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Background: OAS gene family plays an important role in antiviral process, but its role in
pancreatic cancer has not yet been studied.

Methods: We analyzed the expression, prognostic value and biological function of the
OAS gene family in human pancreatic cancer through comprehensive bioinformatic
analysis and cellular level validation.

Results: OAS family was highly expressed in pancreatic cancer, and this high expression
significantly affected the clinical stage and prognosis of the tumor. OAS gene family was
closely related to the immune infiltration of pancreatic cancer, especially neutrophils and
dendritic cells, and many immune-related factors and pathways are enriched in the tumor,
such as type I interferon signaling pathway and NOD-like receptor signaling pathway.

Conclusion: Taken together, high expression of OAS family is closely related to poor
prognosis of pancreatic cancer. OAS gene family may serve as the biomarker and even
therapeutic target of pancreatic cancer.

Keywords: pancreatic cancer, OAS gene family, prognosis, immune infiltration, biomarker
INTRODUCTION

Pancreatic cancer is one of the most malignant tumors in the world, bringing a great threat to
human health and life. Pancreatic cancer is called as the “king of cancer”, because of its difficulty in
early diagnosis, high degree of malignancy, and extremely poor prognosis (1, 2). The five-year
survival rate is less than 10% (3), and even surgery is ineffective. When most patients fall sick and
seek medical treatment, the cancer has already spread locally or developed multi-organ metastasis
and lost optimal treatment time. Thence, early detection and treatment may provide more survival
opportunities for patients with pancreatic cancers (4). The occurrence and development of
pancreatic cancer is a multi-stage and multi-gene change process. At present, its pathogenesis is
still unclear. In recent years, with the rapid development of genetic diagnosis technology, some
genes have been found closely related to pancreatic cancer.

The 2’,5’-oligoadenylate synthetase (OAS) gene family has been discovered and characterized as
a family of interferon (IFN)-induced enzymes which can convert ATP to 2’,5’-linked oligomers of
adenosine in the presence of double-stranded (ds)RNA, then the oligomers activate RNaseL (5, 6).
RNaseL is an endonuclease, can degrade all single-stranded RNA and cut 18S or 28S rRNA in cells,
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thus inhibit the proliferation of RNA virus. Therefore, OAS/
RNaseL antiviral system can inhibit the replication of many
single-stranded RNA viruses in the cytoplasm. The OAS family
consists of four members, including OAS1, OAS2, OAS3, and
OASL, they are encoded by distinct genes clustered on the 2’,5’-
OAS locus on human chromosome 12 (7, 8). OAS genes are
related to many diseases, such as innate immune-activated
diseases (9), HIV infection (10), chronic skin disease (11),
breast cancer (12), etc. However, the role of OAS family in
pancreatic cancer is still unclear and thus deserves
extensive studies.

In the present study, we comprehensively analyzed the
expression, clinical prognostic value and biological functions of
OAS family in human pancreatic cancer using a variety of databases
including GTEx, Oncomine, GEPIA, TIMER, OncoLnc, Kaplan-
Meier plotter and metascape. We further verified the bioinformatic
results in human pancreatic cancer cell lines. The findings illustrated
an important role of OAS family in pancreatic cancer and the
potential biological mechanism.
RESULTS

High mRNA Levels of OAS Gene Family in
Pancreatic Cancer Tissues
We searched the mRNA levels of OAS family in normal
pancreatic tissues in GTEx database, and checked the mRNA
levels in pancreatic cancer tissues in Oncomine and GEPIA
databases. Results showed that the mRNA levels of OAS family
members were very low in normal pancreatic tissues
(Figure 1A), but were high in pancreatic cancer tissues
(Figure 1B, C), suggesting that the transcription levels of OAS
gene family might be an indicator of pancreatic cancer.

Differential mRNA Expressions of
OAS Gene Family Members in
Pancreatic Cancer
We further analyzed the mRNA levels of OAS1, OAS2, OAS3,
and OASL in pancreatic cancer tissues and normal pancreatic
tissues based on Oncomine and GEPIA databases. Analysis on
the Oncomine database showed that all the four OAS members
were significantly upregulated in pancreatic cancer tissues
compared with the normal pancreatic tissues. The analysis was
performed in six sub-datasets, with |logFC| > 1.5 (fold change,
FC) and P < 0.05, including Pei Pancreas (13), Badea
Pancreas (14), Logsdon Pancreas (15), Segara Pancreas (16),
Iacobuzio-Donahue Pancreas 2 (17), and Grutzmann Pancreas
(18) (Table 1).

Datasets of Badea Pancreas, Pei Pancreas, Segara Pancreas,
Logsdon Pancreas and Iacobuzio-Donahue Pancreas 2 were
used to examine the mRNA levels of OAS1. In Badea Pancreas
dataset, OAS1 was highly expressed in pancreatic ductal
adenocarcinoma with a fold change of 2.583 compared with
normal pancreatic tissues. In Pei Pancreas and Segara Pancreas
datasets, OAS1 was overexpressed with a fold change
Frontiers in Oncology | www.frontiersin.org 2
respectively of 5.442 and 2.241 in pancreatic carcinoma
compared with the normal tissues. In Logsdon Pancreas and
Iacobuzio-Donahue Pancreas 2 datasets, OAS1 was 3.173 and
5.530 times higher in pancreatic adenocarcinoma compared
with normal tissues (Table 1).

Datasets of Badea Pancreas, Grutzmann Pancreas, Pei
Pancreas, Segara Pancreas, and Iacobuzio-Donahue Pancreas 2
were employed to check the mRNA levels of OAS2. In Badea
Pancreas and Grutzmann Pancreas datasets, OAS2 was
overexpressed with a fold change respectively of 2.721 and
1.961 in pancreatic ductal adenocarcinoma compared with the
respective normal tissues. In Pei Pancreas and Segara Pancreas
datasets, OAS2 was 2.129 and 1.995 times higher in pancreatic
carcinoma tissues compared with respective normal pancreatic
tissues. In Iacobuzio-Donahue Pancreas 2 dataset, OAS2 was
highly expressed in pancreatic adenocarcinoma with a
fold change of 3.563 compared with normal pancreatic
tissues (Table 1).

Datasets of Badea Pancreas and Pei Pancreas were applied to
examine the mRNA levels of OAS3. In Badea Pancreas dataset,
OAS3 was upregulated with a fold change of 2.540 in pancreatic
ductal adenocarcinoma. In Pei Pancreas dataset, OAS3 was 3.562
times higher in pancreatic carcinoma compared to normal
pancreatic tissues (Table 1).

Datasets of Badea Pancreas, Pei Pancreas and Logsdon
Pancreas were used to check the mRNA levels of OASL. In
Badea Pancreas dataset, OASL was upregulated with a fold
change of 1.820 in pancreatic ductal adenocarcinoma. In Pei
Pancreas dataset, OAS3 was 6.317 times higher in pancreatic
carcinoma compared to normal tissues, In Logsdon
Pancreas dataset, OASL was 77.098 times higher in pancreatic
adenocarcinoma compared to the normal pancreatic
tissues (Table 1).

To better characterize the transcriptional levels of OAS gene
family in pancreatic cancer, we selected two datasets, i.e., Badea
and Pei Pancreas datasets from Oncomine database, to show
the precise mRNA expression of OAS family in pancreatic
cancer (Figure 2A, B). In the two datasets, the mRNA levels of
the four OAS genes were all upregulated in pancreatic cancer
compared with normal pancreatic tissues. In addition, by
analyzing the GEPIA database, the mRNA levels of OAS1,
OAS2, OAS3, and OASL were all significantly higher
in pancreatic cancer tissues than normal pancreatic
tissues (Figure 3).

Validation of mRNA and Protein
Expressions of OAS Family by Quantitative
Real-time PCR (qPCR) and Western
Blotting in Pancreatic Cancer Cell Lines
To further verify the above bioinformatic results shown in
Figures 1, 2, 3, and Table 1, qPCR and Western blotting were
performed in three human pancreatic cancer cell lines (BxPC-3,
PANC-1, CFPAC-1) and normal pancreatic cell line (hTERT-
HPN). qPCR results showed that the mRNA levels of OAS
family in pancreatic cancer cells were higher than normal
June 2022 | Volume 12 | Article 884334
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pancreatic cells (Figure 4A), which are consistent with
bioinformatic results. Western blotting results showed that
the protein expression levels of OAS1, OAS2, OAS3, and
OASL were significantly elevated in pancreatic cancer cells
compared with normal pancreatic cells (Figure 4B).
Frontiers in Oncology | www.frontiersin.org 3
Immunohistochemical Features of OAS
Protein Family in Human Pancreatic
Cancer and Normal Pancreatic Tissues
Immunohistochemical stains of OAS1, OAS2, OAS3 and OASL
proteins in human pancreatic cancer tissues and normal
TABLE 1 | The mRNA levels of OAS family in different types of pancreatic cancer and normal pancreatic tissues at transcriptome level (ONCOMINE).

Gene Types of Bladder Cancer vs. Normal Fold Change P-value t-Test References

OAS1 Pancreatic Ductal Adenocarcinoma (39) vs. Normal (39) 2.583 2.76E-8 6.056 Badea Pancreas
Pancreatic Carcinoma (36) vs. Normal (16) 5.442 1.67E-7 6.778 Pei Pancreas
Pancreatic Carcinoma (11) vs. Normal (6) 2.241 5.06E-4 4.145 Segara Pancreas
Pancreatic Adenocarcinoma (10) vs. Normal (5) 3.173 1.47E-4 4.916 Logsdon Pancreas
Pancreatic Adenocarcinoma (12) vs. Normal (3) 5.530 0.004 4.073 Iacobuzio-Donahue Pancreas 2

OAS2 Pancreatic Ductal Adenocarcinoma (39) vs. Normal (39) 2.721 1.09E-8 6.352 Badea Pancreas
Pancreatic Ductal Adenocarcinoma (11) vs. Normal (11) 1.961 0.008 2.620 Grutzmann Pancreas
Pancreatic Carcinoma (36) vs. Normal (16) 2.129 1.02E-6 5.406 Pei Pancreas
Pancreatic Carcinoma (11) vs. Normal (6) 1.995 0.007 2.909 Segara Pancreas
Pancreatic Adenocarcinoma (12) vs. Normal (5) 3.563 2.06E-4 4.514 Iacobuzio-Donahue Pancreas 2

OAS3 Pancreatic Ductal Adenocarcinoma (39) vs. Normal (39) 2.540 1.23E-10 7.360 Badea Pancreas
Pancreatic Carcinoma (36) vs. Normal (16) 3.562 2.04E-7 6.130 Pei Pancreas

OASL Pancreatic Ductal Adenocarcinoma (39) vs. Normal (39) 1.820 8.85E-7 5.189 Badea Pancreas
Pancreatic Carcinoma (36) vs. Normal (16) 6.317 8.34E-13 9.437 Pei Pancreas
Pancreatic Adenocarcinoma (10) vs. Normal (5) 77.098 1.37E-5 7.786 Logsdon Pancreas
June 202
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FIGURE 1 | The mRNA expression patterns of OAS1, OAS2, OAS3, and OASL in various normal tissues of the human body and different types of human cancer.
(A) Ranks of the expression levels of OAS gene family in various human normal tissues from GTEx database. OAS family expression in pancreatic cancer was ranked
as a very low expression. (B) Results of Oncomine database analysis, each gene had two evidences to prove its high expression in pancreatic cancer (fold change >
2, P < 0.0001). (C) Results of GEPIA database analysis which proved high expression of OAS family in pancreatic cancer. Black fonts, red fonts and green fonts on
the top of each subpanel indicate no change, high expression and low expression, respectively).
2 | Volume 12 | Article 884334
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pancreatic tissues were searched from the HPA database. Results
(Figure 5) revealed that the positive OAS1 protein stains were
weak in normal pancreatic tissues but showed medial signal
intensity in pancreatic cancer tissues. OAS2 stains showed
medial intensity in normal pancreatic tissues but showed
Frontiers in Oncology | www.frontiersin.org 4
strong intensity in pancreatic cancer tissues. OAS3 stains
exhibited weak intensity in normal pancreatic tissues but
showed medial intensity in pancreatic cancer tissues. OASL
positive stains were not detected in both pancreatic cancer and
normal pancreatic tissues.
A

B

FIGURE 2 | Detailed expression levels of OAS gene family in pancreatic cancer from Oncomine database. (A) Box plots of OAS1, OAS2, OAS3, and OASL expression levels
in Badea and Pei Pancreas dataset of pancreatic cancer. (B) Box plots of OAS1, OAS2, OAS3, and OASL expression levels in Badea Pancreas dataset.
A

B

FIGURE 3 | Expression characterization of OAS1, OAS2, OAS3, and OASL in pancreatic cancer derived from GEPIA database. (A) Box plots. (B) Dot plots. “*”
indicates significant difference in the expression levels of OAS genes between tumor and normal tissues.
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Transcription Factors and microRNAs
Regulating OAS Gene Expressions in
Pancreatic Cancer
Gene expression is regulated by many factors including
transcription factors (TFs) and microRNAs (miRNAs). We
used TF-target database (hTFtarget) and miRNA-target
database (Starbase and Targetscan) to further clarify the
upstream TFs and miRNAs that regulate the expression of
OAS genes. We found 193 TFs (Figure 6A) and 140 miRNAs
(Figure 6B) that regulate the expression of OAS gene family. The
numbers of miRNAs that regulate OAS1, OAS2, OAS3, and
OASL were respectively 12, 118, 27 and 15, as shown by the
Frontiers in Oncology | www.frontiersin.org 5
intersection selected from Starbase and Targetscan databases
(Supplementary Figure 1).

Clinicopathological Parameters and
Prognostic Values of OAS Family in
Pancreatic Cancer
Gene expression level may affect cancer development (19). We
revealed the relationship between the expression levels of the
four OAS family members and the clinical stages of pancreatic
cancer using GEPIA database. Results indicated that the
expression levels of OAS family members were significantly
different in various clinical stages (P < 0.05) (Figure 7A), it is
FIGURE 5 | Immunohistochemical stains from the Human Protein Atlas Project showing the representative protein expression of OAS gene family in normal
pancreatic tissue and pancreatic cancer.
A B

FIGURE 4 | Results of qPCR and western blotting of OAS gene family in pancreatic cancer cell lines (BxPC-3, PANC-1, CFPAC-1) and pancreatic normal cell line
(hTERT-HPNE). (A) mRNA levels of qPCR. (B) Representative electrophoresis bands of western blotting. *P < 0.05, **P < 0.01, ***P < 0.001.
June 2022 | Volume 12 | Article 884334
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obvious that the expression trend was consistent with that of
overall survival curves.

The potential prognosis values of OAS1, OAS2, OAS3, and
OASL in pancreatic cancer were investigated using Kaplan-Meier
Plotter, GEPIA, and OncoLnc databases. Results derived from
these three databases all indicated that elevated levels of OAS1,
OAS2, OAS3, and OASL were associated with poor overall
survival (OS) in pancreatic cancer (Figure 7B). Thus, the four
members of OAS family might serve as prognostic indicators and
even therapeutic targets for pancreatic cancer.

Relationship Between OAS Expression and
Immune Cell Infiltration
Tumor microenvironment (TME) has important impact on
tumor growth, metabolism, metastasis, prognosis, and
therapeutic response to anticancer drugs (20). We
investigated the relationship between OAS family expression
and immune cell infiltration in pancreatic cancer using TIMER
database and results were shown in Figure 8. The expressions
Frontiers in Oncology | www.frontiersin.org 6
of OAS2 and OAS3 had significant negative correlations with
tumor purity in pancreatic cancer (cor = −0.219 and −0.182,
respectively, P < 0.05). OAS1 expression showed positive
correlation with the infiltration level of neutrophils and
dendritic cells (partial.cor = 0.302 and 0.185, respectively, P <
0.05) (Figure 8A). OAS2 expression showed positive
correlation with the infiltration level of B cells, CD8+ T cells,
CD4+ T cells, macrophage, neutrophils and dendritic cells
(partial.cor = 0.204, 0.214, 0.208, 0.245, 0.519, 0.418,
respectively, P < 0.05) (Figure 8B), OAS3 expression showed
positive correlation with the infiltration level of B cells, CD8+ T
cells, macrophage, neutrophils and dendritic cells (partial.cor =
0.16, 0.273, 0.247, 0.475, 0.399, respectively, P < 0.05)
(Figure 8C), and OASL expression showed positive
correlation with the infi ltration level of neutrophils
(partial.cor = 0.189, P < 0.05) (Figure 8D). Generally, among
these immune cells, neutrophils and dendritic cells were most
closely related to the occurrence and development of
pancreatic cancer.
A

B

FIGURE 6 | TF-target and miRNAs-target that regulate OAS gene family. (A) TF-target result. (B) miRNAs-target result.
June 2022 | Volume 12 | Article 884334
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Correlations Among OAS Family Members
and Their Co-Expressed Genes in
Pancreatic Cancer
During the occurrence and development of diseases including
cancers, many genes may act cooperatively or synergistically, and
revealing the cooperation of genes may help to elucidate the
mechanisms of a disease. By analyzing the GEPIA database, we
found that OAS1 expression level was positively correlated with
OAS2, OAS3, andOASL (R = 0.86, 0.86, and 0.74, respectively, P = 0)
(Figure 9A). The expression of OAS2 was positively correlated with
OAS3 and OASL (R = 0.92 and 0.66, respectively, P = 0), and OAS3
expression was positively correlated with OASL (R = 0.63, P = 0).

The co-expressed genes that related to OAS1, OAS2, OAS3,
and OASL were respectively identified in Pei Pancreas dataset of
Oncomine database with 16 normal pancreatic tissues and 36
pancreatic carcinoma tissues (Figure 9B). Results showed that
OAS1 was positively correlated with EPSTI1, PARP9, IFIT2,
IFIT3, IFIT1, USP18, OAS3, OAS2, MX1, ISG15, IFI6, CMPK2,
RSAD2, IFI44, IFI44L, and SAMD9L. OAS2 was positively
correlated with MX1, OAS3, ISG15, IFI6, USP18, IFIT2, IFIT3,
IFIT1, CMPK2, RSAD2, IFI44, IFI44L, PARP9, EPSTI1, OAS1,
Frontiers in Oncology | www.frontiersin.org 7
and SAMD9L. OAS3 was positively correlated with MX1, ISG15,
IFI6, USP18, IFIT2, IFIT3, IFIT1, CMPK2, RSAD2, IFI44,
IFI44L, PARP9, EPSTI1, OAS1, and SAMD9L. OASL was
positively correlated with OAS2, IFIT2, IFIT1, DDX58,
HERC5, HERC6, LAMP3, RRAD, HBEGF, OSM, SELE,
KLHDC78, and SIGLEC1. Among these genes, IFIT1, IFIT2,
IFIT3, MX1, and ISG15 appeared more frequently. These genes
may be functionally co-expressed with OAS gene family
and important for the occurrence and development of
pancreatic cancer.

Analysis of protein interaction network by STRING showed
that the top 50 co-expressed genes of OAS family included MX1,
MX2, IFIT1, ISG15, IRF7 IFIT3, IFI6, IFIT2, RSAD2, IFI35,
XAF1, IRF9, ISG20, IFITM1, RNASEL, IFI27, TRIM22, GBP1,
BST2, STAT2, DDX58, IRF1, IFITM3, GBP2, IRF3, GBP4,
IFITM2, TRIM25, TRIM21, ADAR, CIITA, SP100, GBP3,
IRF5, TRIM5, GBP6, PSMB8, GBP5, IRF2, IRF8, IFI44, IFI30,
SAMHD1, IFI44L, USP18, TRIM14, B2M, GBP7, HLA-DQA1,
and HLA-A (Figure 9C and Supplementary Table 1). These top
50 co-expression genes were chosen to perform the following
functional analysis.
A

B

FIGURE 7 | Association of OAS family expression level with clinical stage and prognosis. (A) The expression of OAS family was significantly different in each clinical
stages of pancreatic cancer. P < 0.05. (B) Prognostic value of OAS gene family for pancreatic cancer in Kaplan-Meier (KM) plotter, GEPIA, and OncoLnc database.
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GO and KEGG Pathway Enrichment
Analyses on The Biological Functions of
OAS Gene Family in Pancreatic Cancer
GO and KEGG pathway enrichment analyses were performed
using Metascape. In GO analysis, the functional roles of genes
were based on three aspects, including biological processes (BP),
cellular components (CC), and molecular functions (MF). GO
functional enrichment analysis revealed that target genes (OAS
family and the top 50 co-expressed genes) were significantly
enriched in several terms and pathways, such as GO:0060337
(BP: type I interferon signaling pathway), GO:0034341 (BP:
response to interferon-gamma), GO:0048525 (BP: negative
regulation of viral process), GO:0035455 (BP: response to
interferon-alpha), GO:0046596 (BP: regulation of viral
entry into host cell), GO:0002831 (BP: regulation of response to
biotic stimulus), GO:0032479 (BP: regulation of type I interferon
production), GO:0005525 (MF: GTP binding), GO:0001730 (MF:
2’-5’-oligoadenylate synthetase activity), GO:0042803 (MF:
protein homodimerization activity), GO:0002221 (BP: pattern
recognition receptor signaling pathway), GO:0002718 (BP:
regulation of cytokine production involved in immune
response), GO:0045824 (BP: negative regulation of innate
immune response), GO:0032735 (BP: positive regulation of
interleukin-12 production), GO:0000266 (BP: mitochondrial
fission), GO:0051289 (BP: protein homotetramerization),
GO:0051100 (BP: negative regulation of binding), GO:0046822
Frontiers in Oncology | www.frontiersin.org 8
(BP: regulation of nucleocytoplasmic transport), GO:0016605
(CC: PML body), and GO:0032649 (BP: regulation of
interferon-gamma production). These GO terms may play
critical role in the development and progression of pancreatic
cancer (Figure 10 and Supplementary Table 2).

Five KEGG pathways of target genes (OAS family and the top
50 co-expression genes) in the pathogenesis of pancreatic cancer
were identified by Metascape, including ko05164 (Influenza A),
hsa04621 (NOD-like receptor signaling pathway), hsa04622
(RIG-I-like receptor signaling pathway), hsa04612 (Antigen
processing and presentation), and ko05133 (Pertussis)
(Figure 11 and Supplementary Table 3). The top two
pathways were shown in Figure 12. Most of these functional
terms and pathways were immune-related, such as GO:0034341,
GO:0035455, GO:0045824, GO:0032735, GO:0032649,
hsa04621, and hsa04612, indicating the correlation between
immune response and tumorigenesis.
DISCUSSION

Pancreatic cancer is a fatal disease with poor prognosis, owing to its
outbreak at late stage and pervasive therapeutic resistance (21).
According to the WHO classification, the pathology of pancreatic
cancer can be divided into two categories: epithelial cancer and non-
epithelial cancer. Ductal adenocarcinoma originating from
A

B

D

C

FIGURE 8 | Correlation of OAS gene family with tumor immune cell infiltration in pancreatic cancer from TIMER database. (A) OAS1 expression had positive
correlation with the infiltration level of neutrophils and dendritic cells. (B) OAS2 expression showed positive correlation with the infiltration levels of B cells, CD8+ T
cells, CD4+ T cells, macrophage, neutrophils and dendritic cells. (C) OAS3 expression exhibited positive correlation with the infiltration levels of B cells, CD8+ T cells,
macrophage, neutrophils and dendritic cells. (D) OASL expression had positive correlation with the infiltration level of neutrophils.
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ductal epithelium accounts for 80−90% of pancreatic cancer
(22, 23). Other types are relatively rare, including mucinous
cystadenocarcinoma, acinar cell carcinoma, adenosquamous
carcinoma, neuroendocrine tumors, and various mixed tumors.
The increasing incidence of pancreatic cancer is thought related
with lifestyles, such as smoking, alcohol, diabetes, obesity, and even
has a certain genetic predisposition (24, 25). Given its unfavorable
result, extensive investigations on the pathogenesis and progression
of pancreatic cancer are essential to improve the survival rate.
Frontiers in Oncology | www.frontiersin.org 9
Pancreas is an organ of poor blood supply, and pancreatic
cancer is not sensitive to radiotherapy and chemotherapy, surgery
is relatively the best way at present. However, the occurrence and
development of pancreatic cancer is a long-term process with
multiple stages and accumulation of multiple genetic changes.
Moreover, the pathogenesis of pancreatic cancer is hidden, early
invasion and metastasis are high, thus most patients lose the
opportunity for surgery. Therefore, mechanistic exploration of the
cancer is very important. Numerous studies have declared that
A

B

C

FIGURE 9 | Correlations among OAS family members and co-expressed genes of OAS family in pancreatic cancer. (A) Correlations among OAS1, OAS2, OAS3,
and OASL in GEPIA database. (B) Co-expressed genes relevant to OAS1, OSA2, OAS3, and OASL, respectively. (C) Common network for OAS gene family and
their neighboring top 50 co-expression genes.
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immune cell infiltration and response to immunotherapy are
determined by features of pancreatic cancer (26, 27). Under
normal circumstances, the immune system can recognize and
eliminate tumor cells in tumor microenvironment (TME).
However, tumor cells can adopt different strategies to survive
and grow, making the immune system restrained (28).

TME is quite complex in pancreatic cancer, and comprises of
a variety of cell types including epithelial cancer cells, stromal
cells, cancer-associated fibroblasts, immune cells, and other
components of extracellular matrix that are essential to cancer
progression and metastasis (29, 30). In the TME, immune cell
abnormalities may promote cancer, especially, immune cell
infiltration into solid tumor mass is a significant factor
influencing tumor genesis and progression. However,
pancreatic cancer is typically known as an immunologically
‘cold’ tumor, only a part of cancer type are immunologically
active (31, 32). Pancreatic cancer presents extremely aggressive
features and is associated with poor survival, this is attributed to
the special features of TME, which is known to create a dense
stromal formation and poorly immunogenic condition (33). The
composition and abundance of immune cells in the TME are
important factors that affect tumor progression and
immunotherapy effect. For most pancreatic cancer patients,
cytotoxic T cell infiltration is low. Although immunotherapies
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targeting cytotoxic T lymphocyte antigen-4 (CTLA-4),
programmed cell death protein-1 (PD-1), and programmed
death-ligand 1 (PD-L1) can treat several solid malignancies
such as melanomas, but they are ineffective for pancreatic
cancer patients (34). Therefore, it is necessary to find new
immunotherapy targets for pancreatic cancer. Clinical and
experimental evidence both indicate that inflammation is a
significant risk factor for pancreatic cancer (35). In the present
study, the expression of OAS gene family was significantly and
positively correlated with the infiltration of neutrophil and
dendritic cells, especially OAS2 and OAS3. OAS gene family
encode innate immune proteins, playing a pivotal role in
promoting sterile inflammation by regulating immune
responses. Therefore, we speculate that the OAS gene family
may be an important mediator linking immune cells and cancer.

Neutrophil is one of the most abundant immune cell types in
pancreatic cancer environment, and is associated with a poor
clinical prognosis (36). Neutrophils are produced in bone marrow
from hematopoietic progenitor cells and recruited to tumors by
tumor cell-derived cytokines and chemokines to participate in
tumor growth. Previously, it was thought that neutrophils had
little effect on cancer because of their short lifespan. However,
their important role in tumor cells is increasingly recognized,
because the labeling technology for studying neutrophils has been
FIGURE 10 | GO enrichment analysis of OAS gene family and their neighboring top 50 co-expression genes in Metascape database.
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greatly developed (37). A study by Antonio et al. (38) showed that
neutrophils have a shorter lifespan in wounds, but have a longer
lifespan in tumors. Longer lifespan allows more time for neutrophils
to act in tumor development. In the tumor metastatic process,
neutrophils are responsible for the establishment of a hospitable
channel that promotes the growth of disseminated pancreatic
cancer cells (39, 40), and they support the survival of circulating
Frontiers in Oncology | www.frontiersin.org 11
tumor cells and promote the establishment of metastatic lesions (41,
42). Inhibiting neutrophil function may help to pancreatic cancer
treatment. Nielsen et al. (36) demonstrate that lorlatinib indirectly
inhibit the growth of pancreatic cancer at the primary and
metastatic sites by suppressing neutrophil development in the
bone marrow and modulating tumor-associated neutrophil
functions in TME, providing an important basis for the
FIGURE 11 | KEGG pathway enrichment analysis of OAS gene family and their neighboring top 50 co-expression genes in Metascape database.
A B

FIGURE 12 | Top 2 KEGG pathways of KEGG pathway. (A) Ko05164: Influenza A. (B) hsa04621: NOD-like receptor signaling pathway.
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immunotherapy of pancreatic cancer. Dendritic cells (DCs) are
most powerful antigen-presenting cells, they are the center of
immune responses, linking innate and adaptive immunity. DCs
can recognize and degrade macromolecular proteins, then present
them on the cell surface and deliver them to naive T cells, initiating
and modulating adaptive immunity. DCs are import part of the
tumor microenvironment, their particular properties can be used to
fight against cancer (43, 44). Pancreatic cancer is characterized by
reduced number and function of DCs which perform antigen
presentation and lead to immune tolerance (45). We found that
high expressions of OAS2 and OAS3 were positively correlated with
the degree of infiltration of DCs in pancreatic cancer, but this result
was inconsistent with the effect of DCs on cancer, the reasonmay be
related to aberrant antigen presentation, but the specific mechanism
in pancreatic cancer needs further experimental validation. DCs are
broadly classified as classical (or conventional) DCs (cDCs) and
plasmacytoid DCs (pDCs) (46). The antitumor process was more
relevant to cDCs which transport tumor antigens to draining lymph
nodes and cross-present antigens to activate cytotoxic T
lymphocytes, and thus activate immunity against tumor (47).
Function of pDCs was to produce significant quantities of type I
interferon in response to single-stranded viral RNA and DNA (48).
pDCs can assist cDCs to release IFN-a and perform antigen
presentation to fight cancer, so it can also be considered as a
therapeutic target (49). These advantages of DCs can be used to
better fight cancer. In the present study, type I interferon signaling
pathway is one result of GO enrichment analysis, its function has an
important relationship with the function of pDCs. Choi et al. (50)
reported that activation of type I interferon is a novel approach to
activate the immune system against cancer. NOD-like receptor
(NLRs) signaling pathway is another important signaling pathway
that is worthy of attention. Proteins of NLRs family are a group of
pattern recognition receptors (PRRs) known to mediate the initial
innate immune response to cellular injury and stress (51), and they
have been established as crucial regulators in inflammation-
associated tumorigenesis, angiogenesis, cancer cell stemness and
chemoresistance (52). NLRP3 inflammasome belongs to the family
of NLRs and is the most well characterized NLRs. NLRP3 is a
tripartite molecule of the nucleotide-binding domain and leucine-
rich repeat family (53), Increased evidences indicate that
hyperactivation of NLRP3 inflammasome is involved in a range
of inflammatory diseases (54). Inflammation is an important
hallmark of cancer that substantially contributes to the
development and progression of malignancies (55, 56). Targeting
NLRP3 or downstream signaling molecules, such as caspase-1, IL-
1b or IL-18, has the potential for therapeutic benefit (57). Zhang
et al. (58) revealed that 3,4-methylenedioxy-b-nitrostyrene (MNS),
as a specific NLRP3 inflammasome inhibitor, could significantly
decrease the migration, invasiveness, and proliferation of pancreatic
cancer cells. Hao et al. (59) reported that lncRNAXLOC_000647, as
the upstream regulatory non-coding RNA of NLPR3, was
downregulated in pancreatic cancer and caused high expression of
NLPR3, thus promoting cell proliferation, invasion, and tumor
growth in pancreatic cancer. Above studies all prove that NLPR3
may potentially be a novel therapeutic target in pancreatic cancer.
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There is still not much research on the role of OAS gene family
in cancer. In our study, Figure 1B showed that OAS gene family
was associated with breast cancers, head and neck cancer, liver
cancer, and pancreatic cancer. However, there are only some
reports on breast cancer. Zhang et al. (60) reported that OAS
gene family are upregulated in breast cancer, and high mRNA
expressions of OAS1 and OAS3 are correlated with poor prognosis,
whereas OAS2 is associated with favorable prognosis in breast
cancer. We found here that the four OAS family members were not
only highly expressed, but were also closely associated with poor
prognosis in pancreatic cancer. This is an important discovery. In
addition, we found that all the OAS family members were
significantly increased in stages IIA or IIB of pancreatic cancer.
Stage II is an important transition stage, in which tumor cells begin
to gradually metastasize (61). Throughout the clinical stages, the
trend of these four OAS gene family members were relatively
consistent, which may be related to their collaborative work.
However, the relationship between such change in staging and
poor prognosis still needs further investigation.

The highlight of the present study was the discovery of the
relationship between OAS gene family expression and pancreatic
cancer. We first found that OAS gene family was highly
expressed in pancreatic cancer and caused unfavorable
prognosis. As immune-related genes, members of OAS gene
family may work together in the occurrence and development of
pancreatic cancer and may play a promoting role by participating
in the construction of TME. Currently, there are not many
studies on OAS gene family in pancreatic cancer. Zhang et al.
(62) found that OAS1 and OASL are prognostic genes of
pancreatic adenocarcinoma by constructed RNA-binding
protein-related prognostic model based on TCGA and GTEx
databases. This study may assist clinicians to choose targets for
immunotherapy and make personalized treatment strategy for
pancreatic cancer. Tang et al. (63) reported that OAS1 and OAS3
are key gene changes in pancreatic cancer cells (BXPC-3)
compared with primary pancreatic stellate cells using
bioinformatics analysis. Glaß et al. (64) showed that OASL is a
driver and therapeutic target candidate in pancreatic ductal
adenocarcinoma. While most of the above studies are
bioinformatic analyses, little experimental verification has been
performed on OAS gene family in pancreatic cancer. Our present
findings in both bioinformatic analyses and cellular experiments
were consistent with above reports, and may provide a certain
basis for future experimental studies of pancreatic cancer.

Our study has certain limitations, including lack of clinical
sample validation, and deep mechanistic study, such as observing
the effect of altering the effect of the OAS family gene(s)
expression in pancreatic cancer cells by invasion and colony
forming assays, and manipulating the OAS family gene(s) in
pancreatic cancer cells on their pro- and anti-inflammatory
cytokine release profile, due to campus lockdown in the
COVID-19 epidemic season. However, the most valuable
finding of this study was that we first found and emphasized
the importance of OAS gene family in pancreatic cancer, which
might become a focus in future studies of pancreatic cancer.
June 2022 | Volume 12 | Article 884334

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gao et al. OAS Genes in Pancreatic Cancer
In conclusion, we proved high expression of OAS gene family in
pancreatic cancer through analyses on a large number of public
databases and validation in pancreatic cancer cell lines. We further
revealed that high expression of OAS gene family was regulated by
193 TFs and 140 miRNAs. We also demonstrated that high
expression of OAS gene family was related to certain clinical stage
and poor prognosis of pancreatic cancer, and the function and
mechanism of OAS gene family in the development of pancreatic
cancer was closely related to the immune microenvironment.

For future perspective, the findings of the present study suggest
that members of the OAS gene family are important in the
pathogenesis and development of pancreatic cancer and may
serve as biomarkers of the tumor. Targeting OAS gene family
may have clinical prospects in the treatment and prevention of
pancreatic cancer.
MATERIALS AND METHODS

GTEx Analysis
The Genotype-Tissue Expression (GTEx) project (65) (https://
www.gtexportal.org/home/) was established to characterize
genetic effects on the transcriptome across human tissues and
to link these regulatory mechanisms to trait and disease
associations. At present, the project has examined 15,201
RNA-sequencing samples from 49 tissues of 838 postmortem
donors. Using this database, we analyzed the expression levels of
OAS gene family in various normal tissues and organs.

ONCOMINE Dataset Analysis
Oncomine gene expression array dataset (66) (https://www.
oncomine.org/resource/login.html) was used to analyze the
mRNA transcriptional levels of OAS family in different
cancers, and to assess the concrete expression of OAS gene
family in Pei pancreas dataset and Badea pancreas dataset. In
Oncomine database, the cutoffs of P value and fold change were
defined as 0.0001 and 2, respectively.

GEPIA Dataset Analysis
Gene Expression Profiling Interactive Analysis (GEPIA) (67)
(http://gepia.cancer-pku.cn/) is an online database that facilitates
the standardized analysis of RNA sequencing data from 9,736
tumor samples and 8,587 normal samples in the TCGA and
GTEx datasets. In our study, GEPIA was mainly used to verify
the mRNA expression level, the relationship between gene
expression and cancer clinical stages, co-expressed genes, and
the prognostic value of OAS family in pancreatic cancer.

Cell Culture and Treatment
Pancreatic cancer cells lines (BxPC-3, PANC-1, CFPAC-1) and
pancreatic normal cell line (hTERT-HPNE) were purchased from
Shanghai Institutes for Biological Sciences, Chinese Academy of
Sciences (Shanghai, China). Cells were seeded in 6-well plates at a
density of 1×106 cells/well. PANC-1 and hTERT-HPNE cells were
cultured in DMEM supplemented with 10% fetal bovine serum and
1% penicillin and streptomycin. BxPC-3 cells were cultured with
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RPMI 1640 supplemented with 10% fetal bovine serum and 1%
penicillin and streptomycin. CFPAC-1 cells were cultured with
IMDM supplemented with 10% fetal bovine serum and 1%
penicillin and streptomycin. All cells were cultured at 37°C in a
humidified 5% CO2 atmosphere until the cell confluency reached
60% − 70%.

RNA Isolation and Quantitative
Real-Time PCR (qPCR)
qPCR was performed to examine the mRNA levels of OASs in
pancreatic cancer cell lines (BxPC-3, PANC-1, CFPAC-1) and
pancreatic normal cell line (hTERT-HPNE). Total RNA was
extracted from cells using TRIzol (Invitrogen, Carlsbad, CA)
according to the manufacturer’s instruction. qPCR was
performed according to the instructions of TaKaRa TB Green
Premix Ex Taq II (TaKaRa, Osaka, Japan). Primer sets for selected
genes were designed by Sangon Biotech Co.,Ltd (Shanghai,
China). The expression data were normalized to the reference
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the
mRNA levels were calculated using the 2−DDCt method. Primer
sequences for qPCR were as follows: GAPDH forward: 5’-
CTGGGCTACACTGAGCACC-3’ , GAPDH reverse: 5’-
AAGTGGTCGTTGAGGGCAATG-3’. OAS1 forward: 5’-
AGTTGACTGGCGGCTATAAAC-3’, OAS1 reverse: 5’-GT
GCTTGACTAGGCGGATGAG-3’. OAS2 forward: 5’-AGGTGG
CTCCTATGGACGG-3’, OAS2 reverse: 5’-TTTATCGAG
GATGTCACGTTGG-3’ . OAS3 forward: 5’- GAAGGA
GTTCGTAGAGAAGGCG -3’, OAS3 reverse: 5’-CCCTTGAC
AGTTTTCAGCACC-3 ’ . OASL forward: 5 ’-CCCTTGA
CAGTTTTCAGCACC-3’, OASL reverse: 5’-CTTCAGCTTA
GTTGGCCGATG-3’.

Western Blotting
Total proteins for western blotting were extracted from pancreatic
cancer cell lines (BxPC-3, PANC-1, CFPAC-1) and pancreatic
normal cell line (hTERT-HPNE). The protein concentration in all
samples was determined using the bicinchoninic acid (BCA)
assay (Solarbio Co., Ltd, Beijing, China). A total amount of 40
mg extracted protein of each sample were separated by 10% SDS-
PAGE. Then, proteins from the SDS-PAGE gel were transferred
onto a polyvinylidene fluoride (PVDF) membrane (Millipore,
Billerica, MA, USA). Membranes were blocked with 5% nonfat
milk for 2−3 h at 20−25°C. The membranes were then incubated
with the primary antibodies overnight at 4 °C respectively. The
membrane was washed with TBST and then incubated with the
secondary antibody conjugated with horseradish peroxidase for
2 h at 20−25 °C. The ECL reagent (Millipore, Billerica, MA, USA)
was added and the blots were scanned using ChemiDoc™ XRS
(Bio-Rad Laboratories, Hercules, CA, USA). The gray values of
protein bands were determined using Image Lab 2.0 (Genmall
Biotechnology Co.,Ltd, Wuhan, China) and b-actin (ZSGB-Bio,
China) was used for normalization. The primary antibodies (anti-
OAS1, anti-OAS2, anti-OAS3) were purchased from Peprotech
(New Jersey, USA), anti-OASL was purchased from Abcam
(Cambridge, MA, USA), the secondary antibodies were
purchased from Zhongshan Golden bridge Biotechnology
(Beijing, China).
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The Human Protein Atlas Project Analysis
The Human Protein Atlas Project (HPA) (68) (http://www.
proteinatlas.org/) is a free public database that provides
information about human encoded proteins. It is dedicated to
the mRNA and protein expression information of all 24,000
genes encoding human proteins in 44 normal tissues, 18 tumor
tissues, 69 cel l l ines and 18 blood cel l l ines . The
immunohistochemistry images detecting protein expressions of
OAS gene family in pancreatic cancer and normal pancreatic
tissue were retrieved from HPA.

TF-Target and miRNA-Target of OAS
Gene Family
Transcription factors (TFs) are key regulators that modulate the
expression of target genes by recognizing specific DNA
sequences to control chromatin and transcription, forming a
complex system that guides expression of the genome (69).
hTFtarget (70) (http://bioinfo.life.hust.edu.cn/hTFtarget)
provides comprehensive TF-target regulations from large-scale
of ChIP-Seq data of human TFs in 569 conditions. miRNAs are
non-coding RNA molecules which serve a crucial role in
regulating a spectrum of basic cellular processes and they may
induce RNA-silencing and work as post-DNA transcription
regulators. In this work, we used Starbase (71) (http://starbase.
sysu.edu.cn/) and Targetscan (72) (http://www.targetscan.org/
vert_72/) to locate the upstream miRNAs.

Kaplan-Meier Plotting and
OncoLnc Analysis
The Kaplan-Meier (KM) plotter (73) (https://kmplot.com/analysis/
) is committed to analyze the survival biomarkers across 21 cancer
types, based on sources including Gene Expression Omnibus
database (GEO), European Genome-phenome Archive (EGA),
and the Cancer Genome Atlas (TCGA). One of prognostic
values of the OAS family for overall survival (OS) were
calculated using the KM plotter.

OncoLnc (74) (http://www.oncolnc.org/) is an useful online
tool for downloading clinical data coupled to expression data, and
exploring survival correlations for genes. It contains survival data
for 8,647 patients from 21 cancer studies based on TCGA, which
generate high quality OS plots for further analyses in this study.

TIMER Analysis
Tumor Immune Estimation Resource (TIMER) (75) (https://
cistrome.shinyapps.io/timer/) is a database designed for
analyzing immune cell infiltrates in multiple cancers based on
32 cancer types and 10,897 samples from TCGA. Using this
database, we estimated tumor immune infiltration by B cells,
CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and
dendritic cells. P < 0.05 was considered statistically significant.

Interactions of OAS Gene Family
by STRING
STRING (76) (https://string-db.org/) is an online database
developed by European Molecular Biology Laboratory on
functional association for genes. It includes 5,090 species, more
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than 20 million proteins and 3 billion interactions. In this study,
top 50 neighbor genes related to OAS gene family were collected
and integrated analysis was performed via STRING.

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Pathway Enrichment
Analysis by Metascape
Gene Ontology (GO) is a standardized classification system of
gene function which is used to comprehensively describe the
properties of genes. In GO enrichment analysis, biological
processes (BP), cellular components (CC), and molecular
functions (MF) are included. Kyoto Encyclopedia of Genes and
Genomes (KEGG) is a system used to comprehensively analyze
the genomic information, gene function and relationship with
targets of pathways.

Metascape (77) (http://metascape.org) is a web-based portal
designed to provide a comprehensive gene list annotation and
analysis resource for experimental biologists. It combines
functional enrichment, interactome analysis, gene annotation,
and membership search to leverage over 40 independent
knowledgebases within one integrated portal. In our study,
Metascape was used to analyze GO and KEGG pathway
enrichment, with P value < 0.01, minimum overlap = 3 and
enrichment factor > 1.5 as the criteria.
Statistical Analysis
All statistical analyses were performed using GraphPad Prism 5.0
software. Data were presented as mean ± standard deviation
(SD). One-way ANOVA was used to compare the means of
sample groups. Statistical significance was set at P < 0.05.
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