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Abstract
: The immune response to   (LM) isBackground Listeria monocytogenes

characterized by formation of leukocyte rich foci of infection in liver and spleen. 
Although much has been gained in our understanding of immune response
through the study of LM, little is known about spatio-temporal regulation of
immune response to Listeria in liver.

 We utilize a combination of molecular, genetic and intravitalMethods:
microscopic approaches to gain insight into the dynamics of foci and leukocyte
behavior during hepatic Listeriosis. 

: LM foci efficiently exclude blood flow, indicating the presence of aResults
barrier separating the foci and healthy tissue.  Despite this barrier, sinusoidal
myelomonocytic cells readily enter or transiently interact with cells at the edge
of foci of infection.  Next, utilizing L9.6 transgenic CD8  T cells specific for an
endogenously processed LM antigen, p60 217-225, along with LM deficient in
this epitope, we define the role of TCR in T cell migratory behavior in infected
liver.  Surprisingly, T cell behavior varies with micro-anatomic locale.  Near foci,
non-specific adhesion mechanisms dominate lymphocyte behavior.  Antigen
specific effects on motility became detectable only distal to foci. 

 These data suggest that LM antigens act in a paracrine mannerConclusions:
to mediate protection from Listeriosis in the liver.
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Introduction
Listeria monocytogenes (LM) is one of the best-studied  
pathogens in immunology and microbiology (David & Cossart, 
2017; Pamer, 2004; Portnoy et al., 2002). Insights into the patho-
physiology underlying Listeriosis have significantly contributed 
to our understanding of the coordination of innate and adaptive  
immune responses and mechanisms of bacterial virulence. 
Several studies utilizing various pathogen models in combi-
nation with single and multi-photon intravital microscopic 
approaches have provided new insight into the leukocyte behavior  
underlying immune responses (Aoshi et al., 2008; Chtanova et al., 
2008; Egen et al., 2008; Waite et al., 2011). 

The temporal orchestration of the immune response to microbes 
in liver, as well as at other tissue sites, is well documented.  
Hepatic Kupffer cells capture LM and other sinusoidal microbes 
through Complement and scavenger receptors. This is followed 
by a rapid influx of neutrophils. Both of these processes play 
a role in early protection and lead to formation of infection foci  
(Broadley et al., 2016; Surewaard & Kubes, 2017; Unanue, 1997; 
Witter et al., 2016) . In Staphylococcus aureus infection, release 
of Neutrophil Extracellular Traps (NETS) contribute to bacterial 
capture (Kolaczkowska et al., 2015; McDonald et al., 2010). 
In hepatic Listeriosis, inflammatory monocyte influx proceeds 
soon after polymorphonuclear infiltration and are also critical 
for protection against LM (Helmy et al., 2006; Shi et al., 2010).  
Neutrophils and monocytes can be visualized via intravital micro-
scopy using mice, in which eGFP is targeted into the LysM locus 
(Smiley et al., 1995); we will refer to the GFP+ cells in these 
mice as myelomonocytic cells (MMC). CD8 T cells recognizing  
N-formylmethionine peptide in the context of H2-M3 respond  
3–5 days post-infection in mice, although their role in human 
Listeriosis remains unclear (Cho et al., 2011; Gulden et al.,  
1996). Importantly, conventional CD4+ and CD8+ T cells migrate 
into the liver as early as day 3 post infection and this response 
peaks during days 5–7 (Lenz et al., 1996; Unanue, 1997).  
Each CD8+ or CD4+ T cell responses are sufficient in provid-
ing sterilizing immunity and dissolution of foci of infection  
(Lara-Tejero & Pamer, 2004). While the cell types and kinetics 
of immunity to LM is well documented, little is known about the  
leukocyte behavior in response to LM at effector sites.

Previous studies have identified Listeria-derived immunodominant 
peptide epitopes presented on H2-Kd and have characterized the 
resultant T cell repertoire (Harty & Pamer, 1995; Pamer, 1994;  
Sijts et al., 1996; Vijh & Pamer, 1997; Vijh et al., 1998). One 
naturally occurring dominant peptide epitope is derived from 
p60 protein, peptide 217–255 (Vijh & Pamer, 1997). Polyclonal 
and monoclonal T cells generated from infected mice that are  
specific for this epitope provide protective immunity against  
Listeriosis (Harty & Pamer, 1995); CD8+ L9.6 transgenic T cell 
receptor, specific for p60 217–225, presented in the context 
of H2-Kd, was cloned from monoclonal T cells protective  
against LM (Harty & Pamer, 1995).

In previous studies, we engineered LM expressing p60 antigen  
with a single point mutation in the MHC anchor residue  
218, changing it from a tyrosine to a serine, termed 218S  
(Harty & Pamer, 1995). This diminished 217–225 epitope gen-
eration by LM infected cells to below the limit of detection.  
In vivo, 218S did not elicit T cells specific for 217–225, while  
T cell proliferation, target cell lysis and cytokine production 
against other epitopes remained intact. Also, LM virulence in 
spleen remains unchanged between wild type and 218S (Harty &  
Pamer, 1995; Vijh et al., 1998). Therefore, 218S mutants do  
not present p60 217–225 peptide antigen in vivo.

Here, we utilize multi-photon intravital microscopy to gain insight 
into the orchestration of the leukocyte response to LM in vivo.  
LM foci are characterized by reorganization of the hepatic  
sinusoids, mediated by MMC, leading to the exclusion of blood  
perfusion. MMC migration is characterized by entry but not exit 
from foci. Additionally, some MMC migrate tangentially to the 
perimeter of the foci. Next, we report that TCR specificity does 
not play a role in the patrolling behavior of LM specific CD8+ 
T cells proximal to foci. Conversely, distal to foci of infection  
CD8+ T cell antigen specificity does play an important role in 
defining patrolling behavior. We define the relationship between  
TCR specificity and T cell patrolling and, discuss the mechanis-
tic importance of these observations in protection from hepatic  
Listeriosis.

Methods
Listeria monocytogenes infection
LM challenge doses were optimized for each strain of mice, 
either C57BL/6 or CB6F1 (C57BL/6 x Balb/c), male or female  
animals 8–12 weeks of age and weighted approximately 25–30g  
at the time of challenge. Animals were housed in ventilated cages, 
up to four animals per cage with bedding changed twice weekly. 
Optimal challenge doses were determined by the ability to grossly 
identify Listeria foci at day 3 and 5 post-infection. Challenge 
doses with LM expressing red fluorescent protein (RFP) or 218S  
as high as 2.5 × 104 led to a lethality of less than 10% at  
day 5 post-infection. RFP is a targeted gene insertion into the 
endogenous actA1 locus and expression is driven by the endog-
enous promoter. Similarly, 218S is a targeted mutation to the 
endogenous p60 gene and expression is driven by the endog-
enous locus. RFP Listeria were a generous gift from Dr. Dan  
Portnoy. 218S Listeria were previously reported (Vijh and Pamer 
1998). Work with mice was performed in an ethical manner 
under supervision of the NYU School of Medicine Institutional  
Animal Care and Use Committee (protocol 090412-03).

Surgery and anesthesia
Animals were anesthetized by intra-peritoneal injection of a 
solution (~100 µl) delivering ketamine (50 mg/Kg), xylazine  
(10 mg/Kg), and acepromazine (1.7 mg/Kg). Anesthesia was  
maintained during image acquisition with one-half dose s.c. boost-
ing every 45 min for up to 2.5 h. For surgery, the anesthetized 
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animal was placed on a heating pad set at 37°C. Left-side 
abdominal fur was trimmed, and the liver was exposed through 
a 1.5-cm horizontal incision. The hepatoform ligament was  
then cut and the tip of the left lobe of the liver gently exposed.

Intravital imaging
All surgical procedures are approved by NYU- School of 
Medicine IACUC. Images were acquired with Zeiss Plan- 
Apochromat 20X/0.75 objective on ZEISS LSM 510. Intravital 
imaging was conducted as previously described (Velázquez  
et al., 2008). In brief, upon completion of the surgery, animals 
were placed with the abdominal side down on a custom-made 
stage insert (Ludl Electronic Produces, Hawthorne, NY, USA), 
in which a coverslip (No. 1.5: 0.16–0.19 mm thick) was mounted 
near the center and narrow strips of paper (1.5 mm × 1.5 cm)  
was glued. These strips of paper provided friction that help  
immobilize the tissue for imaging.

The stage insert was then placed on an inverted microscope  
stage and imaged. For time-lapse image acquisition, 1 vol-
ume was collected every 30 s, with z-slices acquired every 
5 μm. The maximum depth acquired over a 30-s inter-
val with a single-photon light source was 20 μm utilizing 
a 2 μs dwell time. The animal is maintained at 37°C in an  
environmental chamber with supplemental medical-grade oxygen 
supplied via a nose cone. To visualize blood perfusion, mice 
were treated with an intravenous dose of low molecular weight  
10 kDa dextran conjugated to Alexa-647 fluor (Molecular Probes) 
while imaging. Animals were euthanized at the end of each  
experiment.

Leukocyte migration analysis
In vivo hepatic leukocyte migration was quantified using  
Volocity Version 4.3 (Improvision Inc.). Each cell was tracked  
semi-automatically with the centroid gated on size and intensity 
and, confirmed visually during each frame collected. For analysis  
of each time-lapse image, every cell is examined during each  
acquisition frame (1/30 seconds). Volocity data analysis output 
included speed, displacement, maximum displacement and track 
length. Arrest coefficient is calculated as the percent of time  
a cell migrates less than 2 microns per minute. Meandering index 
is displacement as a function of track length. Confinement index  
is the maximum displacement as a function of track length.

L9.6 in vitro stimulation
L9.6 CD8 T cell transgenic animals were crossed onto Rag null 
animal expressing EGFP transgene driven under the actin pro-
moter. For transfer studies, L9.6 T cells were sorted via MACS  
(Miltenyi Inc) mouse untouched CD8 T cell isolation kit. 5 × 105  
L9.6 T cells were stimulated in vitro on 5 × 107 irradiated  
(2000 rad) splenocytes, with 10 nM peptide in the presence of  
25 units/ml IL-2. After 4 days, cells were expanded in fresh 
media with 25 units/ml IL-2 in the absence of APCs and 
peptide to allow for rest. Two days following expansion,  
T cells were transferred into syngeneic recipients for imaging.

Adoptive transfer
At day 3 post infection, 5 × 106 L9.6 T cells (day 2 post- 
expansion) were transferred into recipient animals. At  
4–6 hours post-transfer, animals were anesthetized and prepared  
for imaging via single- or multi- photon intravital microscopy.

Statistics
Statistical analysis was conducted using GraphPad Prism 5  
software. All data sets were examined for Gaussian distribution 
via a D’Agostino and Pearson normality test. For determination  
of significance of differences between two groups, a two-tailed 
nonparametric Mann-Whitney test (non-Gaussian) with a 95%  
confidence interval was conducted. Significance is defined as  
p ≤ 0.05. 

Results
Ischemic perfusion in LM foci of infection
LM infection is, in part, characterized by leukocyte filled  
foci. To better understand the microanatomy of this structure, 
we challenged CB6F1 mice with LM expressing red fluorescent  
protein (LM-RFP) and visualized LM foci in live mice at day 3 
post-infection at the surface of the liver by intravital microscopy. 
To visualize blood perfusion, CB6F1 mice were treated with an 
intravenous dose of low molecular weight 10 kDa dextran con-
jugated to Alexa-647 fluor (Molecular Probes) while imaging.  
Hepatic auto-fluorescence excited by 488 nm and measured at  
530 nm, was used to delineate metabolically active liver. We 
defined 3 regions in relation of the foci. Exclusion of the fluores-
cent dextran, lack of auto-fluorescence, and presence of LM-RFP  
characterized region 1 (Figure 1A, Supplemental Video 1). 
Region 2 was a transitional zone of ~100 μm, in which blood per-
fusion was absent, but hepatocyte autofluorescence was detected  
(Figure 1A and B). Region 3 had blood perfusion and autofluo-
rescence characteristics similar to healthy liver (Figure 1A 
and B). We never detected LM-RFP outside of region 1. 
When the center of the foci are near to the capsule, the foci  
appear >150 μm in diameter and display the characteristics 
above. We interpret small foci (<150 μm) as having deeper  
centers that may represent region 2 with variable autofluores-
ence and perfusion (Supplemental Video 2) and these were scored  
based on foci diameter measured in Volocity software (Table 1). 

MMC behavior in LM foci
MMCs play a critical role in early protection from LM  
and are critical contributors to formation of foci. To better 
understand the contribution of MMCs to exclusion of blood  
perfusion, LysM+/EGFP reporter animals were challenged with  
LM-RFP and examined at day 3 post-infection. As expected,  
LM foci were filled with MMCs, which disrupted the sinusoi-
dal structure and excluded 10 kDa dextran (Figure 2). We were  
particularly interested in examining if cells were capable of  
migrating in and out of foci. Image analysis revealed two  
distinct phenotypes: sinusoidal MMCs that entered foci  
(Figure 2A and Supplemental Video 3); or that did not enter foci 
but interacted with MMCs inside the foci proper as they migrated  
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tangentially to the sinusoid-foci border (Figure 2B and C,  
Supplemental Video 4). This later behavior is characterized as  
‘skirting.’ Quantitative analysis showed that an average of  
12 ± 3.47 cells per minute per 1 × 107 μm3 entered foci while no 
cells were observed migrating out. 1 × 107 μm3 is an approxi-
mate volume of a single focus of infection assuming a ~150 μm  
radius and spherical shape. MMCs ‘skirt’ foci at a rate of 3.14 
± 0.94 cells per minute per 1 × 107 μm3 (Figure 2D). Therefore,  
foci are accessible to migrating MMCs found in liver sinusoids. 

Antigen specific CD8 T cell behavior in Listeriosis
CD8 T cells are key contributors in protection against LM 
and in providing sterilizing immunity. Therefore, to better  
understand the role antigen specificity plays in liver CD8 T cell 
migration during Listeriosis, L9.6 transgenic T cells were uti-
lized. To study the role of antigen specificity, in vitro primed  
L9.6 cells were transferred into recipient animals infected with 

either antigen positive LM-RFP (wild type) or antigen negative 
LM-218S and were visualized at day 3 post infection. There 
were no differences in the foci formed by WT or 218S LM  
(Table 1), consistent with normal virulence of LM-218S  
(Vijh et al., 1998). T cells were never observed in region 1 and 
rarely entered region 2 (Table 2). We extended our analysis of 
region 3 to areas within the same field with the focus, within  
400 µm (Figure 3A, left), as well as areas distal to the focus, 
greater than 400 µm away (Figure 3A, right). First, the directed  
motion of L9.6 T cell migration was examined by quantifying 
meandering index (displacement/track length) and confinement 
index (maximum displacement/track length) (Figures 3B and C, 
respectively). Proximal to foci, no role for antigen specificity was 
observed in the meandering (p=0.97) or confinement (p=0.38) of 
T cell migration (Figure 3B left and Figure 3C left, respectively).  
In contrast, distal to foci, we observed an increase in the  
meandering index (p=0.004), and a larger confinement index 
(p=0.004) in the absence of antigen compared to the presence of 
antigen (Figure 3C, right). This data indicates that T cell move-
ment is restricted by innate factors proximal to foci and that  
the influence of antigen is only detected greater than 400 μm 
from the foci, which was not expected. These results suggest  
that L9.6 cells detect LM antigens over “paracrine” distances  
in the liver.

To further characterize the role of antigen specificity in  
T cell migration, speed and arrest coefficient were analyzed.  
Proximal to foci, there was not a significant difference in speed 
(p=0.60) or arrest coefficient (p=0.32) without or with antigen  
(Figure 4A and B, left). In contrast, distal to foci antigen 

Table 1. Size of foci of infection.

Listeria

Size (µm) WT 218S Total

0-150 1/1 1/1 2/2

150-300 0/7 1/5 1/12

>300 0/6 0/1 0/7

# perfused / total # of foci in viewing 
field. WT n=12 mice; 218S n=4 mice

Figure 1. Lack of perfusion of LM foci. A and B, CB6F1 animals were imaged at day 3 post-infection with 2 x 104 LM-RFP (red) and eGFP-
L9.6 transgenic T cells (green). Mice were injected with 10 kDa Alexa-647 (blue) i.v. while imaging. Three distinct regions are identifiable; foci 
proper (1), foci border (2) and perfused normal liver parenchyma (3). A, large foci with LM-RFP. B, small foci lacking visible LM-RFP is likely 
the top of a deeper focus. Scale Bar = 100 μm.
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Figure 2. MMC behavior near LM foci. A–C, MMCs (green) in LM 
infected liver injected intravenously with 10 kDa dextran Alexa-647 
(blue). A, Distinct entry points into foci from the sinusoid (arrows).  
B, Track (lavender arrow) of a MMC ‘skirting’ foci. C, Time-lapse 
of ‘skirting’ behavior. D, Quantification of MMC migratory behavior.  
A–B, scale bar = 100 mm. C, scale bar = 50 mm.  n=4.

Table 2. Frequency of T cells near foci 
of infection.

Listeria T cell f n (mice) p

WT 13±7 4 p=0.68

218S 17±11 4

Figure 3. Persistence of T cell migration in liver parenchyma. 
A–C, In vitro primed CD8+ L9.6 transgenic T cells (arrowheads) 
were transferred into antigen positive LM-WT or antigen negative 
LM-218S infected CB6F1 animals at day 3 post-infection. Intravital 
images were acquired proximal (left) and distal (right) to LM foci. 
No significant difference in Meandering Index (B, displacement / 
track length) or Confinement Index (C, maximum displacement / 
track length) were observed proximal to foci of infection; p=0.97 and 
p=0.43, respectively. Conversely, distal to foci L9.6 T cell migration 
was more linear (B, right) and less confined (C, right); p=0.004  
and p<0.004, respectively, with LM-218S compared to LM-WT 
infection. n = 4 mice. Each data point represents an individual cell.

Figure 4. Speed and arrest of T cell migration in liver  
parenchyma. A–B, In vitro primed CD8+ L9.6 transgenic T cells 
were transferred into LM infected CB6F1 animals as in Figure 3.  
Intravital images were acquired proximal (left) and distal (right) 
to LM foci. No significant difference in T cell speed (A) or arrest 
coefficient (B) were observed proximal to foci; p=0.60 and  
p=0.32, respectively. Conversely, in the absence of cognate antigen 
(218S) L9.6 T cells migrated faster (A, right) and arrested less  
(B, right); p=0.002 and p<0.0001, respectively. n = 4 mice. Each 
data point represents an individual cell.
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slowed migration (p=0.002) and increased the arrest coefficient  
(p<0.0001), compared to 218S antigen null foci (Figure 4A and B,  
right). These results further support the notion that antigen  
is recognized greater than 400 μm from the focus.

Discussion
Much of our understanding of the biology and kinetics of the  
cell-mediated immunity against intracellular microbes comes from 
studies on Listeriosis. Here, we provide a dynamic view of the  
cell behavior that underlies immunity to this microbe in the liver. 
We describe the lack of blood perfusion in foci of infection and 
observe the dynamic behavior of MMCs as they interact with  
foci. Contrary to our expectations, effector CD8 T cells did not  
penetrate into and directly interact with infected cells in foci as 
has been observed for CD4 T cells in mycobacteria induced liver  
granuloma (Egen et al., 2008). Instead, the effector CD8+  
T cells detected LM antigen p60 hundreds of microns away from  
the live LM in the foci, suggesting paracrine communication 
between foci and surrounding liver tissue. While TCR spe-
cificity is critical for T cell reactivity, as is well known, TCR  
specificity does not play a role in patrolling behavior near foci 
of infection. Rather non-specific mechanisms, likely integrin  
mediated, dominate migratory behavior near foci. Distal to foci, 
non-antigen specific T cells migrate faster than antigen specific  
T cells, allowing increased scanning of antigen presenting cells.

We divided the infected liver into 3 regions. Region 1 contained 
live LM and lacked substantial perfusion. This region also had 
depressed hepatocyte metabolism based on lack of flavopro-
tein auto-fluorescence, which is reminiscent of ischemic liver  
tissue (Geissmann et al., 2005; Scholz et al., 1969). Region 2 is 
a transitional zone in which blood flow is absent or intermit-
tent, but hepatocyte metabolism is evident. This zone is ICAM-1  
and hyaluronic acid rich and corresponds to an entry pathway 
for CCR2+ inflammatory monocytes (Shi et al., 2010). Mod-
els of sterile liver injury display a similar architecture in which  
platelets, fibrin and neutrophils deposit in a barrier zone that 
can be traversed by MMC, but not by T cells (Jorch & Kubes,  
2017; McDonald et al., 2010). Consistent with an important role 
for such a barrier, mice that lack MMCs or fibrinogen do not form 
foci and succumb to overwhelming infection (Mullarky et al.,  
2005; Unanue, 1997). Region 3 had well perfused sinusoids and 
metabolically active hepatocytes. Proximal regions display a gra-
dient of ICAM-1 and hyaluronic acid expression radiating out 
from region 2. Distal regions appear healthy, but p60 antigen  
derived peptides were presented in region 2 and 3 at sufficient 

density to induce antigen specific T cell confinement and arrest. 
The p60 antigen is secreted into the cytoplasm of infected cells 
and is very efficiently processed with 1 Ld-p60 217-225 complex  
generated for every 15 p60 molecules degraded (McDonald et al.,  
2010). How this paracrine communication of antigen through  
the tissue is mediated is an intriguing question.

Although ischemic foci are accessible to migrating MMCs  
found in liver sinusoids, MMC may enter foci to provide direct 
anti-LM activity. We hypothesize that cells ‘skirting’ the foci 
may capture antigen through direct cell-cell interaction with  
MMCs in the foci proper and carry that antigen to a distal loca-
tion or Kupffer cell. This latter mechanism may provide a mode 
to distributing antigen to Kupffer cells distal from foci, thereby  
increasing the probability of LM specific T cells engaging cog-
nate antigen. Another possible mechanisms for dissemination  
of peptides in the liver is through gap junctions that intercon-
nect hepatocytes and Kupffer cells (Eugenín et al., 2007). Gap  
junctions relay antigenic peptides between dendritic cells  
(Neijssen et al., 2005).

During the course of hepatic Listeriosis, endogenously primed  
T cells begin to arrive at foci at day 3 post-infection. In this study, 
we aimed to mimic early events in T cell-LM foci interactions. 
Therefore, we examined effector T migration into foci at day 3 
post-infection. At later time points, days 5, 6 and 7, the variabil-
ity in the foci presence and/or anatomic microanatomic locale  
prohibited visualization. In this study, we utilized an adoptive 
transfer system of in vitro primed CD8 T cells to understand  
migration near or distal to foci. In establishing this system, 
we titrated the number of donor cells to minimize effects 
of the transfer system on cell migration. It is important to 
note that studies have documented variability in T cell prim-
ing and memory formation dependent on donor cell numbers.  
Nonetheless, when controlling donor cell numbers, we report a 
dependence of TCR specificity on cell patrolling.

Taken together, we propose a model where early formation of 
foci, which plays an important role in protection from sepsis, is 
driven in part by formation of a barrier to blood perfusion that is  
passable by MMCs. During the course of infection, some bacte-
ria may escape foci and seed new foci of infection. By day 3 post 
infection, primed CD8 effector T cells arrive in the liver where 
they migrate in perfused sinusoids, scan APCs in an antigen  
independent manner and undergo antigen dependent activation 
and arrest. Paracrine communication of antigen from the foci to 
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hepatic sinusoids activates CD8 T cells that may in turn enhance  
Kupffer cells and MMC listeriacidal activity through release of 
cytokines such as IFN-γ (Pamer, 2004). The enhanced listeriacidal 
activity may then contribute to destruction of live LM in foci and 
protect from formation of new foci. In this model, CD8 T cells  
do not need to directly interact with an infected cell in foci,  
but appear to operate through an unexpected antigen specific 
response to the infected organ. 
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Supplementary File 1: Supplementary videos.

Click here to access the data.

Supplemental Video 1: Time-lapse of Listeria infected liver post transfer of L9.6 CD8 T cells. Part of a large (>150 µm) focus of infec-
tion visualized while injecting 10 kDa Alexa 647 i.v. (blue). Viewing field is 450 × 450 µm. RFP-Listeria (red) are visible at the center of the 
focus. L9.6 T cells (bright green) navigate the surrounding healthy tissue and edge of the focus only.

Supplemental Video 2: Time-lapse of Listeria infected liver post transfer of L9.6 CD8 T cells. A small (<150 µm) focus of infection 
visualized while injecting 10 kDa Alexa 647 i.v. (blue). Viewing field is 450 × 450 µm. RFP-listeria are not visible, but the L9.6 T cells 
(bright green) navigate the surrounding healthy tissue and the edge of the focus.

Supplemental Video 3: Time-lapse of LysMEGFP/+ liver 3 days post-infection with LM. Two large foci filled with myelomonocytes (bright 
green), visualized while injecting 10kDa Alexa 647 i.v. (blue). Cell migration tracks highlight myelomonocytes that move from the sinusoid 
into the foci. Viewing field is 350 × 350 µm.

Supplemental Video 4: Time-lapse of LysMEGFP/+ liver 3 days post-infection with LM. Viewing field is focused on a single large foci 
filled with myelomonocytes (bright green), visualized while injecting 10 kDa Alexa 647 i.v. (blue). Cell migration tracks highlight myelo-
monocytes ‘skirting’ the foci. Viewing field is 350 × 350 µm.
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