequent analyses used the

same parameter values.

Figure 3 provides a more detailed comparison of the

experimental and simulated data (upper and lower panel,

respectively). Presented are the mean RTs for cued target (filled

dots) and uncued targets (open dots). The average absolute

difference between the experimental and simulated data shown in

this figure is 23.3 ms (SD = 14.6) for the cued trials and 23.0 ms

(SD = 14.4) for uncued trials. Even though these means per

condition were not included in the optimization algorithm, the

errors are relatively small, hence indicating that the model reflects

the characteristic behavioral features of IOR.

Better fits were observed for optimizations that excluded the

condition CTOA = 0, in which the experimental data show more

facilitation (21 ms) than the current simulations (10 ms). In the

condition CTOA = 0 the cue and target appear at the same

moment. The model assumes a linear summation of the inputs of

cue and target which, apparently, did not lead to sufficiently

pronounced reduction in RT. Our interpretation of this result is as

follows: with the target, the external activation of the sensory field

already tends to approach its maximum of 1, reducing the possible

facilitatory effect of additional activation caused by the cue. We did

not try to achieve ad hoc improvements of the model in this regard.

Simulating Neurophysiological Data
To compare our model to neural activation measured with

single-unit recordings, and to provide an intuition about the

functioning of the model, we next consider the activation of

simulated neurons at the x-locus of the target, referred to as x0.

Figure 4 depicts the temporal evolution of the components of the

model under different stimulation conditions. The left part of the

figure contains, from top to bottom, the time course of the internal

components of the model, D(x0,t) and S(x0,t), and the time course

of the Imax-parameter of the expectation signal. The right part of

the figure contains the external activation variables, aD(x0,t) and

aS(x0,t), and the habituation, H(x0,t). All variables are presented for

CTOAs of 25, 75, and 500 ms. Solid curves indicate cued targets

and dashed curves indicate uncued targets. The timing of the

target (T) and the cue (C), taking into account the delay of these

signals, is indicated at the bottom of the figures.

Figure 3. Mean RTs for experimental and simulated data. Mean RTs are shown for different CTOAs. Upper panel shows behavioral data
estimated from Figure 32.2 of [1] and lower panel shows results of our simulations. The figure indicates reasonable fits despite the fact that these
means were not included in the optimization algorithm.
doi:10.1371/journal.pone.0033169.g003
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The presented CTOAs where chosen to illustrate the possible

summations between cue and target. For CTOA = 25 ms there is

temporal coincidence of cue and target, whereas for

CTOA = 75 ms there is no temporal coincidence, but there still

is summation, for instance in S(x0,t), of the cue-induced and target-

induced activation. For CTOA = 500 ms, the excitation generated

by the cue has dissipated from S(x0,t) due to the fast temporal

dynamics of the sensory field. Behaviorally, the first two CTOA

conditions show facilitation for informative cues and the last

CTOA condition shows inhibition. Let us consider the observed

dynamics for each stimulation condition in more detail.

In the CTOA = 25 ms condition, the coincidence of cue and

target produces a higher activation in S(x0,t) for cued trials than for

uncued trials, but this difference is partially mitigated in aS(x0,t).

The difference in stimulation received by D(x0,t) can be measured

as the area between the dashed and solid curves in aS(x0,t), which is

small. Differences in RTs were computed as the differences in

which any locus in the aD(x,t) field reached the threshold of .8.

These differences, however, are essentially the same as the

differences in which the target-aligned curves in the aD(x0,t) plots

reach the threshold. The leftmost panel for the aD(x0,t) signal

shows that cued trials are faster than the uncued ones, but not

much (see also Figure 3).

In the CTOA = 75 ms condition, the temporal succession of the

cue and target determines that the difference in the excitation of

aS(x0,t) that is projected to D(x0,t) in the cued and uncued

conditions is larger than in the CTOA = 25 ms condition. The

curves S(x0,t) and aS(x0,t) now show an almost independent peak of

activation for the cue. The peak in aS(x0,t) raises the activation in

D(x0,t) so that, when the target arrives, D(x0,t) already has a

substantial activation and aD(x0,t) more easily reaches the

threshold. This facilitatory effect goes together with an inhibitory

effect. The stronger and earlier habituation in the cued condition,

which can be observed in H(x0,t), leads to a lower target-induced

peak in aS(x0,t), and hence to a smaller target-induced effect in

D(x0,t). Because in this CTOA condition the facilitatory effect is

stronger than the inhibitory effect, the solid curve for aD(x0,t)

reaches the threshold sooner than the dashed curve.

In the CTOA = 500 ms condition, the temporal interval

between cue and target is so large that S(x0,t) and aS(x0,t) reach

their resting state before target onset. When the target-induced

excitation arrives, there is little cue-induced excitation left in

Figure 4. Component-by-component overview of the functioning of the model. Evolution of D(x0,t), S(x0,t), and Imax-parameter of
expectation signal (left panels) and of aD(x0,t), aS(x0,t), and H(x0,t) (right panels), as a function of time. All signals are illustrated for representative
CTOAs: 25, 75, and 500 ms. The activation for cued trials is indicated with solid curves and the activation for uncued trials with dashed curves.
T = timing of the target; C = timing of the cue. The figure provides intuitions about the functioning of the model, most particularly about the interplay
of early facilitation and late inhibition. See text for details.
doi:10.1371/journal.pone.0033169.g004
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D(x0,t). The dominant component of the dynamics, therefore, is

the slow temporal evolution of H(x0,t), giving rise to an inhibitory

effect. The magnitude of the inhibitory effect can be observed in

the difference in the peaks generated by the target in aS(x0,t). This

difference is propagated to D(x0,t), where uncued trials now have a

higher target-induced slope, producing a faster RT.

The interplay of the facilitatory and inhibitory effects in the

model shows a qualitative resemblance to the activation of

visuomotor neurons in the intermediate layer of the superior

colliculus. It is illustrative to compare our simulation results to the

single-unit recordings of Fecteau and Munoz [11] and to the

schematic portrayal of IOR as the product of habituation by

Dukewich [12]. In both examples, facilitation at short CTOAs

goes together with the summation of target-induced and cue-

induced activation (Figure 2c of [12]; blue line in upper right panel

of Figure 3 of [11]), and inhibition at longer CTOAs goes together

with a reduced target-induced effect and a by then largely decayed

cue-induced activation (Figure 2d of [12]; blue lines in lower right

panels of Figure 3 of [11]).

One cannot expect more than a qualitative similarity between

our simulation results and the neurophysiological recordings

because the model was optimized for manual RTs of humans

and the recordings concerned saccadic responses of monkeys. One

of the notable differences between the simulations and the

neurophysiological data is that we observed a cue-induced peak

of activation in D(x0,t), most clearly in the CTOA = 500 ms

condition, but not in aD(x0,t). The field aD(x,t), however, is

hypothesized to reflect external activation in the intermediate layer

of the superior colliculus, and cue-induced peaks of activation have

been measured in this layer [11]. It is possible to make the cue-

induced activation more visible in the model component aD(x,t),

for instance by setting hD in Equation 1 closer to 0 or by using a

smaller value of bD in Equation 4.

The Effect of Habituation
The sensorimotor hypothesis affirms that IOR is related to

habituation and habituation-induced sensory depression. To inspect

the sensory depression in the model, we ran simulations that were

identical to the previous ones with the following exceptions: CTOAs

were varied from 0 to 4 s in increments of 10 ms, the target lasted

500 ms, and we used Iexo = 60 for cue and target.

Figure 5 shows the maximum height of the target-induced peak

in aS(x0,t), hence illustrating the sensory depression. The curve

quickly drops for small CTOAs, reaches a minimum at a CTOA

of about 150 ms, and slowly recovers for higher CTOAs.

Remember that the habituation in the model is generated

dynamically, which is to say that it is fully accounted for by a

simple set of equations. Figure 5 may be compared to the left side

of Figure 4b of [11] (cf. Figure 1c of [14]). These authors measured

the target-induced activity in visual neurons in the superficial layer

of the superior colliculus. The simulated curve is similar to the

measured one in the sense that it shows a fast initial drop in target-

induced activity followed by a gradual increase for longer CTOAs.

Let us note once more that the data of Fecteau and Munoz [11]

were measured for monkeys performing a saccadic reaction task.

IOR for saccadic responses of monkeys is typically observed only

for CTOAs smaller than 1 s, whereas IOR for manual responses

of humans may last as long as 6 s. This difference is reflected in the

respective habituation curves: Whereas the curve of Fecteau ad

Munoz shows a full recovery for CTOAs of about 1 s, our curve

shows habituation for CTOAs of up to 4 s.

The Effect of Temporal Expectation
Our model emphasizes sensorimotor contributions to IOR.

Even so, the model includes endogenous input for the temporal

expectation effect (Equation 8; lower panels of left side of Figure 4),

which can be interpreted as an influence from higher-order

processes [20]. To test the importance of this input we performed

simulations without it. The mean RTs obtained with these

simulations are presented in Figure 6. The distance between the

curves in the figure indicates that the model without expectation

input reproduces IOR. Furthermore, whereas the RTs produced

with the expectation input show a tendency to decrease with

increasing CTOAs, especially for CTOAs larger than 500 ms (not

shown in the figures), without the expectation input the model

does not show such a decrease in RTs.

These modeling results can be related to a behavioral study of

Tipper and Kingstone [20], who performed a manipulation that,

according to their interpretation, led participants to rely or not rely

on the temporal predictability of cues. The condition with reliance

on the temporal predictability replicated the common behavioral

characteristics of IOR. In the condition without reliance on the

Figure 5. Habituation curve. Peak value of aS(x0,t) in response to a 500-ms target after a 50-ms cue, as a function of CTOA. The figure indicates a
qualitative similarity of our dynamically generated sensory depression to experimentally observed sensory depression [11].
doi:10.1371/journal.pone.0033169.g005
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temporal predictability IOR was still observed, but the RTs did

not decrease with increasing CTOAs. These observations are

consistent with the above-mentioned modeling results. Tipper and

Kingstone, however, also reported a decrease in the magnitude of

IOR in the condition without reliance on temporal predictability.

A comparison of our Figures 3 and 6 shows that this decrease in

not consistent with our results.

Discussion

The activity of visuomotor neurons in the intermediate layer of

the superior colliculus is closely related to IOR effects observed

with behavioral measures [9] and the activity of these neurons has

successfully been modeled with dynamic fields [16]. This suggests

that IOR can also be modeled with dynamic fields. Satel and

colleagues [14] indeed presented a single-layer dynamic field

model that explains several IOR-related effects. However, IOR

arguably emerges from the interaction of processes with different

time-scales: a facilitatory effect of the cue-induced activation that

decays quicker than the inhibitory effect of the cue-induced

sensory habituation. The interaction of processes with different

time-scales invites the use of multi-layer models.

We continued the direction taken by Satel and colleagues [14]

and developed a multi-layer dynamic field model for IOR. Our

model includes a dynamic account of sensory habituation.

Simulations showed that (a) our model is consistent with

behavioral IOR data [1], (b) the activation of visuomotor neurons

in our model is qualitatively similar to the activity of visuomotor

neurons in the intermediate layer of the superior colliculus of

monkeys performing IOR tasks [9], (c) the sensory habituation

shown by our model is qualitatively similar to the depression of the

activity of neurons in the superficial layer of the superior colliculus

of monkeys [11], and (d) our model is consistent with behavioral

results regarding temporal expectancy effects [20].

With our model we aim to contribute to a dynamical-systems

description of behavior as a multi-scale tuning to the environment

[21,22]. The shortest time-scale in our model is the one of the

sensory field (tS = .048 s21), meaning that the sensory field has

the highest temporal resolution. One order of magnitude above

sensation, the decision field has a lower temporal resolution

(tD = .328 s21), but it includes lateral interactions (Equations 6

and 7) that improve the spatial resolution. The decision layer

integrates diverse sources of information so as to reach a unique

decision. Our model includes a habituation that is one order of

magnitude slower (tD = 1.62 s21) than the decision processes. The

habituation layer is reciprocally coupled to the sensory layer

(Equations 3 and 5). The habituation is crucial to the modeling of

IOR. Even so, rather than being generated and localized at one

of the layers, behavioral effects emerge from interactions among

layers.

A tuning of the organism to the environment that occurs at yet

longer scales can be referred to as learning. This process may be

based on many perception-action cycles [23] and its effects may

last for many cycles as well (cf. [24]). Our model does not

implement processes at this longer time-scale. Relatedly, rather

than a dynamic modeling of the expectation effect, our model

assumes an expectation effect (see Equation 8 and the text above

that equation). In the simulations the expectation effect is either

included (in most cases) or not included (in the simulations

concerning the results of [20]). To achieve a more encompassing

model one could include an additional field, referred to as

expectation field, whose activity builds up over trials at locations at

which targets are presented, and with projections to the decision

field (in analogy to the memory field discussed in [25]). Including

processes with the longer time-scale of expectation may be needed

to model empirically observed previous trial and learning effects

[26–28].

To summarize, we developed a model that implements a multi-

scale dynamic field explanation for IOR. Processes with different

time-scales continuously and concurrently tune behavior to the

environment. The model uses a single language, the language of

dynamical systems, to describe informational, physiological, and

behavioral quantities. The model combines these heterogeneous

mechanisms into a single system composed of coupled state

variables, extended over a common spatial metric and evolving in

a common temporal dimension. Within such a framework, the

behaviorally observed rates of the different phenomena are

expressed as the time-scale separation of the dynamics of the

different state variables.

Figure 6. Simulations without temporal expectation. Simulated RTs for different CTOAs obtained with a model without endogenous
expectation-related input. The figure indicates that the characteristic RT increments are observed also for a model without expectation input.
doi:10.1371/journal.pone.0033169.g006
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3. Lupiáñez J, Klein RM, Bartolomeo P (2006) Inhibition of return: Twenty years
after. Cogn Neuropsychol 23: 1003–1014.

4. Klein RM (2000) Inhibition of return. Trends Cogn Sci 4: 138–147.

5. Posner MI, Rafal RD, Choate LS, Vaughan J (1985) Inhibition of return: Neural
basis and function. Cogn Neuropsychol 2: 211–228.

6. Danziger S, Fendrich R, Rafal RD (1997) Inhibitory tagging of locations in the
blind field of hemianopic patients. Conscious Cogn 6: 291–307.
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