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Listeria monocytogenes is a Gram-positive foodborne bacterial pathogen capable of

interacting and crossing the intestinal barrier, blood–brain barrier, and placental barrier to

cause deadly infection with high mortality. L. monocytogenes is an intracellular pathogen

characterized by its ability to enter non-phagocytic cells. Expression of the cytolysin

listeriolysin O has been shown to be the main virulence determinant in vitro and in vivo

in mouse models. L. monocytogenes can also perform cell-to-cell spreading using

actin-rich membrane protrusions to infect neighboring cells, which also constitutes an

important strategy for infection. These events including entry into host cells, interaction

between listeriolysin O and host plasma membrane, and bacterial cell-to-cell spreading

have been demonstrated to implicate the cholesterol-rich lipid rafts or molecules in these

microdomains in the host plasma membrane in vitro with tissue culture models. Here we

review the contribution of lipid rafts on plasmamembrane to L. monocytogenes infection.

Keywords: Listeria monocytogenes, listeriosis, lipid rafts, intracellular bacteria, listeriolysin O, internalin, cell-to-

cell spreading

INTRODUCTION

Human listeriosis is a foodborne disease caused by the intracellular pathogen Listeria
monocytogenes. Upon ingestion of contaminated food by the host, L. monocytogenes interacts and
traverses the intestinal epithelium to reach the lamina propria, followed by dissemination into
lymph and bloodstream toward the liver and spleen, where the bacteria replicate. L. monocytogenes
can further cross the blood–brain barrier to induce meningoencephalitis and invade the placenta
and result in fetal infection, stillbirth, abortion, and neonatal infection (1, 2). L. monocytogenes
has been used as a model microorganism in studying host–microbe interactions since the late
1980s. Efforts have been made to unveil how this facultative intracellular pathogen enters into
cultured non-phagocytic epithelial cells, escapes from the internalization vacuole, and spreads
from the infected cell to another (3). Interaction of L. monocytogenes surface protein InlA
and InlB with corresponding host receptors human E-cadherin (hEcad) and human c-Met at
the plasma membrane leads to host actin polymerization and septin assembly, followed by
internalization of bacteria in a vacuole (4–7). The L. monocytogenes-containing vacuole, especially
in phagocytic cells, is subsequently lysed by the bacterial pore-forming toxin listeriolysin O
(LLO), resulting in bacterial escape from the vacuole (8). Within the host cell cytosol, the
bacterial surface protein ActA contributes to L. monocytogenes intracellular motility via host
actin polymerization and actin comet tail formation, followed by the induction of membrane
protrusions and infection of neighboring cells (9). In the neighboring cells, L. monocytogenes will
then be located in a double-membrane vacuole, in which bacterial phospholipases PlcA and PlcB,
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together with LLO, are required for vacuole lysis and
bacterial escape into cytosol for infection propagation (10).
The membrane damaging property of LLO is also involved
in multiple modulation activities during infection, such
as Arp2/3-dependent F-actin remodeling that promotes
bacterial internalization, changes in histone modification and
thus modulation of host gene expression, desumoylation of
host proteins, induction of mitochondrial fission, increase
of endoplasmic reticulum (ER) stress, and lysosomal
permeabilization (11–19).

Plasma membranes have been described as a fluid mosaic
interface containing various lipid species in two asymmetric
leaflets with plenty of floating proteins (20, 21). The observations
that cell membranes can be separated into detergent-sensitive
and detergent-resistant fractions suggested the presence of
distinct membrane sub-compartments in cell membranes. The
clusters of lipids in a more ordered state with relatively
saturated lipids and glycosylated lipids are referred to as
lipid rafts, as compared to the disordered membrane domains
with unsaturated lipids (20). Lipid rafts are cholesterol- and
sphingolipid-enriched microdomains with ordered assemblies
of proteins and lipids in cell membranes (22). These rafts
are heterogeneous and dynamic, and have the potential
to form large domains (>300 nm) upon clustering induced
by protein–protein and protein–lipid interactions (20). The
organization of lipid rafts can also be regulated and mobilized
by cortical actin filaments via specific interactions between
actin and membrane adaptor proteins (23, 24). Lipid rafts
have been suggested to be implicated in membrane protein
signaling, membrane trafficking, and host–microbe interactions
(25). Compartmentalization of cellular signaling in membrane
domains is important to regulate maturation of immune cells.
It was demonstrated that T cell receptors and B cell receptors
were found in detergent-sensitive membrane in resting stage, but
shifted to detergent-resistant fractions upon receptor activation
(26–29). This suggests that the translocation of receptors
involved in antigen presentation to lipid rafts is associated with
active signaling in these immune cells. Lipid rafts are also
enriched in caveolae, which are flask-shaped pits with a size of
50–80 nm in the cell membrane. Caveolae are associated with
expression of caveolin, which is responsible for stabilization
of caveolar structure and the internalization of extracellular
materials into caveolae (25). While host plasma membranes are
the first barrier for the invasion of intracellular pathogens, the
observation that host receptors are clustered in the lipid rafts
and enrichment of cholesterol on microbe-containing vacuoles
highlights the importance of lipid rafts in pathogen–host
interactions (30). Here we review and discuss the implication of
lipid rafts in the interaction between L. monocytogenes and host
cells at different interfaces (Figure 1).

LLO, A MULTIFUNCTIONAL CYTOLYSIN
TARGETING LIPID RAFTS

LLO is crucial for full virulence of L. monocytogenes in both in
vitro tissue culture systems and in vivo animal models (31–35).
LLO is a secreted protein of 56 kDa molecular weight belonging

to the family of cholesterol-dependent cytolysins (CDCs), which
represent the largest family of pore-forming toxins that form
large pores (up to 35 nm) produced by different bacterial
species (36–40). Preincubation of LLO with cholesterol abolished
cytolytic activity, suggesting the importance of cholesterol
binding in lipid rafts for cytolysis (41). Differing from other
CDC members, LLO exhibits optimal binding to cholesterol-
containing membranes at pH 5.5, and this binding decreases
at neutral and basic pH. Nevertheless, high cholesterol levels,
corresponding to the concentration range of cholesterol found in
lipid rafts, can restore LLO binding to membranes at suboptimal
pH (42). This is explained by the presence of an acidic triad in
the transmembrane domain, which functions as a pH sensor and
triggers premature denaturation of LLO at neutral pH at 37◦C,
thereby allowing pore formation to occur mainly at acidic pH
(43–45). The pH dependence of LLO limits cytolytic activity to
acidic vesicles and prevents damage in the host cytosol, which is a
niche for L. monocytogenes replication. Accordingly, replacement
of LLO by pH-insensitive CDCs such as perfringolysin O
from Clostridium perfringens allowed phagosomal escape of L.
monocytogenes, but led to decreased infection efficiency in vitro
in a plaque assay (46). Cholesterol in the lipid rafts not only
provides an initial binding site for LLO, in vitro studies with high-
speed atomic force microscopy (HS-AFM) further demonstrated
that in acidic environments LLO can produce arc pores in
the membrane as a lineactant, and therefore creates large-scale
defects for bacterial escape from phagocytic vacuole (47).

In addition to targeting of cholesterol-rich domains to
damage the host cell membrane, the PEST-like sequence at
the N-terminus of LLO interacts with the endocytosis adaptor
Ap2a2, a lipid-raft associated protein (Figure 1A) (48, 49). This
interaction facilitates clathrin-dependent endocytosis of plasma
membrane-associated LLO and removes these pore-forming
toxins from the plasma membrane, thereby preventing its
cytotoxicity to the infected cell and enhancing L. monocytogenes
virulence during infection in vivo (48, 50). However, this
clathrin-dependent endocytosis of LLO-associated membrane
may not contribute to membrane repair after pore formation as
endocytic proteins are not recruited to the membrane damage
sites (51). Instead, LLO-induced membrane damage can result
in influx of intracellular calcium, which subsequently activates
TMEM16F lipid scramblase, leading to membrane blebbing and
extracellular vesicle release to repair plasma membrane damage
(52). Although less characterized, LLO was demonstrated to
induce clustering of GPI-anchored proteins CD14 and CD24 on
the surface of murine macrophages J774, while the non-lipid-raft
marker transferrin receptor was not affected (53).

L. monocytogenes HARNESSES LIPID
RAFTS PROTEINS FOR ENTRY INTO HOST
CELLS

L. monocytogenes uses its surface internalin proteins InlA
and InlB to bind hEcad and human c-Met, respectively.
These interactions result in cytoskeleton rearrangement,
thereby bacterial entry into non-phagocytic cells through
a zipper mechanism (Figure 1B) (4, 7, 54). Treatment of
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FIGURE 1 | L. monocytogenes harnesses host lipid rafts for infection. (A) Extracellular L. monocytogenes secretes the cytolysin LLO, which binds cholesterol and

inserts into host cell membrane in lipid raft domains. The interaction between the endocytosis adaptor protein Ap2a2 and inserted LLO results in endocytosis of LLO

to prevent LLO-induced plasma membrane damage. (B) During bacterial entry, the L. monocytogenes surface protein InlA acts as an adhesin binding to host

E-cadherin in lipid raft domains. Binding of L. monocytogenes InlB to host c-Met triggers PI3-K activation, which catalyzes the production of PIP3 from PIP2 in lipid

raft domains, leading to actin polymerization and internalization of E-cadherin-bound bacteria. (C) In the process of cell-to-cell spreading, LLO damages the plasma

membrane of the infected cells to induce PS inversion in the lipid rafts. Neighboring macrophages engulf PS-positive protrusion structures by the PS receptor TIM4.

Neighboring non-phagocytic cells internalize L. monocytogenes membrane protrusions by caveolin-dependent endocytosis in lipid rafts. LLO, listeriolysin O; PIP2,

phosphatidylinositol-4,5-bisphosphate; PIP3, phosphatidylinositol-3,4,5-triphosphate; PI3-K, phosphoinositide 3-kinase; PS, phosphatidylserine.

phosphoinositide 3-kinase (PI3-K) inhibitors wortmannin and
LY294002, respectively, abolished InlA- and InlB-dependent
invasion into different host cells, showing the importance of
PI3-K activity in internalin-mediated entry (Figure 1B) (55, 56).
Depletion of cholesterol by methyl-β-cyclodextrin reduced
InlA- and InlB-dependent L. monocytogenes internalization
into non-phagocytic cells, indicating the involvement of
lipid rafts in internalin-mediated internalization (57). This is
further supported by the observation that multiple lipid raft
markers, such as glycosylphosphatidylinositol-linked proteins,
a myristoylated and palmitoylated peptide, and the ganglioside
GM1 were recruited at the bacterial entry site (57). While InlA–
Ecad interaction and Ecad recruitment at the entry site were

cholesterol-dependent, cholesterol depletion did not affect InlB
interaction with c-Met, the recruitment of c-Met at the entry site,
and c-Met downstream signaling (57). Nevertheless, cholesterol
depletion abrogates InlB-mediated actin polymerization (57).
The implication of lipid rafts in InlA-mediated entry was further
demonstrated by the observation that caveolin was recruited to
the bacterial entry sites and was required for the internalization
in an InlA-dependent manner (58). While InlB is dispensable
for bacterial entry into LS174T intestinal epithelial cells that
show constitutively activated PI3-K activity, this protein is
necessary for InlA-dependent entry into cells that do not exhibit
constitutive PI3-K activity (55). Together, while InlB-induced
c-Met phosphorylation does not depend on cholesterol and
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lipid rafts, subsequent PI3-K activation and Rac1-induced
actin polymerization at the bacterial entry site occur within
lipid rafts and require their integrity (57, 59). InlA acts as an
adhesion molecule to Ecad in the detergent-resistant lipid rafts,
thereby triggering internalization of L. monocytogenes dependent
on PI3-K activation and caveolin-mediated endocytosis
(Figure 1B) (57–60).

THE ROLE OF LIPID RAFTS IN L.

monocytogenes CELL-TO-CELL
SPREADING

Following lysis of the phagocytic vacuole in host cells, the
L. monocytogenes surface protein ActA can polymerize actin
in cytosol, which allows formation of bacteria-containing
membrane protrusions, the structures that are later internalized
by neighboring cells to result in cell-to-cell spreading of
L. monocytogenes (Figure 1C) (61). Internalization of L.
monocytogenes membrane protrusions was demonstrated to
be exploited by efferocytosis, by which the apoptotic cells
are removed by macrophages (Figure 1C, left) (62). In both
phagocytic and non-phagocytic cells, ActA-mediated actin-based
motility was proposed to allow close apposition of bacteria
to the cell membrane, where secreted LLO may damage cell
membrane and induce externalization of phosphatidylserine
(PS), a hallmark of apoptotic cells at cell membrane (62). The
PS-positive protrusion structures containing L. monocytogenes
are subsequently recognized by the PS-binding receptor
TIM-4 on macrophages to facilitate phagocytic uptake
and cell–cell spreading (62). While methyl-β-cyclodextrin-
mediated cholesterol depletion was demonstrated to reduce PS
externalization and phagocytosis of apoptotic cells, this suggests
that lipid raft integrity could be important for efferocytosis-
mediated L. monocytogenes spreading (63–65). L. monocytogenes
cell-to-cell spreading is not limited to transfer to phagocytic
cells (61). Dhanda et al. further investigated the membrane
invagination in neighboring non-phagocytic cells (Figure 1C,
right) (66). While caveolin-based and lipid raft-dependent
endocytosis is supposed to be a process that internalizes
extracellular material into bulb-shaped caveolae no larger than
100 nm, L. monocytogenes membrane protrusions triggered
the recruitment of caveolar proteins and PS in a neighboring
cell (66). Knock-down of caveolin-1 reduced invagination
length in the neighboring cells and L. monocytogenes cell-to-
cell spreading without detectable effect on the length of the
actin comet tail and protrusion in initial infected cells (66).
This suggests that caveolin can mediate engulfment of large
materials, such as L. monocytogenes-containing membrane
protrusions, which was not supposed to be achieved based
on the size of caveolae. Collectively, due to the importance
of lipid rafts in both efferocytosis and caveolae structure,
efficient L. monocytogenes cell-to-cell spreading may require
lipid raft integrity (63, 67). Further studies disrupting these
membrane microdomains in L. monocytogenes cell-to-cell
spreading are needed to directly address the role of lipid
rafts in this process.

CONCLUDING REMARKS

Our understanding of lipid rafts has been improved by
the development of biochemical and microscopy tools (20,
21, 25). Depletion of membrane cholesterol by methyl-β-
cyclodextrin constitutes the most common approach to disrupt
membrane lipid rafts to investigate their biological function
(68). However, methyl-β-cyclodextrin exhibits pleiotropic effects
beyond lipid raft disruption such as inhibition of clathrin-
mediated endocytosis (69–71). The models where lipid raft
components are genetically deficient may be applied to more
specifically address the function of lipid rafts (72–74). On
the other hand, advance in microscopy techniques allows for
visualizing the lipid rafts from model membranes to living cells
in vitro (25). Recent advances suggest that pathogens may behave
differently and adopt a distinct strategy to interact with the host
between in vitro cell culture and in vivo animal models. For
example, while L. monocytogenes interacts with enterocytes and
access to the cytosol in cell culture systems, it targets goblet cells
in the small intestine and performs transcytosis to cross intestinal
epithelium followed by systemic infection in humanized mouse
models (55, 75, 76). Conditional genetic knock-out mouse
models, where lipid rafts are disrupted in villin-expressing
intestinal epithelium, may provide a clue regarding the role of
lipid rafts in L. monocytogenes crossing of intestinal barrier (77).
Stem cell-derived organoids have been shown to recapitulate
the complexity of a local tissue in vitro in culture systems
(78). While L. monocytogenes was demonstrated to successfully
infect intestinal organoids, coupling of super-resolution optical
microscopy methods may allow visualizing the organization of
lipid rafts at the interface between L. monocytogenes and host
cells relevant to the in vivo environment (79, 80). Together,
future studies addressing the role of lipid rafts in vivo and
visualizing these nanoscale membrane domains at the interface
between L. monocytogenes and host in tissues will provide insight
into how lipid rafts are implicated in the pathophysiology of L.
monocytogenes infection.
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