
Infectious Disease Modelling 8 (2023) 212e227
Contents lists available at ScienceDirect
Infectious Disease Modelling

journal homepage: www.keaipubl ishing.com/idm
Likelihood-based estimation and prediction for a measles
outbreak in Samoa

David Wu a, *, Helen Petousis-Harris b, Janine Paynter b, Vinod Suresh a, c,
Oliver J. Maclaren a

a Department of Engineering Science, University of Auckland, Grafton, Auckland, 1010, New Zealand
b Department of General Practice and Primary Health Care, University of Auckland, Grafton, Auckland, 1023, New Zealand
c Auckland Bioengineering Institute, University of Auckland, Grafton, Auckland, 1010, New Zealand
a r t i c l e i n f o

Article history:
Received 26 April 2022
Received in revised form 19 January 2023
Accepted 29 January 2023
Available online 3 February 2023
Handling Editor: Dr Yijun Lou

Keywords:
Generalised profiling
Likelihood-based inference
Profile likelihood
Parameter estimation
Bootstrap
Measles
* Corresponding author.
E-mail address: dwu402@aucklanduni.ac.nz (D.
Peer review under responsibility of KeAi Comm

https://doi.org/10.1016/j.idm.2023.01.007
2468-0427/© 2023 The Authors. Publishing services
BY-NC-ND license (http://creativecommons.org/licen
a b s t r a c t

Prediction of the progression of an infectious disease outbreak is important for planning
and coordinating a response. Differential equations are often used to model an epidemic
outbreak's behaviour but are challenging to parameterise. Furthermore, these models can
suffer from misspecification, which biases predictions and parameter estimates. Stochastic
models can help with misspecification but are even more expensive to simulate and
perform inference with. Here, we develop an explicitly likelihood-based variation of the
generalised profiling method as a tool for prediction and inference under model mis-
specification. Our approach allows us to carry out identifiability analysis and uncertainty
quantification using profile likelihood-based methods without the need for margin-
alisation. We provide justification for this approach by introducing a new interpretation of
the model approximation component as a stochastic constraint. This preserves the ratio-
nale for using profiling rather than integration to remove nuisance parameters while also
providing a link back to stochastic models. We applied an initial version of this method
during an outbreak of measles in Samoa in 2019e2020 and found that it achieved rela-
tively fast, accurate predictions. Here we present the most recent version of our method
and its application to this measles outbreak, along with additional validation.

© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The prediction of the progression of epidemic outbreaks of infectious diseases is notoriously difficult, with multiple
confounding sources of uncertainty. Despite this, even approximate predictions are important in informing the response to
outbreaks. This importance is emphasised in areas where resources restrict response infrastructure or rapid response is
required. Early predictions are typically model-based, as the available data alone are usually insufficient for understanding
the key dynamics of an outbreak.
Wu).
unications Co., Ltd.

by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC
ses/by-nc-nd/4.0/).
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The models used to characterise the spread of infectious diseases are usually mechanistic models, and these are well-
established in the mathematical epidemiological community (Anderson & May 1991). From the early deterministic models
of Ross (1911) and Kermack and McKendrick (1927), to recent developments in both deterministic (Schenzle, 1984; Hooker
et al., 2011; Xia et al., 2004) and stochastic models (Allen, 2008, 2011; Ferguson et al., 2020), there are a range of models
that can be used to describe various aspects of the dynamics of infectious disease outbreaks. However, there are still difficult
open problems on how best to relate these models to data and extract meaningful information about model behaviour
specific to particular outbreaks (Roda et al., 2020; Wilke & Bergstrom, 2020, pp. 28549e28551).

More widely, there are manymethods for performing parameter inference for mechanistic models. However, there remain
well-known difficulties in performing inference on complex, nonlinear systems. From a user perspective, inference methods
for such systems are typically computationally expensive or technically difficult to use (He et al., 2010). Additionally, limi-
tations in data collection, combined with complex model structures, may mean parameter estimates are not uniquely
determinable, or nonidentifiable (Raue et al., 2009; Fr€ohlich et al., 2014). There is also the subtle problem of model mis-
specification (Kennedy & O’Hagan, 2001; Brynjarsd�ottir & O’Hagan, 2014; King et al., 2015), where there are significant
discrepancies between the model and the true data generating process. Such discrepancies can cause bias in inference and
inaccuracies in forecasting if not considered carefully.

Many recent advances in inference methods incorporate uncertainty from misspecification into the modelling process as
an additional stochastic process, under both likelihood/frequentist frameworks (King et al., 2015) and Bayesian frameworks
(Chatzilena et al., 2019). However, this compounds the computational expense of the inference problem, due to the increased
complexity. The core of the expense is the additional marginalisation step over the stochastic process model that this in-
troduces to the calculation of the likelihood function. Evenwith state-of-the-art methods, these stochastic methods can often
take at least five times longer than deterministic counterparts (Chatzilena et al., 2019).

An alternative to explicit error modelling is to only approximately solve or enforce a deterministic model. This approach
allows for violations of the deterministic model without entirely sacrificing the model-based information required for
forecasting. This can help prevent large prediction errors from strict enforcement of a misspecified model. Only approxi-
mately solving the equations also reduces the computational expense, which is useful in forecasting where results are time-
sensitive and resources limited.

We follow this approach here and utilise an existing statistical method based on this idea, called generalised profiling
(Ramsay et al., 2007). We introduce a variant of this approach under a new statistical interpretation and describe how this
assists in addressing nuisance parameters, model misspecification and uncertainty quantification. Our statistical interpre-
tation differs from that of introducing an explicit stochastic process model; instead, we enforce the model as a stochastic
constraint following ideas introduced in the statistics and econometrics literature (Durbin, 1953; Theil & Goldberger, 1961).
This can be thought of as a form of mixed estimation, or as a prior likelihood (Edwards, 1969) term. This provides a previously
lacking explicit motivation for profiling (maximising) out nuisance parameters in the style of profile likelihood instead of
marginalising them out.

The rest of the article is laid out as follows. In Section 2, we describe the general model fitting problem in more detail. In
Section 3, we describe our methods, including a variant of generalised profiling. In Section 4, we apply the methods to a case
study of a measles outbreak in Samoa, where the data is non-ideal and some classical methods break down. Finally in Section
5 we discuss benefits and limitations to the approach.

2. Background

Mechanistic models in biology are often deterministic dynamical systems, where the evolution of state of the system,
denoted by x, is defined either in discrete time, xtþ1 ¼ F(xt; q), or more commonly as a set of differential equations:

dx
dt

¼ f ðx; qÞ; (1)

where f is some vector field, and q its parameters. The state x itself may also be discrete or continuous-valued.
The traditional method of parameter estimation is based onminimising somemeasure of the distance d(y, x(t; q)) between

the data, y, and the parameter-dependent state of the model, x(t; q), under some observation model g, for example:

dðy; xðt; qÞÞ¼ ky� gðxðt; qÞÞk22: (2)
The above corresponds to a typical ‘least squares’ formulation and has a natural (though not necessary) interpretation
under the assumption of normally-distributed measurement errors. However, Ramsay and Hooker (2017) point out that this
formulation has a few difficulties. Firstly, it may be computationally expensive to evaluate x since this is usually carried out by
numerical integration, especially in the presence of stiffness (time-scale separation) or other related phenomena. Com-
pounding this, estimating parameters byminimising this distance using iterative methods means numerical integrationmust
usually be carried out repeatedly for different parameter values. Furthermore, many models have regions of parameter space
where they exhibit unexpected or computationally expensive behaviour.
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This formulation also implicitly assumes that the models f and g are “correct”, in the sense that the system that generates
the data y is exactly described by f and g. This may not be true: the models may be misspecified. This causes problems with
biased estimates of the parameters and state (Brynjarsd�ottir & O'Hagan, 2014). One way to model this is to use an explicit
stochastic process, for example a Gaussian process, to capture the misspecification (Kennedy & O’Hagan, 2001). This adds
another stochastic term to the model, which is then used to account for discrepancies between the best-fitting model and the
data. Similarly, stochasticity can be incorporated directly into the dynamics of the model. A typical continuous-time,
continuous-state model is then a stochastic differential equation (SDE) of the form:

dx ¼ f ðx; qÞdt þ sðx; qÞdWt ; (3)

whereWt represents aWiener process (Law et al., 2015; Van Kampen, 2007). The error represented by the second term can be
interpreted as either inherent stochasticity or as representing a form of misspecification due to missing influences, though
these interpretations are subject to a number of subtleties (Van Kampen, 2007, x9.5).

Regardless of how the stochastic model is interpreted, inference on such models is significantly more expensive than the
deterministic ODE system. The state x is typically unobserved, and the probability distribution used in the likelihood function
p(y|q, s) thus requiresmarginalising over this. Much of the recent literature on estimating the parameters of complex dynamic
models hence aims at developingmore efficient ways ofmarginalising over latent states to evaluate this form of the likelihood
or some approximate replacement for it. These approaches usually either exploit the partially-observed Markov process/
state-space formalism or use simulation-based inference (Bret�o, 2018; Bret�o et al., 2009; Chatzilena et al., 2019; Diggle &
Gratton, 1984; Fasiolo et al., 2016; Hartig et al., 2011; Ionides et al., 2017; King et al., 2016; Wood, 2010). Discrete-time,
and/or discrete-state, stochastic models are often used for modelling complex systems in biology and statistics (Durbin &
Koopman, 2012; Wilkinson, 2018), and these introduce similar computational burdens.

3. Methods

3.1. Generalised profiling

An alternative to explicitly representing the model misspecification is to weakly, or approximately, enforce the model. We
do this by using the generalised profiling method introduced by Ramsay et al. (2007). The generalised profiling method, also
known as the parameter cascade method, was built on the methods of functional data analysis (Ramsay & Silverman, 2005),
in order to incorporate functional assumptions about the underlying data in the form of differential equations. We show that,
under a stochastic constraint interpretation, this can also be used to approximately enforce a differential equation model and
hence allow for misspecification.

3.1.1. Standard formulation
In its classical formulation (Ramsay et al., 2007; Ramsay&Hooker, 2017), the generalised profiling method is comprised of

two nested optimisation problems, extending the two-stage nonlinear least squares algorithm. The inner problem is a
smoothing problem, regularised by the model for some given fixed q.

ĉðqÞ ¼ arg min
cjq

ky� gðxÞk22 þ l

Z �
dx
dt

� f ðx; qÞ
�2

dt;

s:t: x ¼ Fc:

(4)

Here the state x is represented in terms of some basis comprising the columns ofF, which is typically a basis of B-splines. This
inner problem is tuned with the hyperparameter l, which acts as a tradeoff between interpolation (when l is low) and model
matching (when l is high). This produces some optimal value for c for the given q, which we denote ĉðqÞ. This value is then
passed into an outer optimisation problem

min
q

ky� gðFĉðqÞÞk22; (5)

which performs the parameter optimisation. Because the inner objective Equation (4) uses a spline representation to perform
state estimation, we can avoid integration by collocating at a chosen set of points in the time domain. The derivatives in the
integral term can be directly determined by differentiating the spline representation. In contrast to standard derivative
matching, this hybrid approach allows for unobserved states to be dealt with and simultaneously estimated.

The generalised profiling approach is closely related to spline smoothing and other forms of non-/semi-parametric
regression. In particular, the inner problem can be seen as a generalisation of standard smoothness penalties to differential
equation penalties building on the functional data analysis literature (Ramsay&Hooker, 2017; Ramsay& Silverman, 2005). As
discussed byWahba (1990); Ruppert et al. (2003), the solution to such smoothing problems can often be interpreted as a form
of Bayes estimate or as a predictive estimate for random-effects c. Similar points were raised in the discussion of (Ramsay
et al., 2007). Ramsay et al. (2007); Ramsay and Hooker (2017), however, stress that they do not view their estimates as
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arising from an explicit stochastic process model. One aim of the present work is to further develop the interpretation of the
work done by Ramsay et al. (2007).

Also of note, both conceptually and computationally, is that the ‘nuisance’ parameters c are maximised out to give ĉðqÞ,
rather than averaged out (which would be expected for random effects). This act of replacing the nuisance parameters with
their maximum likelihood estimates, for each value of the interest parameter, is known as profiling (Pawitan, 2001). Hence, it
appears that the outer objective is intended as the profile likelihood of the inner objective, with respect to q, though this is not
made explicit in the original paper by Ramsay et al. (2007). However, if we are to take this interpretation, questions arise as to
why the outer objective is different to the inner objective. We next consider a reformulation of the profiling approach which
we feel more naturally unifies the inner and outer optimisation problems and, also leads to an explicit justification for
profiling c out. We first motivate this in the linear case.

3.1.2. Reformulation: linear case
Consider the linear regression problem for data y of the form

y ¼ GFcþ e;
E½e� ¼ 0; Cov½e� ¼ G;

(6)

where G is a linear observation operator, F consists of a basis with a large number of basis functions (‘columns’ of F) relative
to the number of observations (‘rows’ of G), and e is observational noise with mean 0 and covariance G. As stated this problem
typically requires regularisation of some form to constrain the c. Typical statistical interpretations of such regularisation are in
terms of Bayesian models (Wahba, 1990; Ruppert et al., 2003) or, in non-Bayesian inference, in terms of random-effects
models (Ruppert et al., 2003). In both cases the c coefficients are taken to be random.

An alternative way to introduce a similar regularising effect based on external or ‘prior’ information with a statistical
interpretation, but inwhich c is non-random, was introduced by Theil and Goldberger (1961), building on the work of Durbin
(1953). This amounts to considering, in addition to Equation (6), the additional linear regression equation for another
observable random variable r:

r ¼ HJcþ n;
E½n� ¼ 0; Cov½n� ¼ S

(7)

Here H is a linear observation operator,J consists of a potentially different set of basis functions, and n is observational noise
with mean 0 and covariance S. This will be assumed to be independent of e, representing an independent source of infor-
mation on c. In this context, c is assumed fixed (non-random), while y and r are random. The Theil and Goldberger (1961)
procedure amounts to assuming we have observations of both random variables, i.e. observations of y and r, and carrying
out a standard analysis given these observations. Here the observation of r plays the role that the prior or overall mean
typically plays in Bayesian or random effects models. Theil and Goldberger (1961) call thismixed estimation, though this is to
be distinguished frommixed modelling in which cwould typically be random. This is closely related to the concept of a prior
likelihood introduced by Edwards (1969), which is additional information in the form of a likelihood for a fixed parameter such
as c based on real or hypothetical prior data on a random variable such as r. A recent treatment of the method of stochastic
restrictions in the sense of Theil and Goldberger (1961) can be found in Rao et al. (2008). H-likelihood (Lee et al., 2018; Lee &
Nelder, 1996) is another related, though distinct, idea.

The above equations can be ‘stacked’ to give

�
y
r

�
¼

�
GF
HJ

�
cþ

�
e
n

�
(8)
This can be solved using the generalised least squares method, using the notation kf k2A :¼ f TAf to represent the (square of
the) Mahalanobis distance (Mahalanobis, 1936):

min
c

ky�GFck2
G�1 þkr�HJck2

S�1 ; (9)

which has the usual explicit solution

ĉ ¼
�
~G
T ~G

��1
~G
T
~y; (10)

where ~G ¼
�

LGF
MHJ

�
, ~y ¼

�
Ly
Mr

�
, where L andM are whitening matrices of G and S respectively (LTL¼ G�1,MTM¼ S�1). ~G

T ~G is
invertible if the intersection of the nullspaces of LGF and MHJ is the empty set (Engl et al., 1996).

We now consider the case where the auxiliary information of Equation (7) takes the form of a linear differential equation.
We first write this in operator form in the exactly specified case as
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r ¼ LðqÞx (11)

where LðqÞ ¼ D � AðqÞ represents the autonomous systemDx ¼ f ðx; qÞ ¼ AðqÞx, where A(q) is a linear operator acting on x that
depends on parameters q, and r represents external forcing terms not depending on x. We have written r on the left-hand side
tomimic Equation (7). If we instead only enforce this as a stochastic constraint, for stochastic r, analogously to Equation (7), we
obtain the least squares problem

min
cjq

ky�GFck2
G�1 þ

Z
ðmðr � LðqÞFcÞ Þ2dt (12)

where, in comparison to the regression formulation Equation (9), we have taken J ¼ LF ¼ ðD�AÞF and have enforced the
stochastic constraint in the continuous limit with weighting function m(t).

The infinite-dimensional nature of the differential equation constraint requires care. A stochastic interpretation of this
infinite-dimensional constraint can be given by interpreting it as enforcing Equation (11) stochastically, i.e. as enforcing

r ¼ LðqÞxþ SDW ; (13)

where DW stands for the (formal) time derivative of a multi-dimensional Wiener process (Law et al., 2015). To ensure a

consistent interpretation, when this is implemented discretely as a set of regression equations in terms of ‘observations’ of the
model, we use an Euler-Maruyama discretisation scheme (Kloeden& Platen, 2013) for the derivatives. This amounts to taking,
for the ith ‘observation’ (discretisation grid point) of the equation,

ðDxÞi z
xiþ1 � xi

Dt

ðDWÞi z
1ffiffiffiffiffiffi
Dt

p ei; ei � Nð0; IÞ:
(14)
Multiplying this byDt to put it in differential form gives the standard Euler-Maruyama discretisation. This interpretation of
the stochastic constraint can be captured in the least squares problem by setting the weighting function m(t) from Equation
(12) as

Z
ðmðr � LðqÞFc Þ Þ2dt zðr � LðqÞFc Þ

�
1
Dt

S�1
�
ðr � LðqÞFc ÞT

¼ kr � LðqÞFc k2ðSDtÞ�1 :

(15)
The objective Equation (12) reduces to the standard inner objective for generalised profiling of Equation (4) when the
differential equation is linear and, in particular, when our stochastic prior information consists of the ‘observation’ r¼ 0. Wewill
assume this in general, which is analogous to taking the overall mean in the Bayes/random effects formulations as zero, but
note that this is not a necessary assumption and could be modified to allow for (random observations of) non-zero forcing
terms. Importantly, maximising out c for each q corresponds to profiling a standard joint likelihood function Lðq; c; y; rÞ under
appropriate conditions.

3.1.3. Reformulation: general case and link to standard formulation
We now reformulate the general nonlinear problem in terms of a single overall objective, l(q, c):

min
q;c

lðq; cÞ ¼ ky� gðxÞk2
G�1 þ

Z
ðmðDx� f ðx; qÞ � rÞ Þ2dt

s:t: x ¼ Fc
(16)
We will in general take r ¼ 0 and hence drop this from now. As discussed above, we can approximate the second term
using an Euler-Maruyama discretisation, for some choice of time step Dt, and write:

min
q;c

lðq; cÞ ¼ ky� gðxÞk2
G�1 þ kDx� f ðx; qÞk2

Ŝ
�1

s:t: x ¼ Fc
(17)

where Ŝ ¼ SDt.
We can also add additional prior likelihood terms in the same manner, alongside the differential equation term. We

consider additional covariance terms in more detail in the following subsection. First we relate the above version to the
standard generalised profiling approach.
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As indicated above, this formulation effectively replaces the objective of the outer optimisation problem in Equation (5) by
a profile of the overall objective over a vector ‘nuisance’ parameter c, in the same sense as profiling (negative log-)likelihoods
(Pawitan, 2001). For example, denoting the overall objective by l(q, c; G, S), for fixed G, S and for the constraint x ¼ Fc
imposed, our problem can be decomposed into two analogous stages:

min
q

min
cjq

lðq; c;G;SÞ: (18)
While the inner optimisation step is the same here as the standard formulation Equation (4), our outer optimisation
retains the model misfit term. By defining

lpðq; ĉðqÞÞ;G;S
� ¼ min

cjq
lðq; c;G;SÞ; (19)
our outer optimisation then corresponds to

min
q

lpðq; ĉ ðqÞ;G;S Þ: (20)
Existing literature using the generalised profiling method (Campbell& Chkrebtii, 2013; Cao& Ramsay, 2007; Hooker et al.,
2011; Ramsay et al., 2007; Xun et al., 2013) appears to focus on parameter inference, and neglect the predictive properties of
the method. Some work has been done in prediction in (Hooker et al., 2011), but in the context of tuning the smoothing
hyperparameter l of the classical formulation. This was done by integrating the model exactly from a set of points chosen on
the approximated state. This integration was never extended past the time horizon of the data, meaning that true prediction
was never done. Further, it is noted that depending on the choice of l, the integral of the model and the estimated state may
not necessarily agree. Thus this raises the question of how to utilise and choose information gained from the inference process
for prediction. This was also a key question raised by the discussants of Ramsay et al. (2007). To address this, we introduce a
natural method for performing prediction using our objective function. By extending the fitting time-window beyond that
supplied by the data, the overall objective naturally performs extrapolation of the data as informed by the model. This is due
to the model-misfit term, which imposes the trajectory's behaviour further forward in time, while respecting the information
from the data near the regions where it is available. Practically, this means that prediction can be done as part of the inference
process, with no further decisions required. This is another benefit to viewing the inner and outer optimisation problems as
simply different profiles of the same overall objective.

3.1.4. Covariance estimation and iterative solution process
In the classical formulation, the tuning of the hyperparameter l can be done efficiently in the linear case, through the

application of the generalised cross-validation criterion (Wahba, 1990), among other, typically prediction-oriented, data-
driven methods. However, when the model f becomes nonlinear, then the approaches are typically limited to grid search
methods (Campbell & Chkrebtii, 2013; Ramsay & Hooker, 2017).

In our reformulation, the estimation of the covariances of the errors are analogous to the tuning of l. Hence, unlike the
standard least squares form of generalised profiling, here covariance-related terms in the negative log-likelihood are not
dropped from the final form of our objective. Following the above assumptions about the errors in the model, we get, for
Gaussian errors, the following negative log-likelihood objective function:

lðq; xÞ¼ ky� gðxÞk2
G�1 þkDx� f ðx; qÞk2

Ŝ
�1 �1

2
log jGj �1

2
log jŜj: (21)
However, the concurrent estimation of both the parameters and covariances is difficult due to computational issues with
convergence, as well as robustness concerns. Such problems are typically resolved by using iterative methods, such as
generalised least squares methods (Carroll & Ruppert, 1988), which alternate between estimation of the parameters and
covariances. These are early-stopping versions of iteratively-reweighted least squares, but the optimal number of iterations N
to take are hard to determine inmost cases, and empirical experiments done by Carroll and Ruppert (1988) show that N� 2 is
advised. We also observe that in our formulation, there is a potential degeneracy in the model fit term, due to it being able to
be exactly satisfied, leading the estimated model fit covariance to unboundedly decrease. We counter this behaviour by
setting restrictions on the maximum or minimum estimated covariances of each term. We also note that this iterative
procedure can be used in the form of quasi- or pseudo-likelihood estimation where, for example, the estimates of the mean
(state) function parameters are based on quasi-likelihood/generalised least squares procedures, while estimates of the co-
variances use (typically normal-theory) maximum likelihood or related methods (Carroll & Ruppert, 1988; Ruppert et al.,
2003). This allows the use of non-normal likelihood expressions, at least for estimating the parameters of the mean (state)
function. The iterative process used is given in Algorithm 1, and we expand on the details of the implementation in the
Supplementary Material. For brevity, and alignment with the objects in the code, we introduce the decision variables x¼ [c, q]
as the stacked spline coefficients and model parameters, and the weights w ¼ [vec(L), vec(M)] which are the stacked
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vectorised lower triangular entries of the whitening matrices L and M associated with the covariance matrices (LTL ¼ G�1,
MTM ¼ S�1).

Algorithm 1. Iteratively reweighted least squares algorithm
3.2. Uncertainty quantification

Next, we consider statistical uncertainty quantification, in the sense of forming appropriate uncertainty intervals with
(approximate) coverage properties.

In the classical approach, the intervals can be extracted by treating the coefficients c: x ¼ Fc as nuisance parameters that
depend on the model parameters q. The outer objective function then allows the uncertainty to be propagated from the data
space y to parameter space, via a linearisation. This leads to Wald-style confidence intervals; however, if the underlying log-
likelihood is not well approximated by a quadratic, then this approach can give misleading results (Pawitan, 2001).

An alternative way to perform analysis on the uncertainty of quantities of interest is using the profile likelihood (Pawitan,
2001; Ionides et al., 2017). We can apply typical frequentist sampling theory methods to form approximate likelihood-based
confidence intervals for particular quantities of interest from their profile likelihoods. For a scalar quantity of interest, this is
typically done by choosing a cutoff point k such that

k ¼ exp
�
� 1
2
c21;ð1�aÞ

�

where c21;ð1�aÞ is the (1� a)-th percentile of the chi-squared distributionwith 1 degree of freedom. This cutoff then defines an
asymptotic 100(1 � a)% confidence interval (under appropriate regularity conditions (Pawitan, 2001)):
218
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�
u;

LpðuÞ
LpðûÞ> k

	
(22)

where u is the quantity of interest, LpðuÞ is the profile likelihood of u, and LpðûÞ is the profile likelihood of u evaluated at the
MLE, for which u ¼ û. This confidence interval can also inform the identifiability of the quantity of interest (Raue et al., 2009;
Simpson et al., 2020). This process can be carried out by re-solving the maximum likelihood estimation procedure over a grid
of values for u, with an additional equality constraint for those values of u. We stress here that u is not necessarily a model
parameter, but can be any function of the model parameters q or state variables c (Kreutz et al., 2012). This means that we can
capture uncertainty in the trajectories by profiling over state quantities, for example. Although this process can be slow, as the
profiling procedure requires solving a number of least-squares problems, we can assume that value of the profile at ui is close
to the value of the profile at uiþ1, and thus can initialise the problem at uiþ1 at the solution at ui.

Another approach is to use a bootstrap-style sampling distribution (Davison & Hinkley, 1997; Efron, 1979), determined by
repeatedly solving an augmented version of the optimisation problem of Equation (21):

min
q;c

ky� gðxÞ þ ek2
G�1 þ kDx� f ðx; qÞ þ nk

Ŝ�1
2
; s:t:x ¼ Fc; (23)
for a series of realisations of e and n, which have zeromean and covariances G and Ŝ. The values of these covariances can be
extracted from the weights of solution at the maximum likelihood estimate. This bootstrapping procedure can be done
efficiently by solving from the maximum likelihood estimate and the problems induced by each realisation of e and n can be
carried out in perfect parallel. In the inverse problems literature, the above approach falls under the umbrella of Randomised
Maximum Likelihood (RML) (Oliver et al., 1996) methods that include randomisedMaximum a Posteriori (rMAP) (Wang et al.,
2018) and Randomize-then-Optimize (RTO) (Bardsley et al., 2014). These methods are usually considered approaches to
determining approximate Bayesian posteriors, or proposal distributions for sampling Bayesian posteriors. In contrast, we
view our approach as a way of determining a sampling distribution for the maximum likelihood estimator under prior in-
formation in the form of stochastic constraints in the style of Theil and Goldberger (1961), or a prior likelihood in the style of
Edwards (1969). Our interpretation of RML here is thus as a classical bootstrap method, and hence wewill also refer to this as
‘RML bootstrap’. Using the bootstrap interpretation, we can construct 100(1 � 2a)% percentile interval (Efron, 1979):

h
t*a; t

*
ð1�aÞ

i
(24)

where t* are the bootstrap samples and t*p is the p-th percentile of the bootstrap samples.

4. Case study

We now consider an application of these ideas to a case study. Between late September 2019 and early January 2020, the
South Pacific nation of Samoa (population ~200,000) experienced an unprecedented outbreak of measles. Data on the pro-
gression of the epidemic was released by various departments of the Government of Samoa in the form of press releases
(Government of Samoa, 2019). Initially these were published by the Ministry of Health, but during the emergency period the
functionwas performed by the National Emergency Operations Centre (NEOC). Initial press releases by the Ministry of Health
were generally sparse, whereas NEOC press releases were daily. The data is presented in Fig. 1. Note that there is missing data
for certain dates near the beginning of the outbreak.

In a preliminary effort, we used a less developed version of this method to make predictions for the Samoan measles
epidemic, when contacted by the Samoan Observer in late November 2019 (Petousis-Harris, 2019; Russell, 2019). For our
analysis here, we use data up to the 3rd of December to reproduce similar conditions. This is the point in time where two
pertinent questions are raised: how long will the epidemic persist, and how bad will it be?

4.1. Model

To model the dynamics, we build upon the SEIR compartmental model, adding compartments for the additional data
available (deaths and hospitalisations).

_S ¼ �bS
I
N
; (25a)

_ I

E ¼ bS

N
� gE; (25b)

_I ¼ gE � ðaþ hÞI; (25c)
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Fig. 1. Plots of the available data for the 2019 Samoan measles outbreak. Top-left: cumulative reported cases; top-right: cumulative reported deaths; bottom-left:
cumulative reported hospitalisations; bottom-right: cumulative reported hospital discharges. Current hospitalisation data is also available, but not shown.
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_R ¼ aI; (25d)

_H ¼ hI � ðdþmÞH; (25e)
_G ¼ dH; (25f)
_D ¼ mH; (25g)
_Ic ¼ gE; (25h)
_Hc ¼ hI: (25i)
I
S represents the susceptible population, who become exposed (E) but not infectious at rate b N on contact with the in-
fectious (I). Exposed individuals become infectious I at a rate g, and report their infection (tracked by Ic). Infectious individuals
can then recover to R at rate a, become hospitalised (H) at rate h. Hospitalisation is tracked by Hc, and hospitalised individuals
recover and are discharged (G) at rate d, or die (D) at rate m. We also track the total number of reported cases (Ic), the total
number of hospitalisations (Hc), and the total at-risk population N ¼ S þ E þ I þ R þ H þ G. We neglect vital dynamics, due to
the relatively short duration of the outbreak, and also vaccination effects, which were implemented too late into the epidemic
to have a significant effect. Pre-existing vaccinated individuals are modelled as a non-zero R(t ¼ 0). Because we are assuming
this existing population of vaccinated individuals, we define a critical threshold parameterRc following (van den Driessche&
Watmough, 2002, 2008) as

Rc ¼ b

aþ h

Sðt ¼ 0Þ
Nðt ¼ 0Þ (26)
We note that not all states have corresponding data, that is we have a partially observed model. The observed states are
described in Table 1. Partially observedmodels introduce additional problems when fitting a differential equation model. At a
Table 1
Data to state variable correspondences for all observable states of the measles
model.

Model State Variable Corresponding Available Data

Ic Cumulative Reports
D Cumulative Deaths
H Current Admissions
Hc Cumulative Hospitalisations
G Cumulative Discharges
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basic level, it becomes difficult to quantify model misfit without estimating the state simultaneously. It also can introduce
identifiability problems, depending on the state variables that can be observed (Tuncer & Le, 2018). In this analysis, we also
relax the implicit assumption in (Tuncer & Le, 2018; Roosa & Chowell, 2019) that the state at t ¼ 0 is known, in particular the
ratio S(t ¼ 0)/N(t ¼ 0).
4.2. Results

The methods were implemented in Python as described in Section 3.1, and are initially validated on an SIR model with
synthetic data (available in the Supplementary Material). The estimated trajectory of the Samoan measles outbreak, using
data up to December 3, 2019, is presented in Fig. 2.

We add two prior likelihood/regularisation terms that penalise the magnitudes of the parameters b and g. We tune the
hyperparameters on the two penalty terms by analysis of synthetic data generated from the model (see the Supplementary
Material for tuning and regularisation details). These terms penalise pathological behaviour where the E or I state estimates
converge to small values where their derivative are small, as encouraged by the model misfit term.

We compute confidence intervals for the total reported cases and total deaths, as well as Rc, using profile likelihood and
RML bootstrap methods described above. The total reported cases and deaths are taken at the final time point of the state
estimate, which is set to 1.25 � the final time point (when the epidemic was declared over by the Samoan Government),
where dates are zeroed with respect to the date of discovery of suspected first case (September 30, 2019). We draw 200
samples for the RML bootstrapmethod, and reject any samples that result in non-convergent optimisation behaviour (n¼ 22).
Intervals are computed for a 95% confidence level, and a summary of results is presented in Table 2.

We see that we capture the truth for the total number of cases with both profile likelihood and bootstrap intervals. The
bootstrap sample distribution and profile likelilhood are presented in Fig. 3, and Fig. 4 plots the RML state estimates for the
total reported cases over time.

We see that the intervals for Rc by both methods roughly agree, though the bootstrap interval is slightly narrower, as
shown in Fig. 5.

We also construct a joint profile of total cases andRc in Fig. 6. We see that the RML samples and the 95% confidence region
agree. The univariate profiles of Rc and total cases follow the likelihood surface of the bivariate profile, as expected (Bolker,
2008).

We can also analyse the bootstrap samples for estimates of the death counts. We plot a histogram of the estimated deaths
from the outbreak in Fig. 7, and derive an 95% bootstrap confidence interval of [104e120] and a profile interval of [102e120].
We note that these bounds do not capture the true value of 83 deaths. This is likely due to the drop-off in deaths just outside of
range of the provided data (see Fig. 1), which cannot be captured by a single mortality rate parameter.
5. Discussion and conclusion

The estimation and prediction of epidemics is a difficult task, in both theory and practice. In this paper, we have presented
a likelihood-based reformulation of the standard generalised profiling method introduced and developed by Ramsay et al.
(2007). This is based on ideas of mixed estimation in the sense of Theil and Goldberger (1961) and prior likelihood in the
sense of Edwards (1969). This provides a natural rationale for profiling as a method of eliminating nuisance parameters and
targeting interest parameters. We then use this to construct a framework for parameter and state inference of a model given
data while allowing for model misspecification.

The standard formulation can be seen as a form of profiling, where the outer objective is the q-profile of the inner
objective, albeit evaluated at l/∞, where themodel is exactly enforced. Our reformulation can thus be seen asmore natural
Fig. 2. Recovered state estimates at N ¼ 2 iterations of the IRLS algorithm, which is the chosen early stopping point.
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Table 2
Point and interval estimates of quantities of interest for the Samoan measles case study.

Type Quantity MLE Profile Bootstrap Truth

Interpretation Symbol

Parameters Infectivity b 0.870 e [0.813e0.920] e

Incubation g 0.717 e [0.657e0.772] e

Recovery a 0.350 e [0.316e0.380] e

Hospitalisation h 0.176 e [0.162e0.186] e

Discharge d 0.306 e [0.295e0.318] e

Death m 0.0186 e [0.0173e0.0200] e

State Values Total Cases 5785 [5593e6006] [5621e6043] 5707
Total Deaths 111 [102e120] [104e120] 83

Quantities Number Rc 1.648 [1.586e1.717] [1.596e1.712] e

Fig. 3. Profile likelihood and RML bootstrap samples (n ¼ 178) of the total reported cases, with corresponding 95% confidence intervals marked.
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in a profile likelihood sense, as it interprets both stages as profiling a single log-likelihood containing both observational and
model error. It also leads to the use of the profile likelihood (Pawitan, 2001) and RML bootstrapping that allow us to perform
uncertainty quantification on the parameters and states.

We have then applied thesemethods to a case study of ameasles outbreak in Samoa, and shown that the estimates capture
the truth for important quantities of interest, like Rc and the total number of cases.
5.1. Profile likelihood interpretation of generalised profiling

A key methodological difference in our approach is in the treatment of the smoothing hyperparameter in the standard
formulation in terms of covariance matrices of errors. This is similar to the ideas developed in the mixed-effects/random-
effects/multi-level regression literature (Ruppert et al., 2003; Hodges, 2013), which embed spline models in mixed effect
models using random effects. These approaches also relate closely to Bayesian interpretations and the work of Wahba (1990)
on spline models. As noted above, however, a key motivation for our interpretation in terms of stochastic constraints, rather
than an explicit stochastic process model, is to provide a more natural statistical rationale for using profiling (maximisation)
rather thanmarginalisation for eliminating nuisance parameters. Even in the fixed parameter setting, there is ongoing debate
whether profiling or marginalisation better captures properties of likelihood when eliminating nuisance parameters (Aitkin,
2010; Aitkin & Stasinopoulos, 1989; Berger et al., 1999).

When estimating covariances with our approach, there is still the open question of an optimal stopping criterion, or
optimal number of cycles, to take in the IRLS algorithm. We find that even if the objective function terms are balanced, the
solution tends to diverge without regularisation. In this case study, we opted to apply bound constraints on the covariance
matrices G and S as a regularisation, preventing the solution from diverging towards pure data interpolation or degenerate
solutions of the underspecified differential equationmodel. Currently the specification of these bounds is done heuristicallye
through analysing the behaviour of the weights at successive iterations and performing synthetic data studies e but there
needs to be further work done into characterising appropriate methods for determining these values. Furthermore, it is
unclear howwell covariance matrices can be estimated in this setting, reflecting similar difficulties noted in the mixed effects
literature (Hodges, 2013). Validation methods have been used with generalised profiling, such as the forwards prediction
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Fig. 4. Timeseries of RML bootstrap samples of total reported cases (n ¼ 178).

Fig. 5. Profile likelihood and RML bootstrap samples (n ¼ 178) of Rc , with associated 95% confidence intervals marked.

Fig. 6. Joint profile of total cases and Rc , with independent profiles of each variable and the RML samples overlaid. The contour highlighted in black represents
the boundary of the 95% confidence region, where the normalised likelihood value is approximately 0.15.
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Fig. 7. Profile likelihood and RML bootstrap samples (n ¼ 178) of the total deaths with associated 95% confidence intervals marked.
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error suggested by (Hooker& Ellner, 2010), but there are problemswhen using this for ongoing or emerging outbreaks such as
the Samoan measles data, since prediction is typically most sensitive to the more recent data. More recently, Bayesian ap-
proaches to mixed effects models often include additional information on covariances in the form of hyperpriors. Huang et al.
(2020) have considered this for their Bayesian reinterpretation of the standard formulation of generalised profiling, setting
priors on the tuning parameter l. In principle we could take an analogous approach in terms of our mixed estimation
(stochastic constraints) formulation, but choosing appropriate forms for these additional terms faces similar challenges to
those raised in specifying hyperpriors in mixed effect models (Hodges, 2013). In general, estimating these hyperparameters
remains a key challenge for all approaches. In this particular study, we choose bounds that lead to stable iterates in the
maximum likelihood estimation procedure, and use a synthetic data study (see Supplementary Materials) to determine an
appropriate magnitude for the parameter regularisation strength.
5.2. Identifiability and uncertainty quantification

Due to the ability to use the standard likelihood toolbox with the reformulation, we are also able to perform identifiability
analysis in a straightforward manner.

We see thatRc is identifiable in our analysis, which is consistent with the findings of Roosa and Chowell (2019) that show
that R0 is identifiable even if there are identifiability issues with the other parameters. We do note however, that the
identifiability of the individual parameters is only possible due to the regularisation terms added, as prior likelihoods, to the
likelihood function, andwithout them, there is evidence that there is practical nonidentifiability of model parameters b and g.
This is likely related to the relaxation of the assumption that the initial state is known, since both are related toRc, where the
initial condition appears (through _S and _E).

Further, the coverage properties of the intervals we have constructed with regularisation are not well-known. Work in
post-selection inference is formalising the properties of estimators that are regularised, or data-informed in some ways, in
particular for methods like lasso (Hastie et al., 2015). There have also been alternative formulations that rely on imposing
physically-motivated constraints on the problem to construct confidence intervals with appropriate coverage properties
(Mikael Kuusela & Philip B. Stark, 2017). In our work, we interpret the regularisation terms as prior likelihoods, or additional
data. This means the properties of our confidence intervals can be more directly justified in terms of the relevant joint
sampling distribution involving both the present study data, and our prior regularisation data. This introduces a dependence
on the quality of the prior data, similar to the dependence of Bayesian credible intervals on the prior distribution. Thus, there
still remains the question of whether the approximate intervals we compute have close to the correct coverage, and how the
sampling distribution should depend on the auxiliary data. The simple SIR experiment (in the Supplementary Material)
suggests that the Rc profile should be skewed without the presence of prior regularisation data, whereas we see a more
symmetrical profile when that additional regularisation data is added in the case study.

We find that the estimation procedure is sensitive to initial guesses of the weightings (covariance matrices), especially for
this data observation window, which ends around the peak of the epidemic. This manifests itself numerically as non-
convergence after a large number of optimisation iterations. In the Supplementary Material, we perform a synthetic study
of observationwindows for a standard SEIR model, and see that there is a sudden regime change in the estimation errors (for
both state and parameters) once the observation window passes the turning point of the outbreak curve. This is consistent
with the findings of Wilke and Bergstrom (2020, pp. 28549e28551) and Roda et al. (2020), which show that the predictive
uncertainty window shrinks rapidly as data is collected past the turning point of the epidemic curve. This is probably linked to
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the inability to determine the rate of recovery in the early stages of the epidemic, since the effect of recovery is small on the
overall behaviour. However, as it is often difficult to determine this turning point, wewould suggest that practitioners bewary
of these observability-induced errors when performing prediction.

5.3. Model misspecification

We see elements of model misspecification, which may stem from the ill-posedness of the problem. Empirically, we see
that the fit of the total number of deaths, is biased in both the bootstrap and profile likelihood analysis. Drawing on our
knowledge of the case study, we also know that our model does not capture the spatial characteristics of the spread in Samoa,
or the fact that various non-pharmaceutical interventions were enacted in the form of curfews and a mass vaccination
campaign. We could have allowed for this in the model, for example, by allowing for some of the parameters to be time-
varying in a structured way, akin to how Hooker et al. (2011) allow for a cyclical b value in their endemic model. Further,
we have information from previous measles outbreaks about the clinical presentation and infection characteristics of the
virus, which could inform parameters such as g (the latent period) and a (the recovery rate). Although we have regularised b

and g towards 0 to make the estimation procedure better-behaved, this additional information could be used instead. In this
way, this method can be seen as analogous to the Bayesian formulation, but instead of marginalising over the prior data, we
maximise (profile) over the prior.

5.4. Practical considerations

In our implementation of the method, we have used the CasADi framework (Andersson et al., 2019) and its interface in
Python.We found that the estimation of theMLE for the Samoanmeasles case study took around 3min. The profiles each take
around 10 min to generate, dependent on the number of points to evaluate, and the 200 RML bootstrap samples take around
30 min. Most of these timings scale with the number of basis functions and collocation points, though the nonconvergence of
the optimisation problem in many cases is more likely attributed to poor starting iterates. Our analysis of an SIR model (in the
Supplementary Material) takes significantly less time, for a similar amount of data. Additionally, we have made a simplifying
choice to perform all of the procedures in serial. However, there is room for parallelisation to significantly speed up the
process of bootstrapping in particular, since bootstrap samples are independent of each another. For profiling, many different
values of interest can be computed in parallel to each other, but the profile itself is constructed successively away from the
MLE. This is due to there being limited regions of convergence for any given optimisation problem, requiring chaining to
generate suitable profiles. We see nonconvergence in many of the steps in the maximum likelihood estimation and the
uncertainty quantification procedures, which computationally is flagged by longer runtimes. The successive chaining of
estimates in the profile likelihood approach is particularly sensitive to this problem, since the result of the previous profile
point (whether converged or not) is used as the initial iterate for the estimation of the next profile point. We have tried using
restarts from surrounding iterates, and see that in some cases this can mitigate the problem, but this is not guaranteed. These
convergence problems are exacerbated if the problem is relatively large, andwe find that the explicit representation approach
we use to save computational time has a large memory burden. For example, we found that an RTO-style approach (Bardsley
et al., 2014), where the Jacobian must be used in the log-likelihood when resampling for a bootstrap, is infeasible on a
workstation with 16 GB of RAM. Alternative implementations of these methods may significantly reduce these memory is-
sues, with a less harsh runtime penalty than we found using CasADi.
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