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Background: The e�ciencies that master protocol designs can bring to

modern drug development have seen their increased utilization in oncology.

Growing interest has also resulted in their consideration in non-oncology

settings. Umbrella trials are one class of master protocol design that evaluates

multiple targeted therapies in a single disease setting. Despite the existence of

several reviews of master protocols, the statistical considerations of umbrella

trials have received more limited attention.

Methods: We conduct a systematic review of the literature on umbrella

trials, examining both the statistical methods that are available for their design

and analysis, and also their use in practice. We pay particular attention to

considerations for umbrella designs applied outside of oncology.

Findings: We identified 38 umbrella trials. To date, most umbrella trials

have been conducted in early phase settings (73.7%, 28/38) and in oncology

(92.1%, 35/38). The quality of statistical information available about conducted

umbrella trials to date is poor; for example, it was impossible to ascertain

how sample size was determined in the majority of trials (55.3%, 21/38). The

literature on statistical methods for umbrella trials is currently sparse.

Conclusions: Umbrella trials have potentially great utility to expedite drug

development, including outside of oncology. However, to enable lessons to

be e�ectively learned from early use of such designs, there is a need for

higher-quality reporting of umbrella trials. Furthermore, if the potential of

umbrella trials is to be realized, further methodological research is required.

KEYWORDS

stratifiedmedicine,master protocol, precisionmedicine, precision oncology, adaptive

design, biomarker-guided design, innovative design

1. Introduction

The advent of precision medicine is progressively revolutionizing the conduct of

clinical trials. The high cost and vast resources required to conduct clinical trials implies

that it would be slow and inefficient to test targeted therapies in a large number of

small patient sub-populations under the conventional paradigm of a single treatment vs.

standard of care. Increasingly, a common protocol (called a “master protocol”) is being

utilized to test multiple targeted treatments within a single disease setting in different

subtrials. These subtrials are defined by disease subtype or patient-level characteristics
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that are thought to be associated with treatment response. Such

a master protocol is commonly referred to as an umbrella trial

(1, 2).

Conceptually, an umbrella design is simply a set of

(sub)trials run in parallel. It offers a selection of appealing

advantages, including: (i) that several treatment-related

questions can be answered in a single trial, (ii) a potential

reduction in the number of patients required (for instance, by

including a common control arm), and (iii) expedited drug

development, with shorter trial duration and lower costs overall,

relative to running traditional clinical trials independently

(3, 4). However, numerous statistical complexities may arise

in the conduct of umbrella trials, including but not limited

to a desire for adaptive design elements, the choice between

Bayesian/frequentist decision rules, appropriate sample size

calculation, whether to borrow information, and how to control

particular error rates. The solution that accommodates such

considerations will typically vary depending on the variant

of umbrella design chosen and study-specific requirements;

for instance, conducting a late-phase umbrella trial would

mean more stringent requirement on error-rate control. More

recently, complex (hybrid) designs have also emerged that

blur the lines between umbrella designs and other related

master protocol designs, which present even more interesting

statistical questions.

Reviews from 2018 to 2019 found that nearly all umbrella

trials have been implemented to date in oncology, with the

majority being either phase I or II, and incorporating the use

of randomization (5, 6). Notably, there are fewer implemented

umbrella trials relative to other key master protocols (6, 7):

platform trials (which allows flexible addition of new treatment

arms or patient subgroups) and basket trials (where a targeted

therapy is evaluated across multiple diseases having a common

therapeutic target).

The relative rarity of umbrella trials may speak in part to the

fact that despite their noted advantages, there remains limited

guidance on their design and analysis. By contrast, several

designs have been proposed for basket and platform trials; these

vary by the utilized statistical analysis techniques, the decision

rules that can be incorporated, and cover different purposes or

phases of drug development (8–16). Whilst there have been a

number of recent reviews of master protocols, they have focused

on delivering landscape analyses of master protocols in general,

providing often high-level discussions of various trial designs,

their definitions in the literature, and key published examples

(3, 5, 6, 17). Though several works have discussed statistical

analysis methods for master protocols, they have focused on

basket and platform trials (7, 15). Moreover, as we argue further

later, the current and future potential of umbrella trials in non-

oncology settings is enormous (18, 19). So far, though, published

articles on umbrella trials have almost exclusively discussed

oncology related considerations.

In this article, we conduct a comprehensive review with a

focus on (i) the design and analysis of recent umbrella trials,

and (ii) proposed trial designs and statistical methods available

for umbrella trials. Our objectives are two-fold: (1) to provide

awareness of the statistical considerations for the design and

analysis of umbrella trials, with attention paid to non-oncology

settings, and (2) to highlight areas in which further research is

required. In this way, we hope to lay clear the state of play for

umbrella designs.

The remainder of this article is structured as follows. We

proceed by describing our approach to identifying relevant

literature in Section 2. We then lay out the general umbrella

design framework in Section 3, before describing characteristics

of conducted umbrella trials in Section 4. Analysis and design

strategies for umbrella trials are discussed in Sections 6 and

5, respectively, before links to related designs are drawn in

Section 7. In Section 8, we highlight some open questions for

umbrella trials and close with a discussion of our findings in

context in Section 9.

2. Review methodology

Key elements of our approach to identifying published

articles relating to umbrella trials are listed here. Further

details including PRISMA checklists (20) are provided in the

Supplementary materials.

2.1. Data sources and search strategy

We conducted a systematic search of literature present

in PubMed, checking articles present by 12th May 2021

for relevance to umbrella trials. To overcome the common

mislabeling/misclassification of master protocol designs (21),

we extracted articles that stated they were related to umbrella,

basket, or platform trials. Our exact search term is provided

in the Supplementary material. We complemented our search

with a review of published master protocol reviews and manual

forward/backward citation checks of relevant articles. This

review was not registered.

2.2. Article inclusion criteria

The literature search aimed to identify articles that either

(i) proposed statistical methodology for umbrella trials, (ii)

reported the protocol/results of an umbrella trial, or (iii)

discussed other considerations related to umbrella trials.

Inclusion criteria (iii) was flexible to accommodate the variable

definitions ofmaster protocols in the literature; several identified

master protocols did not neatly fit the widely accepted definition
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of an umbrella trial (1), but were closely related and provided

useful information for umbrella trials. For example trials such

as NCI-MATCH, CUSTOM have been labeled as umbrella trials

by some authors (3, 21), others consider them as a basket trial

(1, 21), while others (3, 7) agree they fit neither classification.

Strictly, NCI-MATCH and CUSTOM are not umbrella trials but

hybrid designs.

All abstracts were independently reviewed by two of the

five authors to check for whether they met one or more of

the three inclusion criteria. Conflicts regarding study relevance

were then resolved by a third reviewer to create a final list of

relevant articles.

2.3. Data extraction and synthesis

For relevant articles that presented a clinical trial

protocol/results, data were extracted independently by two

of the five authors using a standardized data extraction

form (see Supplementary material). Specifically, we extracted

information on trial phase, disease area, the number of

subtrials/modules, the sample size, the approach to sample

size calculation, randomization, error rate control, the primary

outcome, any adaptive features, the analysis approach, and

whether patients were eligible for multiple subtrials, amongst

other considerations. The independently extracted data were

then synthesized by MG into a single dataset, from which

the descriptive overview of the characteristics of these trials

is provided. The details of other relevant articles (e.g., those

providing statistical methodology) is described narratively in

relevant sections of this article.

3. The umbrella trial framework

We now proceed by describing umbrella trials in one general

framework. An umbrella trial recruits patients with a single

condition (e.g., Alzheimer’s disease); patients with this condition

are screened for whether they belong to one of S pre-defined

subgroups, also called modules. These modules or subgroups

comprise the different subtrials. We will use s = 1, . . . , S to

indicate the subgroup to which a patient belongs. In cancer

trials, subgroups are typically defined by patients exhibiting a

particular genetic marker, but we will discuss examples later

of more general definitions from areas outside of oncology. In

some cases, an umbrella trial may also adopt an “all comers”

type approach, in which patients with the condition of interest

who are screened but found to not belong to any of the S

subgroups may be offered the opportunity to enter a separate

subtrial. For brevity, we omit this consideration from most of

our discussions that follow, but note that when such a separate

subtrial is included, little is lost by simply considering this as a

separate subgroup with its own index.

Umbrella trials can then be defined by a rule that links the

subgroup a patient belongs to with the possible allocation to

treatments. We assume that all possible treatment assignments

can be split such that there are TC ≥ 0 and TE ≥ 1 treatments

that are considered to be control and experimental assignments,

respectively. We use tC = 0, . . . ,TC and tE = 1, . . . ,TE to

index these treatments. Then, an umbrella trial functions such

that patients in subgroup s are allocated, subject to a chosen

randomization method, to one of the treatments in set Cs ∪

Es, where Cs and Es are subsets of the TC control and TE

experimental arms.

To illustrate this more clearly, Figure 1 shows four example

umbrella designs in the case that S = 3 and TE = 3, for

possible values of TC and possible choices of the sets Cs and

Es. Figure 1A indicates the principal structure of the trial and

then Figures 1B–E correspond to the four types, respectively.

These are

• Figure 1B: A non-randomized umbrella trial, in which

TC = 0 (and thus Cs = ∅ for s = 1, 2, 3) and Es = s for

s = 1, 2, 3. That is, patients in subgroup s are automatically

assigned to a linked experimental treatment.

• Figure 1C: A randomized umbrella trial, in which TC = 3,

with Cs = Es = s for s = 1, 2, 3. That is, patients in

subgroups s are assigned to either a linked experimental

treatment, or a linked control treatment.

• Figure 1D: A randomized umbrella trial, in which TC =

1, with Cs = 1 and Es = s for s = 1, 2, 3. That is,

unlike in Figure 1B, patients in subgroup s are assigned

to either a linked experimental treatment, or a common

control treatment.

• Figure 1E: An example of a “mixed” form of umbrella trial,

in which TC = 2. Here, all patients in subgroup s = 1 are

assigned to experimental treatment 1 (i.e., non-randomized

allocation with C1 = ∅ and E1 = 1). Whereas, in subgroup

s = 2, patients can be assigned to one of two possible

experimental treatments or a control arm (i.e., randomized

allocation with C2 = 1 and E2 = {1, 2}). Similarly, in

subgroup s = 3, patients can be assigned to one of two

possible experimental treatments or a control arm (i.e.,

randomized allocation with C3 = 3 and E2 = {2}).

We return later to consider examples of several of these

possible umbrella designs that have now been used in practice.

4. Characteristics of conducted
umbrella trials

In this section, we present findings of the review on statistical

aspects of the conducted umbrella trials. A total of 1,789

articles were identified in the updated search; 1,652 articles

were excluded in the first screening by title and abstract;
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FIGURE 1

Representative umbrella trial designs in the case of three subgroups (S = 3) and three experimental treatment arms (TE = 3). (A) indicates the

fundamental structure of a trial of this type. (B–E) give di�erent design options allowing assignment to the experimental and possibly control

treatments in each subgroup (as defined by the values of TC, Cs, and Es).
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TABLE 1 Overview of the characteristics of the 38 identified umbrella

trials.

Category n (%)

Trial phase

Early phase (I, II) 23 (60.5)

Late phase (III-IV) 3 (7.9)

Seamless (I/II, II/III, III/IV) 10 (26.3)

Unclear 2 (5.3)

Disease setting

Oncology 35 (92.1)

Non-oncology 3 (7.9)

Primary endpoint

Binary & TTEa 2 (5.3)

Safety & Binarya 1 (2.6)

Safety & TTEa 2 (5.3)

TTEb 9 (23.7)

Safety 1 (2.6)

Binary 18 (47.4)

Continuous 2 (5.3)

Unclear 3 (7.9)

Primary endpoint same across subtrials

Yes 27 (71.1)

No 7 (18.4)

Unclear 4 (10.5)

Treatment allocation

Randomized 12 (31.6)

Non-randomized 14 (36.8)

Both (randomized and non-randomized) 7 (18.4)

Unclear 5 (13.2)

Control same across subtrialsc

Yes 4/12 (33.3)

No 4/12 (33.3)

Unclear 4/12 (33.3)

Overlapping/Mutually exclusive subgroups

Overlapping 8 (21.1)

Mutually exclusived 22 (57.9)

Unclear 8 (21.1)

Approach to deal with overlapping subgroups

Yes 7/8 (87.5)

No 1/8 (12.5)

The denominator for the percentages is 38 unless otherwise stated. The term Unclear

means that there was insufficient information available in identified data sources for

classification. aCo-primary endpoints; bTTE is a time-to-event endpoint such as overall

survival or progression free survival; Binary endpoints—overall/partial response, disease

control rate; Safety endpoints—adverse events, dose limiting toxicity, maximum tolerated

dose; cAssessed only for randomized trials; dSubtrials/subgroups are mutually exclusive

if no patients have tested positive for > 1 subgroup-treatment defining criteria (i.e.,

biomarkers).

and 137 articles were assessed for full text eligibility. Seventy-

seven articles were included in the final data extraction with

42 of these identified from forward/backward citation checks

TABLE 2 Statistical considerations in the design and analysis of the 38

identified umbrella trials.

Statistical consideration n (%)

Adaptive features

Yes 15 (39.5)

No 5 (13.2)

Unclear 18 (47.4)

Sample size calculation

Pooled 4 (10.5)

Separate 13 (34.2)

Unclear 21 (55.3)

Primary analysis framework

Frequentist 15 (39.5)

Bayesian 2 (5.3)

Bayesian and Frequentist 1 (2.6)

Unclear 20 (52.6)

Indicated an error rate had been controlled

Yes 13 (34.2)

No 1 (2.6)

Unclear 24 (63.2)

Error rate control consistent with designa

Yes 7/13 (53.8)

No/Unclear 6/13 (46.2)

Target effect size same across subgroups

Yes 4 (10.5)

No 11 (28.9)

Unclear 23 (60.5)

Described how missing data would be handled

Yes 0 (0.0)

No 38 (100.0)

The denominator for the percentages is 38 unless otherwise stated. The term Unclear

means that there was insufficient information available in identified data sources for

classification. aAssessed only for relevant trials that reported error rate control in the

design.

of articles naming umbrella trials. Supplementary Figure 1 of

the Supplementary material depicts the search and selection

procedure using the PRISMA (20) flow-diagram. Thirty-eight

umbrella trials, all investigating experimental drugs, were

identified in our review; a summary of their key characteristics

is presented in Tables 1, 2. The relevant umbrella trials featured

different designs; see Figure 2 which illustrates two ongoing

umbrella trials in lung cancer, the Lung-MAP (22) and SUSKES

(23) trials.

Most umbrella trials were conducted in oncology (92.1%,

35/38), mainly in non-small cell lung cancer, followed by breast

cancer. Only three trials were conducted in non-oncology

settings, namely, HIV (ACTG A5288) (24), Alzheimer’s disease

(DIAN-TU) (25), and rheumatoid arthritis (TOZURA) (26,

27). Unlike the oncology trials that evaluated drugs that

targeted well-validated oncogenes now used in many trials, the
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FIGURE 2

Two examples of real umbrella trials featuring distinct designs. The schema in the top panel depicts the small cell lung cancer umbrella korea

studies (SUKSES–NCT02688894) trial. The bottom panel demonstrates the study schema of the lung cancer master protocol

(Lung-MAP–NCT03851445) trial.

non-oncology trials evaluated types of biomarkers. For instance,

the DIAN-TU trial tested a diverse panel of imaging and fluid

Alzheimer’s biomarkers while resistance to nucleoside reverse

transcriptase inhibitors was the major determinant of treatment

assignment in ACT A5288.

More than two-thirds (73.7%, 28/38) were conducted in

an early phase setting (phase I or II), and ten (26.3%) trials

had a seamless design (5 phase I/II, 4 phase II/III, 1 phase

III/IV). Fifty-percent of the trials incorporated randomization

in some way (19/38); 12 studies (31.6%) randomized patients
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in all subtrials, while 7 studies (18.4%) randomized patients in

specific subtrials only. Four of the twelve (33.3%) completely

randomized studies used a common control treatment across the

subtrials, with four trials (33%) also using a different control in

at least one subtrial.

The median number of subtrials was 5 (IQR: 3–9) amongst

the 30/38 trials (78.9%) that reported the number of subtrials.

In most trials (55.3%, 21/38), all of the subtrials were mutually

exclusive, but in eight trials (21.1%) there were overlapping

treatment defining characteristics (such as biomarkers). Only

seven trials clearly reported whether patients were eligible

for multiple subgroups alongside an approach for allocating

such patients to a suited treatment. In these seven trials, the

approaches used for allocating patients eligible for multiple

subgroups to treatments included a hierarchy of biomarkers

approach (28, 29), weighting by the prevalence of subgroups

(30), a ranking algorithm (31), and a prioritization approach

incorporating both allele frequency and gene expression (32).

The median planned overall sample size of the umbrella

trials was 259 participants (IQR: 135-4936). However, we note

that roughly one-third of the studies did not report the overall

or per subtrial sample sizes (26.3%, 10/38). The sample size

per “module” was highly varied across trials; for instance in

FUTURE (33), each of the 7 modules had 20 patients, the

module sample sizes in UPSTREAM (34) were 55, 55, 55, 32,

32, 20, 40, and 76, respectively, while the module sample sizes in

MORPHEUS (35) was 435, 410, 290, 382, 126, 280.

More than half of the umbrella studies used the same

primary outcome across the subtrials (52.6%, 20/38); binary

outcomes were the most common (71.1%, 27/38; overall

response rate was used in 17 studies) followed by time-to-event

outcomes (28.9%, 11/38). Eight trials (21.1%) had co-primary

outcome measures; for example PFS and ORR (34, 36) and PFS

and OS (22, 28, 37).

Nearly two-fifths (39.5%, 15/38) of the trials enabled mid-

course adaptations to the design. This was in spite of the fact that

in nearly half of the trials (47.4%, 18/38) there was insufficient

information to deduce whether or not any adaptive features

had been included. The most commonly allowed adaptation

was futility/efficacy monitoring (60.0%, 9/15). Other adaptive

features observed were adaptive randomization (20.0%, 3/15)

(38, 39), sample size re-estimation (6.7%, 1/15) (40), addition

of new arms (13.3%, 2/15) (23, 41), and a two-stage design

to terminate ineffective treatments in stage I (20%, 3/15)

(23, 42, 43).

We observed considerable differences in the information

available about umbrella trials conducted to date. In at least

half of the umbrella trials identified it was impossible to

clearly ascertain information about the approach to sample size

calculation (55.3%, 21/38), the error rates controlled (63.2%,

24/38), the statistical framework (to be) used in the analysis

(Bayesian or frequentist) (52.6%, 20/38), whether pooling or

borrowing of information across subtrials was permitted (50.0%,

19/38), and any considerations for dealing with missing data

(100.0%, 38/38). We return to discuss this point again in

the Discussion.

5. Design and sample size calculation

With many variants of umbrella trial possible, numerous

statistical considerations for their design and analysis can

arise. In this section, we discuss several key considerations for

good practice.

5.1. Adaptive vs. non-adaptive design

Adaptive designs provide the opportunity to undertake mid-

trial changes, such as adding or dropping of arms, or adjustment

in treatment allocation ratios and sample size based on accrued

data. Such trial adaptations are desirable to improve overall trial

efficiency, for instance enrolling fewer patients but maintaining

the desired statistical power, or allocating a higher proportion

of patients to the best treatment option (44). Figure 3 illustrates

a general framework for the implementation of an adaptive

umbrella design involving biomarker subgroups.

Adaptive features such as response-adaptive randomization,

addition of arms, or stopping for futility/efficacy, are common

in recent and ongoing umbrella trials; in all, 15 studies (39.5%)

incorporated adaptive features into their design. The Lung-

MAP trial is a classic example that has undergone adaptations

(22, 45, 46): (i) new subtrials have been initiated (ii) the trial

was modified from a phase II/III trial to include both phase

II and phase III evaluations, leading to the inclusion of single-

arm studies and modification of the “non-match” subtrial from

a randomized to single-arm design.

Several proposed statistical methods for the design and

analysis of umbrella trials have incorporated one or more

adaptive features (47–49), though it does not appear any have

yet been implemented in practice. Wason et al. (47) proposed a

Bayesian adaptive design for use in biomarker-guided umbrella

trials. In this design, patients are initially equally randomized

between treatments they are eligible for. Then, at interim

analyses accruing trial data are used to update the allocation

probabilities; this is done by computing, for each biomarker

profile, the posterior probabilities that an experimental

treatment is superior to control. The design of Wason et al.

(47) works well when pre-specified biomarker-treatment

pairings are correct and in scenarios where unintended

biomarker-treatment pairings are observed. Unintended

biomarker-treatment pairings are instances when a treatment

gives benefit to a biomarker sub-population for which it is not

primarily targeted in a biomarker-guided trial.

The aforementioned HCOMBS methodology proposed by

Kang et al. (49) uses interim futility clustering in a two-stage
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FIGURE 3

Illustration of implementing a conventional (non-adaptive) umbrella trial and an adaptive umbrella trial. (A) Conventional umbrella trial. (B)

Adaptive design implementation.

phase II umbrella trial, allowing for early dropping of inactive

arms. At the interim analysis, treatment arms are grouped into

active or inactive subgroups based on whether the response rates

are less than or greater than pre-specified thresholds. Treatment

arms in the inactive subgroups are dropped for futility while

arms in the active group advance to the next stage.

Ballarini et al. (48) proposed a two-stage Bayes optimal

umbrella trial in two disjoint disease subgroups. In the first

stage, the proportion of patients to be recruited from each

biomarker subgroup is optimized, along with the timing of the

interim analysis. In the second stage, they update the optimal

allocation based on results at the interim analysis. Ren et al. (50)

also proposed a statistical framework for a three-arm phase III

umbrella trial with a common control allowing addition of a

treatment arm mid way through the trial.

The potential advantages of adaptive designs

notwithstanding, we end this subsection by highlighting

that although adaptive features can provide several efficiency

gains to a trial, trialists must weigh their pros and cons as they

do not always provide an advantage. For example, when the

clinical outcome of interest is a long-term endpoint, adaptive

designs are not recommended (44).

5.2. Patient eligibility for multiple
subgroups

As discussed in Section 4, patients with multiple actionable

biomarkers are seen in several umbrella trials (3, 4). This raises

the question of how to address in the design such patients

who test positive for multiple biomarkers (i.e., patients are

often eligible for multiple subgroups). Sometimes, it is not

clear which biomarker is a potential disease driver for such a

patient (51). The allocation of these patients to treatment is
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not straightforward; the decision may either be left to the trial

clinician(s), or different simple and complex approaches can be

used. In this review, for more than half of the umbrella trials

identified (21/38, 55.3%) it was not clear whether patients were

eligible for multiple subgroups. Furthermore, even when there

was clear evidence of eligibility to multiple subgroups, as in

National Lung Matrix (36, 52) and MODUL (42), reporting on

how these patients would be dealt with was typically unclear.

In all, it was clear that for seven trials patients were eligible

for multiple treatment subgroups, but only five clearly reported

the approach to deal with the allocation of such patients:

weighted allocation based on prevalence of subgroups [Lung-

MAP (22)], a hierarchy of biomarkers approach [FOCUS4 (28)],

a ranking algorithm [N2M2 (31)], a pre-specified prioritization

approach [PANGEA (32)], and assignment to non-matched

arms [SUKSES (23)].

Ouma et al. (53) and Kesselmeier et al. (54) have

demonstrated that when overlapping subgroups are likely,

an appropriate treatment allocation strategy should be pre-

specified, to ensure desired trial operating characteristics

are maintained. Kesselmeier et al. (54) compared two

approaches: (i) pragmatic allocation to the eligible subtrial

with fewer patients and (ii) equal randomization. They

showed that as the proportion of patients who test positive

for multiple biomarkers increases, the estimated treatment

effects will increasingly deviate from those obtained from the

corresponding independent trials. That is, if the issue of multiple

biomarkers is not addressed appropriately in the design and

analysis, biased treatment effects are very likely. Ouma et al. (53)

investigated the performance of various approaches previously

used in practice and other plausible strategies, namely,

the hierarchy approach, Bayesian adaptive randomization

(BAR), equal randomization, constrained randomization, and

randomization with a fixed allocation probability to control.

They report the impact of treatment allocation strategies on

operating characteristics such as statistical power, treatment

allocation ratios, proportion of patients on the best treatment

available to them, and accuracy and precision of treatment effect

estimates. Although Ouma et al. (53) showed that no treatment

allocation strategy is optimal in all settings, the hierarchy and

BAR approaches performed best in general. However, the

hierarchy approach is heavily dependent on the validity of the

pre-specified hierarchy of subgroups and performs poorest

if the hierarchy is wrong. A notable advantage of BAR is

that it favors the allocation to treatments that are likely to be

more beneficial.

One practical consideration is that when the proportion of

patients with multiple biomarkers is small, an approach such as

equal randomization is sufficient. In contrast, in scenarios where

the prevalence of overlapping subgroups is unknown, one may

argue for the use of accruing trial data to adaptively inform the

treatment allocation decisions.

5.3. Adjustments for testing multiple null
hypotheses

Error rate control is often strictly required for confirmatory

trials; our review’s findings affirm the general consensus that

error rate control is less stringent in early phase trials. Thirteen

studies reported on control of error rates, one study (24) had no

error rate control, while for 24 studies we could not establish

whether error rates were controlled. Of the 13 studies which

stated error rates controlled, type I and type II error rate

control for each hypothesis was the most common approach

(12/13, 92.3%), while one trial (32) reported computation of

pooled type-I and type-II errors. The family-wise error rate was

controlled in two trials, WSG ADAPT (55) and BATTLE-2 (39).

Notably, we were only able to establish that error rate control in

the analysis was consistent with the design for seven studies.

In the standard (most commonly implemented) umbrella

design (Figure 1B), the hypotheses being tested relate to

different experimental treatments investigated in different

disease subgroups and therefore multiplicity adjustment is not

required (48, 50, 56–58). However, if adaptive design features are

used, it is important to ensure error rates are controlled across

stages, at least per subtrial.

In Figure 1E where some experimental treatments are

evaluated in multiple subgroups, multiplicity correction is

usually needed in confirmatory trials. Collignon et al. (58)

present some further considerations for error rate control in

umbrella trials. In settings where patients test positive for

multiple biomarkers (say, B1 and B2) and there is no rationale

for preferential enrolment to a specific sub-study, investigators

may decide to randomize patients between the biomarker-

defined sub-studies instead of an elective approach. Within

each sub-study, they can be further randomized to experimental

treatments. A potential concern is when multiple biomarker

patients (B1+B2+) are randomized to the sub-studies while

B1+ and B2+ are assigned to respective sub-studies B1 and B2.

This may lead to over-representation of the multiple biomarker

patients in one sub-study and consequently the need to control

possible inflation of the “master protocol–wise error rate”

(MPWER). The MPWER is the “the probability of declaring at

least one of the subtrials of the master protocol positive when

none is” (58). Another situation where maintaining error rates

is important is when information borrowing is incorporated

between certain common treatment arms, for example the

control arm in Figure 1D. This requires careful evaluation by

pre-trial simulations if the potential implications for error rates

is to be well-understood.

Besides the aforementioned considerations for error rate

control, there are some recent methodological developments

on this subject relevant to umbrella trials. Werner et al. (59)

proposed population-wise error rate (PWER) for multiple type-

I error control when a treatment is tested in two subgroups
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that are not disjoint. This is specific to Figure 1E, if subgroup

1 and 2 are not overlapping, yet independent conclusions are

desired for each disease subgroup. The underlying principle for

this proposal is that the intersections for S1 and S2 will contain

patients that are possibly exposed to multiple erroneously

rejected null hypotheses, implying that one has to adjust for

multiplicity. Werner and colleagues have shown that PWER

is less conservative and is associated with increased power

compared to the FWER (59). To the best of our knowledge,

PWER has not been implemented in a software or real trials.

We also point the reader to relevant statistical methodologies

for Bayesian and/or adaptive umbrella trials by Kang et al. (49),

Ren et al. (50), and Ballarini et al. (48) discussed in various

sections in this manuscript that have shown promising control

of error rates.

5.4. Sample size computation

The sample size determination criteria was unclear for

most umbrella trials in our review (21/38, 55.3%). Amongst

trials that reported sample size computation, 76.5% (13/17)

determined the number of patients required for each subtrial

separately. Besides, we identified a single methodology that

proposed a novel sample size determination criteria. Kang

et al. (49) in their Bayesian hierarchical design used a grid-

search algorithm to determine the optimal sample size per

subtrial that attained a desiredmarginal power and FWER. Their

proposed methodology enabled borrowing of information and

required fewer patients than independent Simon’s design for

each subtrial.

One argument for the separate approach is the visualization

of an umbrella trial as a collection of independent trials

conducted in parallel, each testing a unique hypothesis

that is unrelated to those tested in other subtrials. For

example, the Lung-Map and ALCHEMIST subtrials are

designed independently based on biomarker prevalences, whilst

maintaining the same design parameters across all subtrials

(22, 30). Another reason to use the separate approach is when

certain key design parameters, for instance the target effect size

or choice of primary outcome, vary across subtrials: nine studies

in our review had different effect sizes across subtrials, while

seven had at least one subtrial using a different endpoint to

the rest.

The idea of pooled sample size computation for umbrella

trials is relatively uncommon in practice; only four trials (ACTG

A5288, BATTLE-1&2, PANGEA), used a pooled approach (60–

62). Since a generic approach to sample size computation that

works for different umbrella designs is currently lacking from

the literature, the use of simulation for umbrella trial design

is often required. This will especially be true if sample size

calculation is to be carried out accounting for a Bayesian analysis

that facilitates borrowing of information. Little work has been

conducted to date, though, to help guide sample size calculation

in this manner for umbrella trials.

We highlight that, in practice, some biomarkers of interest

may have rather low prevalence. It could therefore be unrealistic

to power the corresponding subtrials in isolation, unless

targeting a large effect size with a higher type I error and lower

power than would otherwise be common (3).

5.5. Design of umbrella trials by phase of
development

We identified umbrella trials spanning the full spectrum of

drug development (phase I–IV). However, most trials in our

review were early phase trials. All of the identified phase II/III or

phase III designs incorporated randomization into their design.

Error rate control was less common in early phase trials; only 1/7

(14.3%) phase I or phase I/II trials and 8/20 (40%) phase II trials

mentioned the control of type I and type II errors. Late phase

trials were, as would be expected, generally larger in sample size;

in our review the median sample size for phase I, II, and III trials

was 154, 229, and 770 participants, respectively.

Statistical considerations for umbrella trials vary depending

on the phase of application. In early phase trials, smaller sample

sizes are usually targeted for feasibility reasons. In phase I,

the umbrella framework in general offers logistical rather than

statistical advantages, with the subtrials typically comprising

a single-arm (preventing, e.g., the potential for borrowing of

information). Larger phase II trials (e.g., phase IIB) offer greater

potential for added efficiencies in an umbrella context, as there

is generally larger scope for the use of novel methodologies.

In the confirmatory setting, the standard two-arm randomized-

controlled trial framework implies that there may be less scope

for statistical efficiencies (such as borrowing information across

subgroups) to be achieved from an umbrella design, although

logistical advantages may still be realized. In particular, stringent

control of error rates is often required in phase III to meet

regulatory requirements, which may negate the possibility to

borrow information (63, 64). However, some authors have

proposed confirmatory umbrella designs with high power and

desirable type I error rate control (48, 50).

6. Analyzing umbrella trial data

The appropriate analysis strategy for an umbrella trial

depends on its design and objectives. In particular, both Bayesian

and frequentist analysis frameworks have utility in the analysis

of umbrella trial data, and within each of these paradigms there

have been a few established approaches thatmay be employed. In

the following, we summarize key considerations in this regard,

in particular around the potential for borrowing of information

using examples identified in our review.
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6.1. Bayesian vs. frequentist approaches:
General considerations

To date, it is evident a frequentist framework is the dominant

approach for umbrella trial analysis; in our review, nearly all

trials where the statistical framework used in the analysis was

reported (18/38, 47.4%) used a frequentist framework (16/18,

88.8%). Most commonly, this involves analyzing the subtrials

separately (also called stand-alone analysis).

Bayesian methods are gaining popularity more generally

for master protocols (15, 65), especially Bayesian adaptive

approaches to enable efficient pooling of results when subtrials

have common features such as similar treatment(s) or control(s)

(e.g., the randomized umbrella trial in Figure 1D). Indeed,

we identified two umbrella trials that were analyzed under

the Bayesian framework, as well as one trial that used both

frequentist and Bayesian approaches.

Much of the literature on Bayesian methodologies for

umbrella trials has only leveraged Bayesian techniques to

optimize certain features of the trial; the primary analysis has

still employed frequentist hypothesis testing (47–50). This may

be argued to be advantageous from the perspective of error-

rate control. The Bayesian approach has the ability to allow

incorporation of information obtained within or outside of the

trial into the analysis. For example, based on pre-trial evidence,

one may incorporate prior beliefs about the efficacy of targeted

treatments by specifying informative priors for treatment-

subgroup interactions (47). Additionally, historical control (or

experimental treatment) information from different sources can

be formulated into robust priors to inform certain aspects of

trial design, such as sample size calculation (66). However, the

use of historical information has not been extensively explored

in the umbrella trial setting, although the advantages and

potential limitations have been documented (67). Given the

complexity associated with the design of many umbrella trials,

the often stated advantages of Bayesian inference in their ease of

interpretation for non-statisticians, may also be found to have

profound advantages.

Both Bayesian and frequentist frameworks can also be

used in the statistical analysis of umbrella trials. As noted

above, this may be in the form of using Bayesian decision

rules at interim analyses to guide mid-trial adaptations

while retaining a frequentist final analysis. Alternatively, both

Bayesian and frequentist analyses could be performed, with the

frameworks adopted for different endpoints (e.g., computing the

Bayesian posterior probability for a binary outcome alongside a

frequentist Cox regression for a survival endpoint). An example

of using both Bayesian and frequentist approaches is the

BATTLE-1 trial, which employed adaptive randomization under

a Bayesian hierarchical model, which entails using accumulating

trial data to assign more patients to more effective treatments

(38). A treatment was declared efficacious if the posterior

probability of achieving > 30% disease control rate (DCR) was

> 0.8, but a frequentist statistical analysis for overall survival

was implemented.

6.2. Borrowing information in an
umbrella trial

When a common treatment is investigated in all (or some) of

the subtrials under an umbrella design, it may often be unclear

whether the level of clinical activity of this treatment will be the

similar in certain subgroups. When there is an expectation of

similar clinical activity, investigators may choose to combine the

results of corresponding subtrials receiving the same treatment

arms (known as “complete pooling”). Alternatively, they may

use statistical modeling approaches to “borrow information”

from complementary subgroups when estimating the treatment

effect in a particular subgroup. Here, we discuss considerations

around when and how borrowing of information may be useful

in an umbrella trial.

Firstly, if pooling or borrowing of information is to be

employed, it must be carefully justified (58). For instance, the

rationale for borrowing in basket trials is the shared drug target

or disease symptom, such as recurrent fever flares in the case of

the CLUSTER trial (68). In umbrella trials, a common control

may be justified in some instances, say if the mechanism of

action of the control is not dependent on the disease subtype,

and the disease subtypes do not differ in prognosis; this would

provide a logical basis for borrowing of information.

However, unlike the basket trial setting where pooling or

borrowing of information is common, borrowing of information

in umbrella trials is often viewed as an unfavorable approach

because of the different hypotheses tested in the subtrials

(4). Only six of 38 trials (15.8%) in our review did not

perform standalone analyses of subtrials. Several umbrella trials

included in our review are still ongoing, though, and this

may consequently be an underestimate with pooling methods

possibly planned for future analyses. Of the six studies, the

use of simple approaches (i.e., combining all data from similar

treatments) was predominant (4/6, 66.7%), while two trials (38,

39) used Bayesian methods.

Another possible reason for the low use of borrowing of

information techniques in umbrella trials to date, is that our

review suggests there is currently limited methodology around

borrowing techniques tailored to the umbrella context. Only a

few exceptions to this statement exist (4, 48–50). In particular,

Kang et al. (49) recently proposed a hierarchical Bayesian

clustering of multiple biomarker subgroups (HCOMBS)

methodology. This approach allows clustering at interim

and final analyses for a non-randomized phase II umbrella

trial. HCOMBS uses a hierarchical Bayesian model to enable

borrowing of information at the final analysis, with treatment
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arms clustered into low, moderate and high effect subgroups.

Borrowing then takes place only within these three subgroups.

One could argue that given treatments showing inactivity are

dropped at interim analysis in Kang et al. (49), it is more likely

that a homogeneous set of treatment effects will be observed

at the final analysis and borrowing within subgroups makes

more sense.

Yee et al. (4) considers the biomarker-strategy (also called

marker-stratified) design (69) as a special case of an umbrella

design where pooling is performed.We note that the biomarker-

strategy design does not strictly fall under the auspices and aims

of an umbrella trial design, although treatments are evaluated in

a single disease setting. This is because the focus is not to assign

all eligible marker positive patients to targeted experimental

treatments under investigation, which is the basic principle

for an umbrella design. The SUSKES trial (23) framework

(Figure 2–top panel) is arguably similar to a biomarker-

strategy design, except that biomarker screening is the basis of

assignment to the “strategy” and “non-strategy” arms, and not

randomization as is the case in the biomarker-strategy design.

The rationale for complete pooling here makes sense because

the interest is in whether the biomarker is prognostic. However,

there is no justification for partial borrowing of information

in this context. We note though that the strategy arm of some

variants of the biomarker-strategy design (e.g., when multiple

biomarkers are involved), will indeed match the premise of an

umbrella design. Borrowing of information within the strategy

arm, across a common control, may then be reasonable.

Zang et al. (57) proposed a Bayesian adaptive design to

enable information sharing for the control arm only. Their

approach captures the similarity of response rates in the

control arm across the different biomarker subgroups using a

Bayesian hierarchical model. However, the authors noted that

certain assumptions warrant consideration; for example, the

mechanism of action of the common drug or control should be

similar in the different subgroups. We note here then that the

choice of control arm(s) should always be made based on what

is most appropriate for each subtrial; one should not seek to use

a common control to gain the potential advantages of borrowing

of information if alternative distinct control treatments would be

more natural comparators.

The efficiencies realized by information borrowing—such as

reduced sample size, higher power, and reduced type I error—

have previously been demonstrated [see, e.g., Berry et al. (8)].

However, we caution against an expectation that information

borrowing will always be beneficial. One major challenge

to implementing information borrowing is the “mixed null”

scenario—a case where a clinically meaningful effect is observed

only in some subgroups, while in other subgroups the treatment

is ineffective. In this case, information borrowing can lead to a

higher false positive rate. For example, the approach in Kang

et al. (49) showed desirable control of the overall family-wise

error rate (FWER), provided effective arms had large effect sizes.

We also note that one fundamental question when

borrowing information across subtrials is the amount of

information to be borrowed and the robustness of the proposed

approach to different treatment effect configurations. In this

regard, the use of an analysis strategy that facilitates borrowing

of information may only be most effective with extensive

preliminary work to investigate the exact approach taken.

One special sub-case in relation to the choice of borrowing

technique is whether to use complete pooling vs. a more

complex hierarchical method. Hierarchical techniques have been

demonstrated to be superior in many settings (8, 16). This

is unsurprising since complete pooling ignores the potential

heterogeneity in the treatment effects that may be present across

the subgroups. In this way, if information is to be borrowed, we

believe the decision to be made should relate to the Bayesian

approach adopted, with complete pooling rarely used.

Finally, we highlight that Bayesian approaches to borrowing

of information need not be complex. For example, in the case of

two subtrials, a hierarchical approach that requires estimation

of the variability across arms may not be practical. Hence,

one could use expert clinical opinion as weights to adjust the

borrowing [see, e.g., Turner et al. (70)]. The advantage of such

an approach is that uncertainty about similarity of parameters

(i.e., mean response across arms or treatment effects) directly

corresponds to the weights for each subtrial; this can be more

intuitive to communicate.

7. Related master protocol designs

The umbrella design shares several principles with other

master protocol designs—basket and platform trials—as their

basic frameworks can be used or extended to answer

multiple treatment related questions (i.e., studying multiple

therapies, multiple diseases, or both). As such, a class

of complex/hybrid master protocols whose designs leverage

the efficiencies of umbrella and platform or basket trials

under a single protocol have emerged. Our review identified

several such trials, including SHIVA, NCI-MATCH, I-SPY

2, MyPathway, Paediatric-MATCH, NCI-MPACT, CUSTOM,

CREATE, TAPUR, and SAFIR. For example, the NCI-MATCH

trial has both umbrella and basket features; patients with at

least 15 different cancers are enrolled into seven sub-protocols

defined by targeted treatment-linked biomarkers (71). Some

authors have describedNCI-MATCH as an umbrella trial (3, 21),

some have labeled it as a basket trial (1, 21), while others (3, 7)

agree it fits neither classification.

The trial infrastructure of these hybrid designs is beneficial

as more questions can be answered in a single trial compared to

a standard umbrella, basket or platform trial. Notably, this can

provide a convenient approach to understanding the potential

heterogeneity of response across biomarker and targeted-

therapy pairs.With advances in personalizedmedicine, umbrella
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designs may evolve to be more complex to accommodate more

nuanced assignment of patients; that is, treatment assignment

based onmultiple characteristics (e.g., biomarkers), mechanisms

of disease drug activity, disease pathways or clinical symptoms

that the treatment targets. We caution that these designs

will demand greater logistical and statistical considerations to

ensure optimal efficiency; greater complexity does not guarantee

more efficiency.

8. What don’t we know? Open
questions for umbrella trials

The design of umbrella trials has largely been motivated

by drug development in oncology settings. The use of

binary endpoints (practical for detection of early response),

single-arm setup, small sample sizes, and well-defined and

validated biomarkers is commonplace. Umbrella trials in non-

oncology settings raise several open questions that necessitate

methodological research. First, continuous, longitudinal, and

even composite outcomes are more common in non-cancer

trials. The current methodological landscape for umbrella trials

does not well accommodate such outcome measures. That is,

there is need for relevant methodology to enable application of

umbrella designs in settings with these non-binary outcomes.

In a basket trial setting, Chu and Yuan (12) proposed a

Bayesian latent subgroup (BLAST) analysis that jointly modeled

treatment response and longitudinal biomarker measurements.

This may help motivate extensions to the umbrella setting.

Secondly, biomarkers targeted in non-oncology trials may

be unreliable, partly attributable to the fact that the use of

biomarkers in targeted therapy discoveries is still nascent

in several disease areas, unlike in cancer research. Adaptive

randomization could be useful to counter the higher likelihood

of biomarker-treatment mismatch. Another biomarker-use

related consideration is the dichotomization of continuous

biomarkers, an approach that is well-known to lead to loss of

information (72). Currently, there is no standard approach to

defining umbrella trial subgroups on the basis of continuous

markers. Some authors (73) have shown the potential of machine

learning methods to stratify quantitative prognostic biomarkers,

but more work is needed on continuous predictive biomarkers.

The inclusion of the “non-match” arm further introduces

some challenges. Specifically, the composition of this patient

population can shift over time if new targeted treatments are

added or dropped from the trial. Subsequently, results from

this subtrial belong to a poorly defined patient population (i.e.,

unbiased sample of the biomarker negative population) for drug

labeling purposes and are hard to interpret.

Thirdly, when there are many biomarkers (and linked

treatments) to be evaluated, the level of efficiency of the umbrella

design is debatable. The adaptive signature design, where

several candidate biomarkers can be combined to formulate

biomarker defined subgroups (74), potentially has utility or can

be integrated with the umbrella design. The potential use and

advantages of adaptive signature designs have been reported

elsewhere (19, 74) and may be helpful given the immense

logistical considerations that are necessary when investigating

several biomarker-treatment pairs (4).

Fourthly, better approaches to performing sample size

calculations remains an area of interest for several variants of

the umbrella design. For instance, the rarity of subgroups limits

the feasibility of randomization and calls for better approaches

to keep the sample size low in randomized umbrella designs.

Nearly all umbrella trials in our review adopted a simplistic

approach to sample size calculation—performing sample size

calculation independently for each subtrial. A pertinent question

is whether this approach is (overly) conservative. The use of

Bayesian methods that enable borrowing of internal (i.e., across

subgroups) or external (i.e., historical controls) information are

promising. Key to the development of relevant methodology

for “optimal” (or more generally efficient) umbrella trial design,

may be the specification of appropriate operating characteristics

criteria to control during design.

Lastly, we envision that widespread implementation of

umbrella trials in non-oncology settings will further stimulate

methodological research on novel methods for their design

and analysis. In particular, our review established the use of

Bayesian methods is currently limited. Given that the concept

of information borrowing is indeed plausible in some umbrella

designs, the best strategies to undertake this, and in which cases

borrowing may provide efficiency advantages must be explored

further. The extensive work on Bayesian methodologies for

basket trials provides an effective starting point for investigation

in the umbrella setting.

9. Discussion

This review assesses the current landscape of methodology

for umbrella trials, exploring current practice in published

and ongoing studies, alongside the state-of-the-art in statistical

methods. In particular, Section 8 brings about commentary with

a non-oncology focus, to call for further research in umbrella

trials for other disease areas. In this way, our work distinguishes

itself from previous reviews (2, 5–7, 21).

Like many recent master protocol reviews (2, 5–7), we

observed that the use of umbrella designs is still predominantly

in oncology settings, but this landscape may be set to change

in the next decade as precision medicine gains foothold in

other disease areas. Furthermore, we established that most

umbrella trials have been designed and implemented as a

series of independent subtrials. This is unsurprising because the

development of more complex statistical methods has not been

as vibrant as in the basket trial setting. One key consideration

leading to the current practice is that the evaluation of
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different targeted therapies in umbrella trials may imply that

no borrowing of information can take place. However, previous

work for example by Kang et al. (49) demonstrates this not to be

the case.

Our review uncovers several areas for future methodological

development. In particular, there is great room for the use of

Bayesian methods in umbrella trials to increase. One specific

area of application is the idea of borrowing of information

for certain umbrella designs. The advantages of borrowing of

information, such as increased power, imply that there may be

a reduction in required sample size (8), but this requires further

exploration. However, researchers should equally be aware of

the limitations of borrowing information; when a drug works in

some subgroups and not others, borrowing can inflate the type

I error, and if a drugs works only in one subgroup, borrowing

can lead to reduced power in that specific subgroup (8, 75).

Therefore existing methods and proposals need to be evaluated

carefully prior to their application for the primary analysis of

a trial. Sample size determination in umbrella trials is an area

of limited work currently and methods to consider this as a

joint problem, rather than a subtrial specific problem, may also

be impactful. Treating this as a joint problem especially when

allowing for the use of adaptive designs, opens up the possibility

for many flexible approaches to the design of an umbrella trial.

Zheng et al. (76) offer a solution to Bayesian basket trials, of

which the sample size is determined accounting for various

degrees of borrowing pairwisely. This proposal could be highly

relevant to the umbrella designs visualized in Figures 1C,D,

when borrowing is enabled for the same treatment across

subtrials Best practice guidance on how to employ particular

broad classes of design will thus be required.

In addition to expanding the utility of umbrella designs

in non-oncology settings, their successful uptake and

implementation will, in our opinion, largely depend on

two key factors. First, there is a need to improve the reporting of

ongoing umbrella trials. We envision this as an important step

toward increasing uptake of innovative designs. The dearth of

information regarding, e.g., sample size computation, analysis

strategies, and control of error rates, make learning lessons for

future implementations challenging. Relatedly, fundamental

aspects such as the purposes and objectives with an umbrella

trial should be clearly stated to enhance further understanding

of the design. Secondly, the improved efficiency of umbrella

trials depends on development of efficient statistical methods.

Our review points to several directions of methodology

development, as noted above. These considerations may be

compounded further by the increased utilization of more

complex designs with umbrella and basket trial features.

We further draw attention to some recent regulatory

position on complex clinical trials (including umbrella trials),

that “the rationale for the complexity of the design and conduct

of a complex clinical trial needs to be explained in clear terms

and justified in the protocol(s) and related documentation”

(77). Besides, the regulators address the need for a “scientific

rationale” or “overall hypothesis” that defines the “scientifically

sound relationship(s) between the research questions of the sub-

protocols”. The scientific rationale here is different from the

statistical hypothesis that is tested within a s specific sub-

protocol or subtrial.

We acknowledge some limitations to this review. First, our

statistics regarding the characteristics of identified umbrella

trials are impacted by the lack of published protocol and/or

final reports for many of the identified trials. While we sought

to offset this through an extensive data extraction procedure—

e.g., seeking relevant information from clinicaltrials.gov as

well as published articles—it may be the case that they

under-/over-imply the use of certain techniques. It is part

of our plans to update this review in the near future to

include recent non-oncology umbrella trials, for instance in

emerging areas such as COVID-19. Secondly, the systematic

search was only performed in a single electronic database,

PubMED. However, this limitation was offset by the fact that

results from the PubMED search were complemented with

those from four very recent systematic reviews (5–7, 21)

undertaken/published in the period this review was ongoing

(between 2018 and 2021). The four aforementioned systematic

reviews involved searches in MEDLINE, EMBASE, CENTRAL,

and trial registries (clinicaltrials.gov and ISRCTN). Thirdly,

lack of standardized nomenclatures and trial misclassification

of master protocols (21) may have limited the identification

of some studies, especially outside of oncology where these

terminologies are perhaps not widespread. However, our search

strategy was robust and we included trials based on them

meeting the umbrella definition rather than solely on how

they are labeled by authors or have been classified by previous

reviews.pre-specified prioritization approach In addition, we

focused on the design and analysis of umbrella trials. But,

the successful conduct of umbrella trials also depends on

practical considerations including proper data infrastructures

to handle large-scale genomic data, and informatics systems

to process data and determine treatment eligibility/assignment

(4). Even then, the ethical challenges posed by umbrella trials

need careful consideration (78). Furthermore, the use of the

estimand framework in master protocols has become an area

of growing consideration (79, 80). This may lead to substantial

transformations in the way umbrella trials should be analyzed

and reported over the coming years which are not discussed in

our work. A final note is that despite the non-oncology focus in

several areas of this article, this does not justify umbrella trials as

well-established in oncology with no areas of improvement. In

principle, many suggestions provided herein may also be applied

to improving umbrella trials also in oncology.

To conclude, we hope that this review will help provide

an in-depth understanding of the design and analysis

considerations for umbrella trials for statisticians and non-

statisticians alike, especially those working in non-oncology

settings, and that it will help motivate much future research.

The potential for umbrella designs to assist with expedited drug
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development across therapeutic areas is vast; in our opinion, we

are not far from seeing this become reality.
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