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México, 2 Department of Plant Breeding, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, México

Abstract

A central goal of cancer biology is to understand how cells from this family of genetic diseases undergo specific
morphological and physiological changes and regress to a de-regulated state of the cell cycle. The fact that tumors are
unable to perform most of the specific functions of the original tissue led us to hypothesize that the degree of specialization
of the transcriptome of cancerous tissues must be less than their normal counterparts. With the aid of information theory
tools, we analyzed four datasets derived from transcriptomes of normal and tumor tissues to quantitatively test the
hypothesis that cancer reduces transcriptome specialization. Here, we show that the transcriptional specialization of a
tumor is significantly less than the corresponding normal tissue and comparable with the specialization of dedifferentiated
embryonic stem cells. Furthermore, we demonstrate that the drop in specialization in cancerous tissues is largely due to a
decrease in expression of genes that are highly specific to the normal organ. This approach gives us a better understanding
of carcinogenesis and offers new tools for the identification of genes that are highly influential in cancer progression.
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Introduction

Cancer is a complex family of acquired genetic diseases in which

a single cell clone and its progeny accumulate heritable changes

that cause a malignant phenotype of deregulated cell growth and

differentiation [1]. Numerous studies have been performed to

better understand the alterations that occur in the transcription

profile during the progression of cancer [2]. These experiments

have been carried out by directly counting the tags of expressed

genes using serial analysis of gene expression (SAGE) [3],

expressed sequence tags (ESTs) [4], and other counting strategies,

or by indirectly measuring the levels of transcription using DNA

microarrays [5]. In many cases, these experiments have detected

genes that are preferentially expressed in a cancer tumor and can

serve as molecular markers of malignancy. In addition, they can

also detect significant alterations in the transcription level of sets of

genes that participate in complex signaling networks. Changes in

these networks represent distortions of the pathways that regulate

the physiology of normal cells [6].

Cancer cells lose the ability to perform the normal functions of

the original tissue, and at the same time, gain characteristics that

allow them to survive as an independent and frequently invasive

tumor. As cell lines evolve from a normal to a cancerous state,

mutations drive an increase in genetic diversity [7]. This process

occurs in parallel with the selection of phenotypes and genotypes

that permit the pre-cancerous cells to thrive in their microenvi-

ronment [8]. Tumor cells often lack the differentiation that is

present in the normal tissue that they originate from. Since the

mid-19th century, this fact has lead pathologists to suggest that

tumors arise from embryo-like cells [9]. Given that cancer must

arise from a cell that has the potential to divide, two nonexclusive

hypotheses of the cellular origin of tumors have historically been

proposed. The first hypothesis states that malignancy arises from

stem cells due to maturation arrest; the second states that cancer

arises from the dedifferentiation of mature cells [10]. More

recently, however, the concept of ‘‘cancer stem cells’’, or rare cells

with a limitless potential for self-renewal, has gained acceptance as

a subpopulation of cells that drives tumorigenesis. This hypothesis

is based on findings that have shown that in some cases, only a

subset of the cells within a tumor have unlimited proliferative

potential [11]. However, this hypothesis remains controversial,

since the growth of certain malignant tumors is driven by a

substantial percentage of tumor cells that are not cancer stem cells

(greater than 10%) [12]. Regardless, there is clear evidence that

the undifferentiated phenotype of many tumor cells resembles the

phenotype of undifferentiated normal cells, such as embryonic

stem cells. Moreover, the study of gene expression in cancer

tumors has revealed that poorly differentiated tumors show

preferential overexpression of genes normally enriched in

embryonic stem cells, supporting the possibility that these genes

contribute to the stem cell-like phenotypes shown by many tumors

[13].

Previously, we described the development of indexes based on

Shannon’s information theory to measure transcriptome diversity,

specialization, and gene specificity of normal organs and tissues

[14]. In that study, we obtained an index of gene specificity, Si,

which has a value of zero for genes that are equally expressed in all

tissues and has a defined maximum value when a gene is expressed

in only one tissue. Transcriptome specialization, dj, therefore, is

defined as the average gene specificity expressed in the

transcriptome (see Materials and Methods). In general, a tissue is

more specialized if specific genes are highly expressed in it. We
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also demonstrated that human organs have a particular degree of

diversity and specialization that is related to their functionality. In

this study, we applied information theory tools to compare the

transcriptome diversity and specialization of cancerous tumors vs.

their normal counterparts. We show that the specialization of

cancer tissues generally diminishes when compared with their

normal counterparts, which is mainly due to the decrease in

expression of highly specific genes.

Results

We hypothesized that the morphological and functional changes

that occur during cancer progression would lead to substantial

changes in the cancer transcriptome, including a reduction in

specialization, when compared to that of analogous normal tissues.

To test this hypothesis in a broad framework, we selected three

collections of gene tags and one microarray experiment. Datasets

A and B are selected collections of cDNA libraries from the

‘‘Cancer Genome Anatomy Project’’ [15] for human and mouse

tissues, respectively. Dataset C consists of SAGE libraries from

normal human and tumor tissues obtained from the ‘‘Human

Transcriptome Map’’ project [16] and dataset D is a microarray

study of human tissues in normal and pre-cancerous states that

were paired by patient [17]. Datasets A and B incorporate five

embryonic stem cell (ESC) and one hematopoietic stem cell (HSC)

libraries and were included in the analysis based on their degree of

dedifferentiation. These datasets were subjected to the analysis of

information properties of the transcriptome as previously de-

scribed [14]. In the counting tags datasets, we assessed the

statistical significance of the differences in specialization. In each

case, we obtained the specificity (Si) and Target Specificity (TSij) for

the genes studied in the datasets, which allowed for the selection of

putative overexpressed genes in cancer or normal tissues as well as

the discrimination of genes preferentially expressed in a given

condition.

Evaluating transcriptome specialization in normal and
cancerous tissues

The analysis of datasets A and B for estimating the transcriptome

diversity (Hj,) and specialization (dj) indexes were done at three

levels of cDNA library grouping with the following designation:

individual cDNA libraries were defined as ‘‘ungrouped’’; assembled

cDNA libraries originating from the same kind of organ and tissue

state (normal or cancer) were defined as ‘‘grouped’’; and a further

clustering of the cDNA libraries that only considered the tissue state

and not the organ of origin were defined as ‘‘complete grouping’’

(see Materials and Methods). Hj measured the variability of the

distributions of transcripts and dj assessed the average specificity of

the genes expressed in the transcriptome. Visualization of the

positions of the transcriptomes in the (Hj, dj) coordinates allowed us

to effectively evaluate the relative differences in these significant

parameters. Results for the ungrouped analysis, dataset D analysis,

tables of confidence intervals for the relevant parameters, and

dissection of the differences in transcriptome specialization are

discussed in Supporting Text S1.

Figure 1 presents scatter plots for the levels of transcriptome

diversity, Hj, and specialization, dj, at the grouped level for datasets

A and B. When comparing 12 pairs of human analogous tissues,

11 cancerous tissues had significantly less specialization than their

normal counterparts, with eye cancer being the only tissue that

had an estimated specialization that was greater that its normal

counterpart (Figure 1A, Table S4, and Supporting Text S1).

However, after further analysis, we concluded that the eye tissue

sample is most likely distorted due to the smaller sample size of the

normal eye library (10,679 tags) compared to the cancerous eye

Figure 1. Scatter plot of Hj (Diversity) and dj (Specialization) in transcriptomes of normal tissues (blue), cancerous tissues (red), and
stem cells (black). Comparable data sets are linked by a discontinuous line. A - Human data from 53 libraries of 13 distinct tissues with a total of
671,197 tags for 28,087 genes; grouped analyses. B - Mouse data from 29 libraries of 5 distinct tissues and with a total of 541,453 expressed tags for
25,044 distinct genes; grouped analyses. Data for A and B are from the ‘‘Cancer Genome Anatomy Project’’ (http://cgap.nci.nih.gov/). Approximate
95% confidence intervals for diversity and specialization are plotted as continuous colored lines. See Supporting Text S1 as well as Figure S1, Figure
S2, Figure S3, Figure S4, Figure S5 and Figure S6 that illustrate individual comparisons and details.
doi:10.1371/journal.pone.0010398.g001
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library (42,029 tags) (see Supporting Text S1). This likely

prevented the correct estimation of eye-specific genes in the

normal library. All changes in specialization of the transcriptomes

are statistically significant (Table S4 and Table S5; P,0.01).

Figure 1A also shows that transcriptome diversity, measured by Hj,

increased in the cancerous states of all tissues, with the exception of

testis and placenta. The increase in Hj indicates a more even

distribution of the transcription levels of expressed genes, which is

most likely due to a decrease in the expression of genes prevalent

in the normal tissues. As shown in Figure 1A, we observed that the

specialization of the grouped ESC libraries is at the same level as

the majority of the cancer tissues. This is in agreement with the

low morphological specialization of ESCs.

In order to assess the drop in specialization of the cancerous

tissues, we compared the average specificity of genes that were

over-expressed in normal tissues to that in cancerous tissues. In

general, we found that there was a significantly greater average

specificity of genes over-expressed in normal tissues, suggesting

that the decrease in specialization was due to the reduction or

elimination of the expression of highly specialized genes in normal

tissues during carcinogenesis (see Table S11 and Figure S11). We

also analyzed the ten most influential genes that caused the

reduction in specialization in all eleven tissues of dataset A. For

each tissue, we found examples of organ-specific genes that were

switched off in the corresponding cancer tissue, including

Chondroadherin (CHAD) in bone, Uromodulin (UMOD) in

kidney, the acid phosphatase prostate specific (ACPP) gene in the

prostate, and a gene for the spermatogenesis-associated protein in

the testis (Table S12).

To confirm our hypothesis that specialization decreases in

cancerous tissues, we examined a completely independent model

of mouse tissues (dataset B). In this analysis, all of the normal

tissues showed significantly greater specialization than the

corresponding cancerous tissues (Figure 1B, Table S6 and Table

S7; P,0.01). Dataset B also included a library of HSCs obtained

from bone marrow. These cells showed a level of specialization

comparable with normal lung and skin even when undifferentiated

(Figure 1B). In four of the five organs studied in dataset B, the

average specificity of the genes that were over-expressed in normal

tissues was significantly greater than the corresponding value for

cancerous tissues, with the exception of the mammary gland

(Table S11). However, genes related to milk production, which

were within the most influential genes of the mammary gland and

have a high specificity of expression in this tissue (Table S13 and

Table S14), showed an extreme drop in expression in the

cancerous tissue. These results explain the general drop in

specialization seen in the mammary gland. In addition, the scatter

plots of gene frequency change between normal and cancerous

tissues vs. specialization showed a prevalence of highly specific,

over-expressed genes in normal tissues from the five organs studied

(Figure S12). We conclude that highly specific genes that have

diminished expression in the cancerous tissues drive the drop in

specialization, similar to that seen in dataset A.

The data from the ‘‘Human Transcriptome Map’’ (dataset C)

consist of a collection of SAGE gene tags that belong to

heterogeneous normal and tumor tissues that are grouped by

chromosome. We disregarded the obvious differences in transcrip-

tion profiles between distinct organs and only tested the hypothesis

that specialization diminishes in the tumor transcriptomes. It is

worth noting that in contrast to the analyses of datasets A and B,

where gene specificity was estimated for the combination of tissue

and condition, in dataset C the specificity is estimated only with

regard to the state of the tissue (normal vs. tumor) and disregards

the tissue of origin. Therefore, gene specificity in this dataset only

refers to normal or tumor tissues and implies that a much lower

estimated specialization would be observed. A large and significant

change in transcriptome specialization between the normal and

tumor tissues was seen for all chromosomes (Figure 2, Figure S7,

Figure S8, Figure S9 Figure S10, Table S9, and Supporting Text

S1), with the exception of chromosome Y, for which the difference

is not significant. Most of the differences that are significant (23 out

of 24) are in the expected direction and have less specialization in

the tumor transcriptomes. One exception to this was chromosome

18, for which the change in specialization is in the opposite

direction (see Supporting Text S1). However, the analysis of all loci

together (Figure 2 and Table S9) strongly supports the hypothesis

that cancer reduces specialization of the tissues.

In our previous study, we showed that the estimated rank of

variation of diversity and specialization in the human transcrip-

tome is much smaller when using microarrays than when counting

gene tags [14]. This is due to the relatively narrower dynamic

range of microarrays compared with tag counting strategies [18],

which distorts both high and low expressed genes. Despite these

shortcomings, the analysis of normal (TDLUs) and precancerous

(HELUs) tissues paired by patient (dataset D) showed a large drop

in specialization in precancerous tissues in seven of the eight cases

studied (Figure S13).

Genes detected only in cancer
The information theory approach for studying the transcrip-

tome has the advantage of allowing an estimation of the degree of

global gene specificity, Si, of each gene studied, as well as its target

specificity, TSij, a parameter that measures the specificity of a

given gene for a selected transcriptome (see Mathematical

Addendum in Supporting Text S1). These tools permit the easy

selection of genes that are preferentially expressed in cancer tissues

and therefore have the potential to serve as molecular markers of

malignancy. In addition, these indexes may aid in identifying

genes that are specific to a particular kind of cancer or genes that

are not significantly altered during the development of cancer and

therefore can serve as marker controls when measuring genes of

varying expression. It is important to note that when a gene in a

particular dataset is detected in only cancer tissues, it cannot be

inferred to be exclusively in cancer, since it could also be present in

normal tissues at undetectable levels. However, genes with high

levels of expression that are only found in cancer tissues are good

candidates for being significantly up-regulated in cancer.

To identify genes that are differentially expressed in cancer

tissues, we determined gene specificity (Si) and target specificity (TSij)

in dataset A using the complete grouping analysis. Table 1 shows

examples of genes represented in cancer tissues at the highest

proportion of expression level (greater than 1 in 10,000) and absent

from all normal tissues. These genes were only detected in the

cancer tissues, with a number of tags (ranging from 54 to 535) in

cancer tissues and no tags in normal tissues (maximum Si in the

analysis). To statistically validate the upregulated frequency of these

genes, we applied the Fisher exact test [19] with the Bonferroni

correction for multiple testing [20] (see Methods). Table 2 presents

genes that were detected in only one type of cancer. The

identification of these kinds of genes was possible (trough Si and

TSij) due to the inclusion of various types of cancer tissues in the

analysis. Table S10 shows examples of genes exclusively expressed at

relatively high rate in tumor tissues in the analysis of dataset C.

Discussion

The use of information theory tools to quantitatively assess

changes in steady state transcript abundances allowed us to

Cancer Transcriptomes
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Table 1. Genes exclusively detected by the fully grouped analysis in cancer tissues in dataset A (human data) at high expression
frequency (.0.0001).

Gene Symbol Gene Description Frequency pij Tissues P-value

SILV Silver homolog (mouse) 0.00109391 3 ,2.2e–16

DHRS2 Dehydrogenase/reductase (SDR family) member 2 0.00024536 4 5.838e–13

SOX10 SRY (sex determining region Y)-box 10 0.00023105 2 3.732e–12

TRAF7 TNF receptor-associated factor 7 0.00022083 10 9.017e–12

C10orf2 Chromosome 10 open reading frame 2 (Twinkle) 0.00020038 8 1.467e–10

PRPS1 Phosphoribosyl pyrophosphate synthetase 1 0.00016971 10 5.846e–09

MLANA Melan-A 0.00015949 1 1.311e–08

AIPL1 Aryl hydrocarbon receptor interacting protein-like 1 0.00015949 2 1.311e–08

MAGEA6 Melanoma antigen family A, 6 0.00015949 5 1.311e–08

KLHL21 Kelch-like 21 (Drosophila) 0.00014517 9 8.442e–08

GNB3 Guanine nucleotide binding protein (G protein), beta polypeptide 3 0.00014313 2 8.137e–08

KIFC1 Kinesin family member C1 0.00014108 10 1.322e–07

S100B S100 calcium binding protein B 0.00013904 2 1.287e–07

CDT1 Chromatin licensing and DNA replication factor 1 0.00013086 11 3.23e–07

ZWINT ZW10 interactor antisense 0.00012677 10 8.912e–07

XAB2 XPA binding protein 2 0.00011655 9 1.997e–06

SLC45A2 Solute carrier family 45, member 2 0.00011041 2 5.299e–06

Frequency pij – Relative average frequency of expression in cancer tissues. Tissues – Number of cancerous tissues where the gene was expressed in the 12 tissues
studied in dataset A. P-value for the Fisher’s Exact Test for the frequency of expression of the gene in normal vs. cancer tissues; significant at an a<0.05 experiment-wise
confidence level by Bonferroni correction.
doi:10.1371/journal.pone.0010398.t001

Figure 2. Scatter plot of Hj (Diversity) and dj (Specialization) in transcriptomes of normal (blue) and tumor (red) tissues in dataset C.
Human expression data are from the ‘‘Human Transcriptome Map’’ project (http://bioinfo.amc.uva.nl/HTMseq/controller), datasets ‘‘All tissues
normal’’ and ‘‘All tissues tumor’’. Data consist of 18,609,073 tags for a total of 62,916 loci by chromosome. See Figure S7, Figure S8, Figure S9 and
Figure S10 that amplify the boxes of this figure presenting the 95% confidence intervals for the estimates.
doi:10.1371/journal.pone.0010398.g002
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examine four different datasets to determine whether cancerous

tissues have less transcriptome specialization than their normal

counterparts. The results obtained from these analyses showed

that specialization of the cancer transcriptome decreased when

compared to the normal tissue equivalent. The decrease in

transcriptome specialization was due mainly to a reduction in the

expression level of genes that are tissue-specific and usually

expressed at high levels in normal tissue (see Supporting Text S1

and Table S11, Table S12, Table S13, Table S14, Table S15 and

Table S16). These results are in agreement with the observation

that tumors often show morphologically dedifferentiated cell types

in a manner similar to that observed in stem cells [21]. In addition,

molecular evidence has shown that poorly differentiated cancer

tumors overexpress genes that are enriched in embryonic stem

cells [13]. It is not completely clear whether cancer initiates by a

process of de-regulation of organ stem cells or by a de-novo

dedifferentiation of organ cells driven by the mutations that arise

during the development of the tumor [7].

All high throughput transcriptome studies that used either

counting tag strategies or microarrays only measured relative

changes in transcription levels. This approach makes the

universally accepted assumption that all cells have the same

absolute transcriptional activity. However, this assumption lacks

experimental validation, especially in the case of cancer cells. The

method used in this study measured relative levels of gene

expression (the set of pij) to assess gene specificity, transcriptome

diversity, and specialization. Therefore, we cannot rule out the

possibility that all of the genes could have a higher absolute

expression level in cancer than in normal tissues. Nevertheless, a

general increase in transcription in cancerous cells would not have

a major impact in the transcriptome specialization or in the

specificity of gene expression.

Transcriptome specialization, di, is measured exclusively in the

context of the organs or tissues included in the analysis and reflects

the organ or tissue bias towards the expression of specific genes.

To estimate the ‘‘true’’ specialization of a tissue, all distinct cell

types of a given organ must be included separately in the analysis.

This was not fulfilled in the analysis performed here due to

limitations in the data used in this study. A second factor that

affects the estimation of specialization is the sample size, or more

specifically, the number of gene tags employed. Highly specific

genes tend to be expressed in a small subset of the cells that form

an organ and thus have a high probability of not having any gene

tags and not being present if the sample is relatively small. As a

result, specialization tends to be underestimated in small sample

sizes. In the case of dataset A, the total number of tags was

620,696, with 131,623 (21%) tags corresponding to normal tissues

and the remaining 489,073 (79%) tags corresponding to cancerous

tissues. Therefore, the potential for underestimation of specializa-

tion was higher for normal tissues than for cancerous tissues.

Nevertheless, Figure 1A shows strong evidence of less specializa-

tion in the cancerous tissues. This was observed in datasets B and

C as well.

Human organs are comprised of different numbers and types of

cells and therefore have distinct levels of complexity. A more

complex organ will have a greater number of distinct cell types,

and as a result, the estimation of its diversity and specialization will

be less precise and require a larger sample size for accuracy. In

contrast, tumors are formed by a small number of distinct cell

types and the estimation of its diversity and specialization will be

more precise with a given sample size. This is evident by the size of

the confidence intervals for each point in Figure 1 (also see Figure

S1, Figure S2, Figure S3, Figure S4, Figure S5 and Figure S6). In

both cases (datasets A and B), the size of the confidence intervals is

larger for the normal tissues analyzed than for their cancerous

counterparts. Nevertheless, the differences in specialization

between normal and cancerous tissues are several confidence

intervals apart, demonstrating that the conclusions are statistically

robust (Table S4, Table S5, Table S6, Table S7 and Table S8).

It is well known that tumor cells are often undifferentiated and

resemble embryonic stem cells [9]. To compare the level of

specialization of cancer tissues with that of ESCs, we included five

libraries of ESCs in dataset A and analyzed them individually

(Figure S1) or as a group (Figure 1A). The position of the ESC in

Figure 1 and Figure S1 corroborates that the level of specialization

of stem cells is comparable to the majority of the cancer tissues

analysed. These data confirm the correlation between the

phenotypic dedifferentiation and the drop in specialization in

both ESCs and cancer cells. Unfortunately, data showing the

degree of dedifferentiation in the distinct tumors analysed in

datasets A, B, and C were not present in the databases, and

therefore we could not infer whether there is a relationship

between the degree of dedifferentiation of the tumor and its drop

in specialization. However, we hypothesize that this relationship

probably exists, since the degree of dedifferentiation of the tumor

appears to correlate with the expression of the sets of genes that

are enriched in ESCs [13].

We analyzed a library of HSCs as part of dataset B. This library

was made from FACS-purified, hematopoietic stem cells obtained

from bone marrow and represents cells that can differentiate into

myelomonocytic cells, B cells, or T cells. In contrast with the ESCs

of Figure 1, these cells originated from a specialized adult organ.

As shown in Figure 1B, HSCs have a level of estimated

specialization comparable to that of normal lung and higher than

Table 2. Examples of genes highly expressed in only one type of cancer in dataset A.

Organ Gen symbol Gen description pij P-value

Eye OTX2 Orthodenticle homeobox 2 0.00074 0.00131448

Liver ASGR2 Asialoglycoprotein receptor 2 0.00063 0.01024596

Lung T T, brachyury homolog (mouse) 0.00050 0.00692187

Lymph C4orf7 Chromosome 4 open reading frame 7 0.00065 0.01260259

Limphr IL9R Interleukin 9 receptor 0.00052 0.001396

Placenta DNMT3L DNA (cytosine-5-)-methyltransferase 3-like 0.00084 4.0955e–07

Skin MLANA Melan-A 0.00066 0.00964147

Frequency pij – Relative average frequency of expression in cancer tissues. P-value for the Fisher’s Exact Test for the frequency of expression of the gene in the normal
vs. cancer tissues
doi:10.1371/journal.pone.0010398.t002
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that of normal skin. This indicates that relatively undifferentiated

cell types can present a relatively high specialization of the

transcriptome. Our conclusion is also supported by the tran-

scriptome analysis of normal lymphatic tissues (Lymph and

Lymphr; Figure 1A).

We propose that the fitness of a pre-cancerous cell, in the

context of a tumor, will be increased if the genes related to the

original function of the parental tissue are switched off, because

this highly expressed and specific set of genes represents a high cost

in energy and resources that would be disadvantageous in the

context of the tumor. Our hypothesis suggests that if the

expression of these highly expressed and specific genes is reduced

or turned off, then a decrease in tissue specialization should be

observed. Dissecting the reduction in specialization through

analysis of the individual genetic components will provide a better

understanding of carcinogenesis. Moreover, if the drop in

expression of at least some of these genes precedes morphological

changes in the pre-cancerous cells, the drop could be exploited for

diagnostic proposes. Our hypothesis is not contradicted by the

observation of dedifferentiation in cancer tissues, but rather

parallels this finding: tissues with a greater dedifferentiated

phenotype will express a less specialized transcriptome.

The analysis in dataset C was performed on loci that were

grouped by chromosomes from a heterogeneous mixture of tissues

classified only as ‘‘normal’’ or ‘‘tumor’’. Therefore, the specificity

of the loci is only estimated with regard to this criterion and not

with regard to the organ of origin as in datasets A and B. As a

consequence, the specialization estimated for the ‘‘normal’’ and

‘‘tumor’’ tissues is much smaller than the rank of specialization

estimated when the organ of origin is taken into account (compare

figures 1 and 2). Despite smaller differences in specialization

between normal and cancerous tissues in dataset C, the data are

statistically significant for all chromosomes (except for chromo-

some Y) and all cases, except for chromosome 18, indicate that a

drop in specialization occurs in tumors (Table S8). Interestingly,

chromosome 18 contains several tumor suppressor genes including

DDC, DPC4, and JV18-1/MADR2 [22], and therefore the high

expression of these genes could drive the observed increase in

specialization (see Table S15). Taken together, these data serve an

independent confirmation of the hypothesis that transcriptome

specialization diminishes in tumors. We predict that enhanced

understanding of the mechanisms responsible for the drop in

specialization that occurs in tumors through better characteriza-

tion of cancer transcriptome profiles will lead to the development

of new molecular diagnosis tools and intervention techniques.

From the analysis of grouped normal and cancerous tissues in

dataset A (‘‘complete grouping’’; see Methods) we detected 14,573

genes (52%) out of a total of 28,087 genes that were represented in

either normal or cancerous tissues only (estimated gene specificity

Si = 1). Of these genes with maximum specificity, 6,220 (43%) were

detected exclusively in cancer and the remaining 8,353 (57%) were

detected exclusively in normal tissues. Our observations that

particular genes were found in only one specific group (normal or

cancerous tissues) were dependent upon the sample size and

therefore required statistical analyses to determine the significance.

The Fisher’s exact test with Bonferroni correction (see Methods)

concluded that only 17 of the genes that were exclusively detected

in cancerous tissues were significantly upregulated. These genes

are presented in Table 1. Table S17 presents the Gene Ontology

classifications for the genes presented in Table 1.

If information theory indexes are effective in identifying genes

upregulated in cancer, they should also detect genes that have

previously been reported to be associated with cancer. This was

indeed the case, as the list of genes exclusively detected in cancer

(Table 1), including TRAF7, PRPS1, CDT1, and ZWINT, were

previously reported as cancer marker genes [23,24,25,26]. More

importantly, this quantitative approach identifies genes potentially

involved in cancer that have not been previously identified, such as

KLHL21, KIFC1, and XAB2 (Table 1). A description of the genes

listed in Table 1 is presented in Supporting Text S1.

The genes listed in Table 2 were found to be present in only one

type of cancer at significantly high levels of expression (grouped

analysis, dataset A) and exemplify the rich possibilities of data-

mining using specificity (Si) and target specificity (TSij) of gene

expression. Among these genes, we found examples of cancer

markers (MLANA) (also reported in Table 1), a recently described

oncogene (OTX2) [27], and a gene used as a predictor of

circulating tumor cells (ASGR2) [28]. In lung cancer, we identified

a gene (T, the human T brachyury homologue) that has been

reported to be epigenetically silenced in non-small-cell lung cancer

[29], and in lymph cancer, we found a gene (C4orf7) that was

previously reported to have significantly high expression in lymph

node metastases [30]. Table S18 presents the Gene Ontology

classifications for the genes presented in Table 2.

The analysis performed here did not take into account the

mRNA splicing that forms distinct proteins, since the tags

employed were only annotated at the gene level in the datasets.

Further investigation is needed to assess the effect of splicing

deregulation in cancer over the transcriptome diversity and

specialization.

In the future, a more detailed functional analysis of genes with

altered expression in cancer will provide a better understanding of

their role in this dynamic process.

General conclusions
Our present data advance the current hypothesis that cancer

diminishes the specialization of affected tissues. This suggests that

although cancer tissues gain specialized functions in cell cycle

control, angiogenesis, and metastasis, they concomitantly exhibit a

loss of specialization and deregulation of sets of genes with tissue-

specific functions.

The application of gene specificity and target specificity

provides a powerful, practical tool for data mining of the

numerous studies that have already compared gene expression

in normal and cancerous tissues. We have shown how this method

has the capability to recover not only genes well known to be

associated with cancer, but also less understood genes that are

highly expressed and up-regulated in neoplasia. This approach will

help us understand the process of tumor development and

hopefully provide new possibilities for intervention with drugs

and genomic medicine. These same tools can be used to identify

genes that are down-regulated in cancer or control genes that

remain constant during the process. In addition, these information

tools can be easily adapted to existing web pages that show

transcription results from counting gene tag strategies as well as

microarrays experiments.

Materials and Methods

Datasets
Dataset A – Human expression data from the ‘‘Cancer

Genome Anatomy Project’’. The data are from the ‘‘Cancer

Genome Anatomy Project’’ (http://cgap.nci.nih.gov/) [15] and

were downloaded from the site ftp://ftp1.nci.nih.gov/pub/

CGAP/ in July 2008. The data consist of diverse libraries of

cDNA with expression profiles (specific genes identified and the

number of tags found) for distinct human organs under diverse

conditions. The data were downloaded and placed into a MySQL
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relational database for selection. The following criteria were

applied in order to select the human data to be analyzed: 1) Only

non-normalized libraries that reflected the true gene expression

were considered; 2) the libraries had to contain at least 5000 gene

tags; 3) only libraries derived from a single organ or tissue were

considered (libraries from mixed organs and cell lines were not

allowed); and 4) each library had to have a comparable library

from normal tissue to be considered. In addition to the cancer

libraries and their normal counterparts, we included five libraries

of ESCs that were considered suitable for comparison of the

specialization of non-differentiated cell types. These libraries also

fulfilled the criteria (1–3) described above. Dataset A included 53

libraries from 13 distinct tissues that had a total of 671,197 gene

tags for 28,087 human genes that fulfilled the above criteria. Table

S1 presents the main characteristics of the libraries.

Table S1 indicates that in two cases (placenta and testis), two

libraries from normal tissues of the same organ were selected. In

various cases more than one library from a neoplasia were selected

from the same tissue. Table S1 also shows that there are highly

variable numbers of gene tags in each library, ranging from 5,003

in the testis library to 37,803 in the Skin library. On average, the

libraries have 12,931 gene tags. The total number of distinct

human genes represented in at least one of the libraries was

28,087.

Dataset B – Mouse expression data from the ‘‘Cancer

Genome Anatomy Project’’. Dataset B represents mouse data

downloaded from the ‘‘Cancer Genome Anatomy Project’’ from

the same site and the same date. The selection of libraries from this

set followed the same criteria set for dataset A. Dataset B also

included a library of hematopoietic stem cells (HSC). Dataset B
was comprised of 30 libraries from 6 distinct tissues with a total of

541,453 expressed gene tags for 25,044 distinct mouse genes that

fulfilled the selection conditions described above. Table S2

presents the main characteristics of the libraries.

Dataset C – Human normal and tumor tissues from the

‘‘Human Transcriptome Map’’ (HTM). The HTM project

[Caron, 2001 #111] (http://bioinfo.amc.uva.nl/HTMseq/controller)

integrates mapping data with genome-wide messenger RNA

expression profiles as provided by serial analysis of gene expression

(SAGE). The data consist of map and expression information and were

downloaded by chromosome from the site in July 2008. For this study,

we downloaded the dataset titled ‘‘All tissues normal’’ that contained

5,747,834 tags from normal human tissues and the dataset titled ‘‘All

tissues tumor’’ that contained 12,861,239 tags from diverse cancer

tumors. The combined datasets represented a total of 62,916 loci

distributed along the human genome. The data were separately

downloaded for each of the 24 chromosomes (Chromosomes 1 to 22,

X, and Y) in files normalized to rates of 10,000 tags. The files were

included in a relational MySQL database and re-converted to the

original number of expressed tags in each library. The data were

then placed in one file for each chromosome and a master file

containing the data for all chromosomes. Table S3 presents the

number of tags per chromosome in each of the two libraries (normal

and tumor).

Dataset D – Human microarray data of normal and

precancerous states in breast tissue. The dataset D
consisted of a set of 16 microarrays from paired samples of

normal, terminal duct lobular units (TDLUs; 8 samples) and

hyperplastic, enlarged lobular units (HELUs; 8 samples) from

RNA samples obtained by microdissection [Lee, 2007 #108]. The

data were downloaded from the GEO database at the NCBI

(GEO accession GDS2739; http://www.ncbi.nlm.nih.gov/) in

July 2008. This dataset has expression information for 34,702

human genes in each of the 16 arrays.

Information theory and statistical analyses
If we consider the relative frequencies of transcription pij for the

i-th gene (i = 1, 2, …, g) in the j-th tissue or transcriptome (j = 1, 2,

…, t), then the diversity of the transcriptome of each tissue can be

quantified by an adaptation of Shannon’s entropy formula,

Hj~{
Xg

i~1

pij log2 pij

� �
:

Hj will vary from zero when only one gene is transcribed up to

log2(g) where all g genes are transcribed at the same frequency: 1/g.

If we consider the average frequency of the i-th gene among tissues,

say,

pi~
1

t

Xt

j~1

pij

we can define gene specificity as

Si~
1

t

Xt

j~1

pij

pi

log2

pij

pi

 !
:

Si will attain a value of zero if the gene is transcribed at the same

frequency in all tissues and a maximum value of log2(t) if the gene is

exclusively expressed in a single tissue. Tissue specialization is then

measured, for the j-th tissue, as the average gene specificity, say

dj~
Xg

i~1

pijSi:

These formulas were previously described [14]. For further details

see Mathematical Addendum in Supporting Text S1.

To apply the analysis of information parameters of the

transcriptome, estimating its diversity, Hj, and specialization, dj,

as well as the gene specificities, Si, and target specificities, TSij, it is

necessary to have estimates, pij, of the relative frequency of

expression of the i-th gene in the j-th transcriptome, where i = 1, 2,

…, g, the total number of genes, and j = 1, 2, …, t, the total

number of transcriptomes (tissues) studied [14] (see also Mathe-

matical Addendum in Supporting Text S1). For datasets A, B, and

C, which are the product of counting strategies, the values of pij

were obtained by dividing the number of tags for gene i in the j

transcriptome (library or set of libraries) by the total number of

tags obtained in the transcriptome j. For microarray data (dataset

D; see Supporting Text S1), the pij were obtained by dividing the

normalized signal obtained for gene i in the j transcriptome by the

sum of normalized signals in the transcriptome j (microarray slide

j). Using the matrices, {pij}, the analysis was performed by using

the statistical environment R [31], by use of a set of functions

developed to such effect.

To obtain confidence intervals for the information parameters

in the datasets A, B, and C, we applied the bootstrap procedure

[32]. This assumed a multinomial distribution for the number of

tags in the transcriptome, and obtained B = 2000 bootstrap

replicates, which are samples from the multinomial distribution

where the total number of tags in the transcriptome, nj, and the

observed relative frequencies, {pij}, are assumed as parametric
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values. The assumption of multinomial distribution for the

number of tags representing each gene in a transcriptome

appears reasonable even if it most likely underestimates the real

biological variation and possible dependencies in sets of genes

present in the transcriptome. Having obtained the set of

B = 2000 bootstrap replicates of each parameter, we applied

the Bootstrap Percentile Method [32] at 95% confidence level to

obtain the confidence intervals plotted in the figures presented

(Figure 1A, Figure 1B, and supporting Figure S1, Figure S2,

Figure S3, Figure S4, Figure S5, Figure S6, Figure S7, Figure

S8, Figure S9 and Figure S10).

Using the same bootstrap approach, we obtained approximated

99% confidence intervals for the true differences between the

specialization of pairs of transcriptomes, for example Dmn = dm2dn,

where m and n are the transcriptomes of interest (normal and

cancer tissues), for which the hypothesis of equal specialization

(H0: Dmn = 0) needed to be tested. The null hypothesis of identical

specialization was rejected when the approximated 99% confi-

dence interval did not include the value of 0. We also tested the

assumption of normality for the bootstrap estimates by means of

the Shapiro-Wilks test [33] (Table S4, Table S5, Table S6, Table

S7 and Table S8).

The estimation of confidence intervals and hypothesis testing

was not feasible for the microarray data (dataset D), since in that

case, the original data belonged to an unknown continuous

distribution, and the assumption of a given distribution is difficult

without having a very good estimate of the (unknown) variances

and covariances for the gene expression levels. The absence of true

replicates in these data (dataset D) made it impossible to obtain

confidence intervals for the parameters or to perform statistical

tests on the specialization differences.

Dataset Grouping
The analysis for datasets A and B were done at three levels of

grouping. First, the ‘‘ungrouped’’ analysis was performed by

considering each of the individual libraries (Table S1 for dataset

A and Table S2 for dataset B), with comparisons between the

levels of specialization being done between the normal and

cancerous states in libraries of the same tissue (Figure S1, Figure

S2, Figure S4, and Figure S5). The second level, designated here

as ‘‘grouped analysis’’, corresponds to grouping libraries that

were from the same tissue and state (normal or cancerous). This

was done by adding the tags for each gene in the corresponding

datasets. This is a valid procedure since the libraries are

independently obtained from the same organ in approximately

the same tissue state (normal or cancerous). In addition, the

variations that are disregarded correspond to biological differ-

ences between individuals from which the samples were obtained,

putative differences in methodology of sequencing, and random

variation. The third level of grouping, ‘‘complete grouping’’,

added tags from all distinct tissues in the same state (normal or

cancerous) to form only two groups: normal and cancerous states.

This ‘‘complete grouping’’ disregards or confounds the tran-

scriptome variation given by the different nature of the tissues,

but allows for the analysis of differences between cancerous and

normal tissues, which is the main source of this study (Figure S3

and Figure S6). This procedure is analogous to the collapse of

contingency tables routinely performed in the statistical analysis

of discrete data [19].

To evaluate the statistical significance of genes exclusively

detected in cancer in dataset A (Table 1) we used the Fisher’s exact

test [19] on the 262 contingency table produced by grouping the

tags belonging to the categories ‘‘normal’’ or ‘‘cancer’’ and ‘‘gene

I’’ or ‘‘gene no-I’’ for each one of the 6,220 genes found to be

exclusively detected in cancer. Given that we were performing

6,220 tests, the Bonferroni correction for multiple testing [20] was

applied by dividing the desired experimental-wise error Type I

(a= 0.05) between the number of tests to be performed, for

example 0.05/6,220<7.5e–6. Only genes with P-value less than

7.5e–6 in the Fisher’s exact test are presented in Table 1. The

same procedure was performed to obtain the significance (P-value)

for the data of Table 2, except that in this case, no correction was

needed since only one gene was tested for each (independent) set of

tags in a given type of cancer.

For dataset C, which corresponds to human data for normal

and tumor tissues grouped by chromosome, an individual analysis

was performed for the loci in each chromosome followed by a

complete analysis for all loci together. This analysis was performed

on the non-normalized tags, since the information analysis

normalizes the data by taking the relative frequencies of expression

of each gene (pij). As in the cases of datasets A and B, a bootstrap

analysis was performed to obtain confidence intervals for the

parameters of interest and to test the differences in specialization

between normal and tumor tissues.

Supporting Information

Text S1 Includes supporting text, supporting methods, support-

ing discussion, mathematical addendum, functions source code

and supporting references.

Found at: doi:10.1371/journal.pone.0010398.s001 (0.88 MB

PDF)

Figure S1 Estimated values of Hj (diversity) and dj (specializa-

tion) in each one of the libraries of dataset A, ungrouped analysis.

Found at: doi:10.1371/journal.pone.0010398.s002 (0.22 MB

PDF)

Figure S2 Estimated values of Hj (diversity) and dj (specializa-

tion) in each one of the libraries of dataset A, non-grouped

analysis. One panel per organ.

Found at: doi:10.1371/journal.pone.0010398.s003 (0.03 MB

PDF)

Figure S3 Estimated values of Hj (diversity) and dj (specializa-

tion) in normal and cancerous transcriptomes obtained by

grouping all organs in dataset A.

Found at: doi:10.1371/journal.pone.0010398.s004 (0.05 MB

PDF)

Figure S4 Estimated values of Hj (diversity) and dj (specializa-

tion) in each one of the libraries of dataset B (mouse data), non-

grouped analysis.

Found at: doi:10.1371/journal.pone.0010398.s005 (0.07 MB

PDF)

Figure S5 Estimated values of Hj (diversity) and dj (specializa-

tion) in each one of the libraries of dataset B (mouse data), non-

grouped analysis. One panel per organ.

Found at: doi:10.1371/journal.pone.0010398.s006 (0.08 MB

PDF)

Figure S6 Estimated values of Hj (diversity) and dj (specializa-

tion) in normal and cancerous transcriptomes obtained by

grouping all organs in dataset B (mouse data).

Found at: doi:10.1371/journal.pone.0010398.s007 (0.05 MB

PDF)

Figure S7 Estimated values of Hj (diversity) and dj (specializa-

tion) in the chromosome Y (dataset C).

Found at: doi:10.1371/journal.pone.0010398.s008 (0.05 MB

PDF)
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Figure S8 Estimated values of Hj (diversity) and dj (specializa-

tion) in chromosomes 21, 18, 13, 22, 20 and X (dataset C).

Found at: doi:10.1371/journal.pone.0010398.s009 (0.05 MB

PDF)

Figure S9 Estimated values of Hj (diversity) and dj (specializa-

tion) in chromosomes 14, 8, 15, 9, 10, 16, 4, 6, 7, 5, 11, 3, 12, 17,

19 and 2. Dataset C.

Found at: doi:10.1371/journal.pone.0010398.s010 (0.06 MB

PDF)

Figure S10 Estimated values of Hj (diversity) and dj (specializa-

tion) in chromosomes 1 and the set of all chromosomes taken

together. Dataset C.

Found at: doi:10.1371/journal.pone.0010398.s011 (0.05 MB

PDF)

Figure S11 Example of scatter plot for the differences in

expression in Dataset A (Human dataset).

Found at: doi:10.1371/journal.pone.0010398.s012 (0.36 MB

PDF)

Figure S12 Example of scatter plot for the differences in

expression in Dataset B (Mouse dataset).

Found at: doi:10.1371/journal.pone.0010398.s013 (0.38 MB

PDF)

Figure S13 Scatter plot of Hj (Diversity) and dj (Specialization)

in transcriptomes of normal (blue) and precancerous (red) tissues in

dataset D.

Found at: doi:10.1371/journal.pone.0010398.s014 (0.10 MB

PDF)

Table S1 Human libraries from the "Cancer Genome Anatomy

Project" selected for analysis (Dataset A).

Found at: doi:10.1371/journal.pone.0010398.s015 (0.07 MB

PDF)

Table S2 Mouse libraries from the "Cancer Genome Anatomy

Project" selected for analysis (Dataset B).
Found at: doi:10.1371/journal.pone.0010398.s016 (0.05 MB

PDF)

Table S3 Number of tags and loci per chromosome in dataset C
(Human normal and tumor tissues from the "Human Transcrip-

tome Map").

Found at: doi:10.1371/journal.pone.0010398.s017 (0.02 MB

PDF)

Table S4 Approximate 99% Confidence Intervals for the

difference between specializations in all pairs of comparable

tissues (normal versus cancer) in dataset A (grouped analysis).

Found at: doi:10.1371/journal.pone.0010398.s018 (0.02 MB

PDF)

Table S5 Approximate 99% Confidence Intervals for the

difference between specializations in all pairs of comparable

libraries (non-grouped analysis, dataset A).

Found at: doi:10.1371/journal.pone.0010398.s019 (0.03 MB

PDF)

Table S6 Approximate 99% Confidence Intervals for the

difference between specializations in all pairs of comparable

tissues (normal versus cancer) in the B dataset (mouse data);

grouped analysis.

Found at: doi:10.1371/journal.pone.0010398.s020 (0.01 MB

PDF)

Table S7 Approximate 99% Confidence Intervals for the

difference between specializations in all pairs of comparable

libraries in dataset B (mouse data); non-grouped analysis.

Found at: doi:10.1371/journal.pone.0010398.s021 (0.03 MB

PDF)

Table S8 Approximate 99% Confidence interval for the

differences in specialization between normal and tumor tissues in

chromosomes in the analysis of dataset C (Human Transcriptome

Map).

Found at: doi:10.1371/journal.pone.0010398.s022 (0.02 MB

PDF)

Table S9 Number of tags and loci per chromosome in dataset C
(Human normal and tumor tissues from the "Human Transcrip-

tome Map").

Found at: doi:10.1371/journal.pone.0010398.s023 (0.02 MB

PDF)

Table S10 Examples of genes exclusively expressed at relatively

high rate in tumor tissues in the analysis of dataset C (HTM).

Found at: doi:10.1371/journal.pone.0010398.s024 (0.02 MB

PDF)

Table S11 Statistical analyses of genes over expressed in normal

and cancer tissues in the human dataset A with regard to their

specificity and differences in frequency of expression.

Found at: doi:10.1371/journal.pone.0010398.s025 (0.08 MB

PDF)

Table S12 The ten genes with largest influence (See Eq. 8) in the

change of specialization of cancerous tissues per organ. Dataset A
(human dataset).

Found at: doi:10.1371/journal.pone.0010398.s026 (0.14 MB

PDF)

Table S13 Statistical analyses of genes over expressed in normal

and cancer tissues in the mouse dataset (B) with regard to their

specificity and differences in frequency of expression.

Found at: doi:10.1371/journal.pone.0010398.s027 (0.07 MB

PDF)

Table S14 The ten genes with largest influence (See Eq. 8) in the

change of specialization of cancerous tissues per organ. Dataset B
(mouse dataset).

Found at: doi:10.1371/journal.pone.0010398.s028 (0.10 MB

PDF)

Table S15 Statistical analyses of loci over expressed in normal

and tumor tissues in Chromosome 18 of dataset (C) with regard to

their specificity and differences in frequency of expression.

Found at: doi:10.1371/journal.pone.0010398.s029 (0.06 MB

PDF)

Table S16 The ten most influential loci in the increase of

specialization of tumors in Chromosome 18 (dataset C).

Found at: doi:10.1371/journal.pone.0010398.s030 (0.05 MB

PDF)

Table S17 Classifications by Gene Ontology of the genes

presented in Table 1.

Found at: doi:10.1371/journal.pone.0010398.s031 (0.05 MB

PDF)

Table S18 Classifications by Gene Ontology for the genes

presented in Table 2.

Found at: doi:10.1371/journal.pone.0010398.s032 (0.05 MB

PDF)
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