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Abstract The drug formulation design of self-emulsifying drug delivery systems (SEDDS) often re-

quires numerous experiments, which are time- and money-consuming. This research aimed to rationally

design the SEDDS formulation by the integrated computational and experimental approaches. 4495

SEDDS formulation datasets were collected to predict the pseudo-ternary phase diagram by the machine

learning methods. Random forest (RF) showed the best prediction performance with 91.3% for accuracy,

92.0% for sensitivity and 90.7% for specificity in 5-fold cross-validation. The pseudo-ternary phase di-

agrams of meloxicam SEDDS were experimentally developed to validate the RF prediction model and

achieved an excellent prediction accuracy (89.51%). The central composite design (CCD) was used to

screen the best ratio of oil-surfactant-cosurfactant. Finally, molecular dynamic (MD) simulation was used

to investigate the molecular interaction between excipients and drugs, which revealed the diffusion

behavior in water and the role of cosurfactants. In conclusion, this research combined machine learning,

central composite design, molecular modeling and experimental approaches for rational SEDDS formu-

lation design. The integrated computer methodology can decrease traditional drug formulation design

works and bring new ideas for future drug formulation design.

ª 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical

Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In drug discovery, water-insoluble drugs face continuous hurdles
in transforming into market medical products. As a simple
administration route, oral administration is safe, convenient,
underspend, and patient compliant1. An increased number of BCS
class II drugs pose enormous challenges for oral formulation
development. Many factors, including APIs’ physicochemical
properties and complicated internal environment of humans and
animals, may affect their bioavailability2. For lipophilic drugs,
especially the class II drug, the limitation of their absorption in the
human body is the dissolution rate in the GI tract3. Pharmaceutical
scientists have developed strategies to solve this issue, including
solid dispersions4, cyclodextrin inclusions5, and nanoscale for-
mulations6. In lipid-based formulation, drugs existed in liquid-
state instead of in solid-state. The solubility of drugs increased
by enhancing solventesolvent interaction between formulations
and the GI environment2. The self-emulsifying drug delivery
system (SEDDS), a stable thermodynamic nanoformulation, con-
sists of oil, surfactant, cosurfactant and APIs. For oral adminis-
tration, drugs are dissolved in the SEDDS instead of solid-state,
which benefits the absorption in the GI tract7.

Since 40 years, US Food and Drug Administration (FDA) have
approved about 12 SEDDS marketed formulations, such as Gen-
graf�, Norvir� and Depakene�, etc8. However, the modern
SEDDS formulations design profoundly depends on the experi-
mentation by the skills of independent researchers. The process of
SEDDS formulation design includes three step as below: the
determination of drug solubility in several oils, surfactants and
cosurfactants; dissolve the mixture of oils, surfactants and
cosurfactant into distilling water, and then draw the ternary phase
diagram to identify the self-emulsion area; the evaluation of the
SEDDS formulation by multiple characterization methods9,10.
Therefore, current formulation development of SEDDS urgently
need some effective methods to assist experimental design.

Machine learning is one part of artificial intelligence,
which could learn from the experience and data by computer al-
gorithms11. Presently, machine learning has been widely used in
pharmaceutical science, such as drug discovery12, quantitative
structureeactivity relationship (QSAR)13, quantitative
structureeproperty relationship (QSPR)14, biomedicine15, and
drug formulation design11. In drug formulation design, machine
learning can be an auxiliary tool to lighten pharmaceutical sci-
entists’ workload. It can be applied to predict the formulation
performance in drug development by inputting the physicochem-
ical properties of APIs and excipients and process parameters. For
example, Zhao et al.16 used molecular descriptors of drugs and
cyclodextrins as input values to predict the binding energy of the
drug cyclodextrin system, and the results confirmed that the model
had good accuracy. Han et al.17 applied random forest to predict
solid dispersion stability, which completed a high accuracy and
obtained parameters affecting the stability. He et al.18 developed a
lightGBM model to predict the size and PDI of nanocrystals
prepared by three methods, which provided a new idea in indus-
trial pharmaceutics. Gao et al.19 constructed a drug/phospholipid
complexation rate predicting model by the lightGBM algorithm.

Molecular dynamic (MD) simulation is another computational
method that aided the pharmaceutical formulation design, which
could mimic the physicochemical processes in the molecular
scale20. In pharmaceutical science, the MD simulation has grad-
ually become an increasingly vital tool to help scientists under-
stand the drug delivery mechanism of dissolution, solubility,
controlled release, and targeted delivery21. In the past ten years,
our group had investigated numerous dosage forms, including the
preparation and dissolution behavior of solid dispersion22,23, the
interaction between drug and cyclodextrin24, liposome25,
drugephospholipid complex19, self-assembly platinum prodrug26.

This study aimed to integrate machine learning, MD simula-
tion and experimental approaches to rationally design SEDDS
formulations. Firstly, 4495 SEDDS formulation datasets were
collected to predict the pseudo-ternary phase diagram by the
machine learning methods. Meloxicam (MLX) was chosen as a
model drug to select the optimal oils, surfactants, and co-
surfactants. Secondly, a pseudo-ternary phase diagram predicting
model of MLX-SEDDS was experimentally constructed to vali-
date the prediction model. Finally, MD simulation was utilized to
mimic the molecular dissolving behavior of MLX-SEDDS in
water.

2. Materials and methods

2.1. Materials

MLX with 98% purity was purchased from Tianjin Heowns
Biochemical Co., Ltd. (Tianjin, China). Labrafil M 1944 CS and
Transcutol HP were obtained from Gattefossé (Saint-Priest Cedex,
France). AEO-9, Cremophor RH40, and Cremophor EL were
obtained from BASF (Ludwigshafen, Germany). Ethanol and
isopropanol were purchased from Tianjin Fuyu Fine Chemical
Co., Ltd. (Tianjin, China). Isopropyl myristate (IPM) was pur-
chase from Shanghai CHUXING Chemical Co., Ltd. (Shanghai,
China). Isopropyl palmitate (IPP) was purchase from Linyi Lusen
Chemicals Co., Ltd. (Linyi, China). Caprylic/Capric Triglyceride
(GTCC) was obtained from KLK OLEO (Petaling Jaya,
Malaysia). Tween 80 was obtained from Tianjin Kemiou Chemi-
cal Reagent Co., Ltd. (Tianjin, China). PEG 400 was obtained
from Tianjin Bodi Chemical Co., Ltd. (Tianjin, China).

Figures were plotted by OriginPro2018 SR1 (OriginLab Cor-
poration, Northampton, MA, USA), Amber18 package (University
of California, San Francisco, CA, USA), Design-Expert v10 (Stat-
Ease, Inc., Minneapolis, MN, USA), BIOVIA Discovery Studio
(BIOVIA corp., San Diego, CA, USA), PACKMOL package
(University of Campinas, Campinas, Brazil).

2.2. Machine learning

2.2.1. Pseudo-ternary phase diagram dataset
The pseudo-ternary phase diagram dataset was obtained from 45
diagrams in 25 reported literature. Each data included the infor-
mation of excipient and aqueous solution. Then, the relative mo-
lecular descriptors, which were the main physicochemical
properties of oils, surfactant, and cosurfactant selected as Table 1
shown. The data collection principle in pseudo-ternary phase di-
agrams was showed as Fig. 1. In the self-emulsion area, the co-
ordinate point inside the intersection point between the self-
emulsifying region and the grid lines were selected as the data
points of self-emulsion. In the non-self-emulsifying area, the
vertex of the grid line was selected as the data point of non-self-



Figure 1 The pseudo-ternary phase diagram of SEDDS.
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emulsion. Each selected point in the pseudo-ternary phase dia-
gram was a single data point. The total dataset of SEDDS for-
mulations were 4495.

2.2.2. Machine learning methods in pseudo-ternary phase
diagram
Seven machine learning methods were utilized in the research of
pseudo-ternary diagram, include random forests (RF), K-near-
estNeighbor (KNN), decision Tree (DT), naı̈ve Bayes (NB),
support vector machines (SVM), Light Gradient Boosting Ma-
chine (lightGBM) and XGBoost. Shortly, DT is one of the
commonly used machine learning methods. In dealing with
classification issues, it is used as the tree-like structure model to
classify instances based on features. It also can be thought of as
a conditional probability distribution on characteristics and
classification27. Furthermore, RF is a more advanced algorithm
based on the decision tree. It was developed from classification
and regression trees and determined by the mode of the category
output by an individual tree28. KNN algorithm is a famous
statistical pattern recognition, which plays a critical role in
machine learning classification algorithms. Generally, the al-
gorithm calculates the Euclidean distance between a point and
all other points and extracts the K points closest to the end.
Then count the K points with the largest proportion of the
category, which belongs to the classification29. NB is based on
Bayes’ principle and uses probability statistics to classify the
sample data set. It is based on subjective judgments: it is equally
possible to estimate a value without knowing all the objective
facts and then continually revise it based on the actual results30.
SVM is a supervised machine learning model that uses classi-
fication algorithms to solve two sets of classification problems.
It works as classifying the next text when the SVM model with
labeled training data for each category has been given.
LightGBM is a novel algorithm presented by Ke et al31., and it
has been applied in various types of data mining tasks, such as
classification, regression and ranking. XGBoost, developed by
Chen et al.32 in 2016, is a machine learning algorithm under the
gradient boosting framework. XGBoost provides a parallel tree
lift that can quickly and accurately solve many data science
problems.

The classifier was trained with the training set by using 5-fold
cross validation, and then the model was validated with the vali-
dation set to record the final classification accuracy. In brief, the
initial dataset was divided into five sub-datasets, a single sub-
dataset is retained for testing, and the other four datasets were
used for training. The cross-validation is repeated five times, and
each sub-dataset was verified once. The results of five times are
averaged, or other combination methods are used to obtain a sole
estimation. By comparing model performances of different algo-
rithms, a best model will be obtained.
Table 1 The selected descriptors of three excipient.

Excipient Selected molecular descriptor

Oils Molecular weight, logP, boiling point, melting

point, density, viscosity, HLB, flash point,

surface tension, saponification value

Surfactants Molecular weight, logP melting point, density,

viscosity, HLB, flash point, saponification

value

Cosurfactants Molecular weight, logP melting point, density,

viscosity, flash point
2.3. Molecular dynamic simulation

The structure of meloxicam, Labrafil M 1944 CS, Cremophor
RH40, and Transcutol HP were constructed by BIOVIA Dis-
covery Studio Visualizer 2016, as shown in Fig. 2. Next, the
simulation box including drug molecules, excipients, and solvent
water, was packed by PACKMOL33. The AMBER 18 software
package performed the MD simulation process with the GAFF
force field.

In the MD simulation, the process parameters were set con-
cerning the experiment. Shortly, the simulation processes were
divided into three steps. Firstly, the SEDDS system runs a sum of
2000 steps of energy minimization; 1000 steps of steep descent
minimization, followed by 1000 steps of the conjugate gradient.
Secondly, the whole system was heated from 0 to 310 K. Finally,
the system was kept at 310 K for 200 ns to mimic the self-
emulsification process for the formulation in water.
2.4. Experimental validation
2.4.1. Solubility study
An excess amount of MLX was added into 2 mL different ex-
cipients (oils, surfactants, cosurfactants) in a 5 mL micro-
centrifuge tube in triplicate. After vertexing, samples were shaken
for 72 h in a constant temperature shaker at 37 � 0.5 �C and then
centrifuged at 12,000 rpm for 10 min (TG16MW centrifuge,
Hunan Herexi Instrument & Equipment Co., Ltd.). Finally, the
supernatant was diluted with methanol to the appropriate multiple
and determined by UV-8000 UVeVis spectrophotometer
(Shanghai metash Instrument Co., Ltd., Shanghai, China).
2.4.2. Pseudo-ternary phase diagram
The surfactant and the cosurfactant were mixed in a certain mass
ratio (4:1, 3:1, 2:1, 1:1, 1:2, and 1:3) to form a mixed emulsifier.
Then weigh a certain proportion of the oil was added into the
mixed emulsifier at the mass ratio of 1:9, 2:8, 3:7, 4:6, 5:5, 6:4,
7:3, 8:2, and 9:1. Subsequently, 1 g of the mixture was dropped
into 100 mL of purified water, which was stirred magnetically at
37 �C. When the emulsion droplets can diffuse in water and form a
homogeneous emulsion, the proportion point was marked as a
self-emulsifying point.



Figure 2 The molecular structure of (A) MLX, (B) Labrafil M

1944 CS, (C) Cremophor RH40 and (D) Transcutol HP.
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2.4.3. Formulation design of MLX-SEDDS
The central composite design (CCD) was utilized to screen the
optimal ratio for oil-surfactant-cosurfactant with two factors and
five levels of optimization (shown in Table 2) by Design-Expert
v10. X1 (mass percent of oil) and X2 (Km Z surfactant/cosurfac-
tant) were set as independent variables, while Y1 (droplet size), Y2
(PDI), and Y3 (drug loading) were assessed as test parameters. The
determination method of droplet size and PDI was as followed:
0.5 mL of oil, surfactant, and cosurfactant mixed in a certain
proportion was dissolved in 50 mL water in 37 �C and determined
by Malvern Nano-ZS (Malvern Instruments, UK). The determi-
nation of drug loading was as followed. An excess amount of
MLX was added into 2 mL mixture solution (oils, surfactants,
cosurfactants) in a 5 mL microcentrifuge tube in triplicate. After
vertexing, samples were shaken for 72 h in a constant temperature
shaker at 37 � 0.5 �C and then centrifuged (TG16MW, Hunan
Herexi Instrument & Equipment Co., Ltd.) at 12,000 rpm for
10 min. Finally, the supernatant was diluted with methanol to the
appropriate multiple and determined by UV-8000 UVeVis spec-
trophotometer (Shanghai metash Instrument Co., Ltd. Shanghai,
China).
3. Results and discussion

3.1. Dataset distribution

The distribution of oils, surfactants and cosurfactants in the
dataset was exhibited in Fig. 3. The most used oil in the dataset
was Capryol 90 occupied for 31.03% and the main content was
propylene glycol caprylate. Three commonly used surfactant were
Cremophor RH40, Cremophor EL and Tween 80, respectively.
Among them, Cremophor RH40 and Cremophor EL were PEG-
modified hydrogenated castor oil that was non-ionic surfactants
Table 2 Levels of independent variable in the central com-

posite design.

Factor Level

‒1.414 ‒1 0 þ1 þ1.414

X1 9.64 20 45 70 80.36

X2 0.38 1 2.5 4 4.62

X1, mass percent of oil; X2, Km Z Surfactant/Cosurfactant.
considered non-ionic surfactants. In cosurfactant, almost half of
the data containing Transcutol HP was diethylene glycol mono-
ethyl ether.

3.2. Prediction model by different machine learning algorithms

Table 3 shows classification performance for the evaluation of the
self-emulsification in each oil, surfactant and cosurfactant com-
bination. Both RF and XGBoost manifest the good performance
while NB showed the worst performance in the self-emulsifying
area predicting. However, the RF exhibited the optimal balance
between sensitivity and specificity in test set. RF showed the best
prediction performance with 91.3% for accuracy, 92.0% for
sensitivity and 90.7% for specificity in 5-fold cross-validation and
93.0% for accuracy, 91.7% for sensitivity and 94.7% for speci-
ficity in test set. These results illustrated that the RF was the most
suitable algorithm in self-emulsifying area prediction.

3.3. Importance features ranking by random forest

The important features were calculated by the optimal machine
learning algorithm RF. These 27 important features could be
divided into four categories: the properties of oil, surfactant,
cosurfactant, and aqueous solution. As shown in Fig. 4, the top 10
most important features with a contribution value large than 0.5
were Dose_OIL, Dose_SUR, Molecular_weight_OIL, Flash_-
point_OIL, SEDDS concentration, Dose_COS, Sap-
onification_OIL, HLB_OIL, Solution_pH, and HLB_SUR.

In the SEDDS formulation design, the selection of oils, sur-
factants and cosurfactants was on the basis of the pseudo ternary
phase diagram. The proportion of oil, surfactant and cosurfactant
was the most essential parameter in forming self-emulsion ranked
the first, the second and the sixth. As the two most essential
features, the oil and surfactant ratio played almost the same
central role in this prediction model. The oils were the leading
excipients in the SEDDS due to their excellent capability of
lipophilic drugs and increased permeability for drugs34. Pouton35

presented the lipid formulation classification system, which
divided the lipid-based formulations into four types in 2000. There
were two types of SEDDS: type IIIA and type IIIB. The difference
between type IIIA and type IIIB was the amount of the oil phase.
The type IIIA formulations were oily with 40%e80% oils, while
the type IIIB formulations were water soluble with no higher than
20% oil. In general, the greater the proportion of the oil phase, the
smaller the self-emulsification area on the pseudo ternary phase
diagram. The surfactant functions in forming self-emulsion were
promoted oil and water to form a homogeneous and stable mixture
and prevent the precipitation of the drugs in the gastrointestinal
tract with the dissolved state. As a result, the proportion of the
surfactants exhibit almost the same feature importance value as
the proportion of the oils. When increasing the ratio of emulsifiers,
it benefited from forming a smaller droplet size formulation self-
micro emulsifying drug delivery system.

The properties of oil had also displayed specific importance in
SEDDS formulation design with the molecular weight (3rd), flash
point (4th), saponification value (7th), and HLB value (8th). There
are 15 kinds of oils in the dataset and the main content of these
oils can be divided into two catalogs: glycerolipids and fatty acyls.
Among glycerolipids, long (LCT) and medium-chain triglyceride
(MCT) oils were the commonly used oils in SEDDS. The mo-
lecular weight and flash point were considered as the two most
important properties in the prediction model. The molecular



Figure 3 Distribution of excipients in the dataset: (A) oil, (B)

surfactant, (C) cosurfactant.
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weight of oils reflected the number of carbons and the chain’s
length in oils, which was the essential feature of oils. The flash
point represented the lowest temperature at which fire ignites at a
specific vapor pressure.

The saponification value (SV) represented the number of
milligrams of KOH needed to saponify one gram of lipids, which
can be calculated by Eq. (1):

SVZN � 1000� 56:1

MW
ð1Þ

where N was the number of fatty acid residues in 1-mol lipid, 56.1
was the molecular weight of KOH, and MW was the molecular
weight of the lipid.

Experimentally measured SV was relative to the fatty acids
residues numbers and MW of the lipids. Hence, the SV of MCT
was often higher than that of LCTwhen they had the same number
of fatty acid residues. Similarly, triglycerides had higher SV than
contain fatty acids with the same carbon number of diac-
ylglycerols and monoacylglycerols. Also, SV could help evaluate
the main lipid in the mixed oils. In reported researches of SEDDS,
the HLB value of the surfactants was more concerned than that of
the oils. In fact, HLB value of the oils was more critical than that
of the surfactants. The HLB value of mixed compounds can be
represented by Eq. (2):

HLB Z
ðC1 �HLB1Þ þ ðC2 �HLB2Þ þ ðC3 �HLB3Þ/

Ctotal

ð2Þ

where C1, C2, and C3 were the proportion of each component,
respectively.

The HLB value of SEDDS was a significant factor in the
evaluation of self-emulsification35.

Furthermore, the properties of the aqueous solution were also
had a particular impact on the SEDDS. Some researchers deter-
mined the area of SEDDS by the titration method. The pseudo-
ternary phase diagram indicated a bigger self-emulsion region at
the lower concentration of SEDDS in water36e38. Another way to
draw a three-phase diagram is to fix the concentration of SEDDS
and plot the three phases of oil, surfactant and cosurfactant,
respectively39e41.

3.4. The solubility of MLX in excipient

The solubility of MLX in different oils, surfactants, cosurfactants
was determined to ensure optimal drug loading. The solubilities of
MLX in excipients were shown in Table 4. Among the excipient of
oils, Labrafil M 1944 CS exhibited significantly higher solubility
than IPM, IPP, and GTCC. Thus, Labrafil M 1944 CS was chosen
as the appropriate oily excipient. Similarly, Tween 80 showed the
highest soluble capacity among the surfactants. Besides, AEO-9
and Cremophor RH40 also displayed a suitable soluble ability
of MLX, so these two surfactants were selected as the candidate
surfactant. The three cosurfactants with the highest solubility of
MLX were Transcutol HP, ethanol, and PEG 400, respectively.
Since ethanol is readily volatile, MLX may be at risk of precipi-
tation in SEDDS. Thus, PEG 400 and Transcutol HP were chosen
as the alternative cosurfactant.

3.5. The comparison between experimental and predicting
SEDDS region

The prediction points of the three-phase diagram are consistent
with the experiment in 2.3.2, and the data was predicted by RF
algorithms as an external test. Subsequently, to evaluate the ac-
curacy of the prediction, we used experimental methods to verify.
The predicting SEDDS region was showed in Table 5, resulting in
89.51% accuracy. The sensitivity was defined as the sensitivity of
the method to positive, while the specificity was defined as the
ability of this method to estimate negative. The imbalance be-
tween sensitivity (67.91%) and specificity (99.23%) was most
likely due to more negative results than positive results in the
external experimental data set. Fig. 5 shows the predicting SEDDS
region for each oilesurfactantecosurfactant combination. In
Fig. 5A, E and B, F, the predicting SEDDS region was the same.
However, the results show that the predicting accuracy of Labrafil
M 1944 CS and Tween 80 system was slightly higher than that of
Labrafil M 1944 CS and AEO-9 system. In the system of Labrafil
M 1944 CS and Cremophor RH40, the accuracy was 75.93% and
85.19% with Transcutol HP and PEG 400, respectively. The
optimal ternary phase combination was Labrafil M 1944 CS,
Cremophor RH40 and Transcutol HP (Fig. 5C), which exhibited
the largest SEDDS region.



Table 3 The classification performance results for the evaluation of the self-emulsification.

Method 5-Fold cross-validation Test

Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

RF 91.3 92.0 90.7 96.4 93.0 91.7 94.0 97.4

KNN 88.6 93.1 85.0 94.4 88.4 95.9 82.7 94.8

DT 90.2 91.0 89.6 93.5 90.4 89.3 90.9 92.6

NB 61.8 68.5 56.5 71.3 65.4 71.7 60.7 72.7

SVM 82.3 81.7 82.8 90.8 86.3 87.5 85.4 93.6

LightGBM 80.5 62.4 95.1 92.6 81.9 65.1 94.8 93.8

XGBoost 92.0 88.1 95.1 97.9 91.5 86.1 95.5 98.1

RF, random forests; KNN, K-nearestNeighbor; DT, decision Tree; NB, naı̈ve Bayes; SVM, support vector machines; LightGBM, Light Gradient

Boosting Machine.
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Fig. 6A‒F exhibits the pseudo-ternary phase diagram con-
structed by the experimental method. The largest self-emulsifying
region was observed when Cremophor RH40 and Transcutol HP
were surfactant and cosurfactant (Fig. 6C). The experimental
result showed the same tendency as the prediction result. Thus,
experiment results have extensively validated SEDDS region
predicting results.
3.6. Formulation optimization of MLX-SEDDS by central
composite design

By predicting the pseudo three-phase diagram, we found the
optimal combination (oil: Labrafil M 1944 CS, surfactant:
Cremophor RH40, cosurfactant: Transcutol HP). To further
explore the three-phase ratio, we used the central composition
design to ensure the parameters of MLX-SEDDS. The result of
the MLX-SEDDS formulation constructed by the central com-
posite design is showed in Table 6. The relationship between
independent variables (X1: oil content, X2: Km Z Surfactant/
Cosurfactant, m/m) and test parameters (Y1: droplet size, Y2:
PDI, Y3: drug loading) were exceptionally fitted by the third-
order polynomial model with the coefficient of determination
(R2) for 0.9692, 0.9420, 0.9582 and all of the significant fitting
values (P) were less than 0.05. Therefore, the contour plots
(shown in Fig. 7) were drawn in accordance with the followed
fitting Eqs. (3)‒(5):
Figure 4 The importance feature of classification in SEDDS

ranking by RF.
Y1Z � 202:4716þ 16:2372X1 þ 77:8642X2 � 6:9546X1X2

� 0:1489X 2
1 þ 1:1204X 2

2 þ 0:05945X 2
1 X2 þ 0:3161X1X

2
2 ð3Þ

Y2Z0:2486� 0:003861X1 � 0:1493X2 þ 0:001027X1X2

þ 0:000037X 2
1 þ 0:04086X 2

2 þ 0:000043X 2
1 X2 � 0:000959X1X

2
2

ð4Þ

Y3Z1:7659� 0:01395X1 þ 0:1457X2 � 0:0015X1X2

� 0:000385X 2
1 � 0:001811X 2

2 þ 0:000048X 2
1 X2

� 0:000674X1X
2
2 ð5Þ

As Fig. 7A shown, the droplet size was more extensive with the
increase of the oil amount. Furthermore, Km also has a certain
effect on the droplet size. As the experimental result in Table 6
(Nos. 4e5), the particle size increases significantly with the in-
crease in the concentration of cosurfactant. The cosurfactant effect
could reduce the interfacial tension and change the curvature of
the emulsion droplet42. In Fig. 7B, the relationship between oil
content, Km, and PDI showed the same tendency. When the oil
content in the system increased, the PDI value also increased. That
mean the droplet size of the system was more homogeneous,
under the condition of less oil phase content. The result indicated
that the surfactant disperses the mixed-phase into tiny droplets and
reduces the interface’s free energy to maintain a smaller surface
area. However, there was a contrary tendency between oil content,
Table 4 Solubility of MLX in excipients.

Category Excipient Solubility (mg/mL)

Oils IPM 0.151

IPP 0.172

GTCC 0.244

Labrafil M 1944 CS 1.072

Surfactants Tween 80 11.902

Cremophor EL 4.423

AEO-9 7.194

Cremophor RH40 7.188

Co-surfactants PEG400 1.765

Transcutol HP 3.701

Ethanol 3.351

Isopropanol 0.278

IPM, isopropyl myristate; IPP, isopropyl palmitate, GTCC, cap-

rylic/capric triglyceride.



Table 5 The comparison in accuracy, sensitivity and speci-

ficity of six SEDDS combination.

Diagram Accuracy (%) Sensitive (%) Specificity (%)

A 92.59 71.42 100

B 98.15 83.33 100

C 75.93 50 100

D 85.19 60 100

E 90.74 72.73 95.35

F 94.44 70 100

Overall 89.51 67.91 99.23

Figure 5 The predicting pseudo-ternary phase diagram with different

Tween 80: Transcutol HP, (B) Labrafil M 1944 CS: Tween 80: PEG 400, (C

M 1944 CS: Cremophor RH40: PEG 400, (E) Labrafil M 1944 CS: AEO

Figure 6 The experimental pseudo-ternary phase diagram with differen

Tween 80: Transcutol HP, (B). Labrafil M 1944 CS: tween 80: PEG 400, (C

M 1944 CS: Cremophor RH40: PEG 400; (E) Labrafil M 1944 CS: AEO
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Km, and drug loading than droplet size and PDI. The loading
capacity of SEDDS was calculated by Eq. (6) 43:

CSEDDSZ
X

WeCe ð6Þ
where CSEDDS was the solubility of the SEDDS system, We was
the content of each excipient, and Ce was the solubility of each
excipient. According to Eq. (6), the solubility of MLX in the oil
phase was relatively lower than in surfactant and cosurfactant, so
that the drug loading decreased when the oil content increased.
Overall, among 13 formulations, No. 7 had the most extensive
loading, relatively small droplet size and suitable PDI so that it
oil: surfactant: co-surfactant combination: (A) Labrafil M 1944 CS:

) Labrafil M 1944 CS: Cremophor RH40: Transcutol HP, (D) Labrafil

-9: Transcutol HP, (F) Labrafil M 1944 CS: AEO-9: PEG 400.

t oil: surfactant: co-surfactant combination: (A) Labrafil M 1944 CS:

) Labrafil M 1944 CS: Cremophor RH40: Transcutol HP, (D) Labrafil

-9: Transcutol HP, (F) Labrafil M 1944 CS: AEO-9: PEG 400.



Table 6 The central composition design of MLX-SEDDS.

No. X1 (%) X2 Y1 (nm) Y2 Y3 (mg/mL)

1 80.36 2.50 74.64 0.51 0.77

2 9.64 2.50 17.83 0.11 4.58

3 70.00 4.00 95.28 0.23 1.41

4 45.00 0.38 196.17 0.18 2.77

5 45.00 4.62 35.03 0.06 2.98

6 45.00 2.50 35.80 0.10 2.99

7 20.00 4.00 21.31 0.05 4.83

8 45.00 2.50 35.36 0.10 2.90

9 20.00 1.00 22.02 0.06 4.09

10 70.00 1.00 99.51 0.23 1.20

11 45.00 2.50 35.53 0.08 3.97

12 45.00 2.50 35.75 0.09 4.06

13 45.00 2.50 36.85 0.10 3.31

X1, mass percent of oil; X2, Km Z Surfactant/Cosurfactant. Y1,

droplet size; Y2, PDI; Y3, drug loading.
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was considered the optimal formulation. Thus, the optimal content
of Labrafil M 1944 CS, Cremophor RH40, and Transcutol HP was
20%, 64% and 16%, respectively.
3.7. Molecular modeling for MLX-SEDDS

The diffusion process of MLX-SEDDS in water was mimicked
by the MD simulation and showed in Fig. 8. After 200 ns
Figure 7 The color fills of (A) drop

Figure 8 Snapshots of MLX-SEDDS in water (A) 0 and (B) 200 ns (Re

blue molecules: cosurfactants).
simulation, Oils (white molecules) and surfactants (green mol-
ecules) were formed the droplet skeleton of MLX-SEDDS. And
the cosurfactants (blue molecules) were dispersed around the
droplet. To further explore the cosurfactant role in the system, we
had constructed a self-emulsifying system without cosurfactant
for comparison. Fig. 9A presentes the root-mean-square devia-
tion (RMSD) of MLX-SEDDS and MLX-SEDDS without
cosurfactant for 200 ns? Obviously, the MLX-SEDDS system
produced for about 3 Å fluctuation while the MLX-SEDDS
without cosurfactant system had about 18 Å fluctuation. This
result illustrated that cosurfactant could make the whole system
more stable. The cosurfactant could decrease the interface ten-
sion between oil and water to replace part of surfactants to
reduce the side effects caused by surfactants. The mass-weight
radius of gyration (Rg) and solvent accessible surface areas
(SASA) analyzed the molecule movement of two systems in an
aqueous solution, shown in Fig. 9B and C. Rg represented the
distribution of molecules in aqueous solution over time while
SASA was defined as the surface area accessibility of molecules
to the solvent. Both Rg and SASA curves of the system with
cosurfactant were higher than those of the system without
cosurfactant, indicating the former system easier to self-emulsify
than the later system in water. This result illustrated that
cosurfactant could improve the emulsion of SEDDS and was
well consistent with the observation of the experiment. There-
fore, the cosurfactant effect may result in a larger droplet size of
SEDDS.
let size, (B) PDI, (C) drug loading.

d molecules: MLX; grey molecules: oils; green molecules: surfactants;



Figure 9 CPPTRAJ analysis results of MLX-SEDDS. (A) Root-mean-square deviation of MLX-SEDDS and MLX-SEDDS without cosur-

factant. (B) Mass-weight radius of gyration of MLX-SEDDS and MLX-SEDDS without cosurfactant. (C) Solvent accessible surface areas of

MLX-SEDDS and MLX-SEDDS without cosurfactant.
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4. Conclusions

In this research, the pseudo-ternary phase diagram prediction
model was successfully constructed by the RF method, which also
revealed the important features in SEDDS. The MLX pseudo-
ternary phase diagram by experiments validated the prediction
model with 89.51% accuracy. The CCD experimental design
helped find the optimal MLX-SEDDS and revealed the relation-
ship between excipient content and SEDDS’ s properties. Finally,
the MD simulation provided us the molecular interaction between
drug and excipient and the role of cosurfactant. The integrated in
silico and experimental methodology are well applied in rational
formulation design of SEDDS, which also brings new ideas for
future drug formulation design.
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