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ABSTRACT
Over the past 15 years, sex-related differences in aortic valve (AV)
stenosis (AS) have been highlighted, affecting various aspects of AS,
such as the pathophysiology, AV lesions, left ventricle remodelling, and
outcomes. Female patients were found to present a more profibrotic
pattern of leaflet remodelling and/or thickening, whereas male pa-
tients have a preponderance of calcification within stenosed leaflets.
The understanding of these sex differences is still limited, owing to the
underrepresentation of female patients in many basic and clinical
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R�ESUM�E
Au cours des 15 dernières ann�ees, des diff�erences li�ees au sexe dans
la st�enose (SA) de la valve aortique (VA) ont �et�e mises en �evidence,
affectant divers aspects de la SA, tels que la pathophysiologie, les
l�esions de la VA, le remodelage du ventricule gauche et les pronostics
associ�es. Il a �et�e constat�e que les patientes pr�esentaient un patron
plus profibrotique du remodelage des feuillets ou de leur
�epaississement, tandis que les patients de sexe masculin voyaient une
pr�epond�erance de la calcification au sein des feuillets st�enos�es. La
n Cardiovascular Society. This is an open access article under the CC BY-NC-
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research studies and trials. A better understanding of sex differences
in the pathophysiology of AS may highlight new therapeutic targets
that potentially could be sex-specific. This review aims to summarize
sex-related differences in AS, as discovered from basic research ex-
periments, covering aspects of the disease ranging from leaflet
composition to signalling pathways, sex hormones, genetics and/or
transcriptomics, and potential sex-adapted medical treatments.

compr�ehension de ces diff�erences entre les sexes est encore limit�ee,
en raison de la sous-repr�esentation des femmes dans de nombreuses
�etudes et essais de recherche fondamentale et clinique. Une meilleure
compr�ehension des diff�erences entre les sexes dans la
physiopathologie de la SA pourrait mettre en �evidence de nouvelles
cibles th�erapeutiques qui pourraient être sp�ecifiques au sexe. Cette
revue vise à r�esumer les diff�erences li�ees au sexe dans la SA, telles
qu’elles ont �et�e d�ecouvertes par des exp�eriences de recherche fon-
damentale, couvrant des aspects de la maladie allant de la compo-
sition du feuillet aux voies de signalisation, aux hormones sexuelles, à
la g�en�etique ou à la transcriptomique, ainsi qu’aux traitements
m�edicaux potentiels adapt�es en fonction du sexe.
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Calcified aortic valve (AV) stenosis (AS) is the most common
valvular heart disease in high-income countries. AS occurs in
about 5% of the population aged > 65 years, and in 10% of
people aged > 80 years.1,2 In 2017, 12.6 million people were
diagnosed with AS,3 and the number of cases has increased
over the years.4 Patients diagnosed with severe AS are at high
risk of heart failure and/or death within 5 years from diag-
nosis,5 but no medical therapy is available. The only option is
to replace the stenotic AV through surgical or transcatheter
approaches.6-9 Each year, more than 200,000 AV re-
placements and 20,000 deaths associated with AS are recorded
in North America.4,10 Thus, AS carries a significant economic
and societal burden, and the need to develop alternative
treatments to alleviate these burdens is urgent.

Many sex differences have been highlighted in AS, from
clinical studies. AVs in female patients have more fibrosis and
less calcification than do those in male patients, for the same
hemodynamic parameters and the same severity of AS.11,12

Differences also occur in the remodelling of the left
ventricle, with more concentric hypertrophy in female pa-
tients, and more eccentric hypertrophy in male patients,13

which leads to a sex-specific presentation of more low-flow
with preserved ejection fraction in female patients.14 These
discoveries have been explained at the molecular level, but
many mechanisms remain unexplained (Fig. 1). Several hy-
potheses have been proposed regarding major sex-specific
factors in the development of AS, including lipid meta-
bolism, immunity, hormones, and genetics. In this article, we
aim to review the molecular mechanisms associated with AS,
and we then focus on molecular differences between male and
females, as highlighted in studies conducted mainly in
experimental models.
Composition of the AV
Human AV leaflets are trilayered structures, each assuring

different properties. The fibrosa, facing the aorta, is mainly
composed of collagen fibers oriented circumferentially, which
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provides tensile stiffness.15 The ventricularis, facing the left
ventricle, is a layer of elastic fibers that gives the leaflets their
compliance. Finally, the spongiosa, which separates the fibrosa
from the ventricularis, is rich in proteoglycans and glycos-
aminoglycans, giving the leaflets elasticity and flexibility.16

The AV is mainly composed of valvular endothelial cells
(VECs), valvular interstitial cells (VICs), immune cells, and
extracellular matrix (ECM), all of which play important roles
in physiological and pathologic conditions (Fig. 2). All of
these components may undergo and regulate calcification and
fibrosis processes in a sex-specific manner.

Valvular endothelial cells

VECs form a protective monolayer17 over the 2 faces of the
AV.15 In physiological conditions, these cells have multiple
functions, such as secreting nitric oxide to regulate vascular
homeostasis,17,18 and replenishing the population of
VICs.17,19 VECs located on the ventricularis face experience
shear stress from blood flow, whereas those on the fibrosa face
are exposed to oscillatory shear stress. Under pathologic
conditions, such as oscillatory shear stress, and inflammation,
VECs may differentiate into osteoblasts via an endotheliale
mesenchymal transition.20,21 VECs also may inhibit the
calcification of VICs by promoting the anti-osteogenic effect
of NOTCH1.22

Sex differences in VECs are generally understudied. A
recent study, on normal porcine AVs, observed that the
proliferation of VECs differs between male and female in-
dividuals. Healthy male VECs exhibit a higher level of pro-
liferation than do female VECs in vitro.23 This difference
might be due to higher levels of thrombospondin 2 being
secreted by female VECs.23

Valvular interstitial cells

VICs are located throughout the AV leaflets, beneath the
VEC layer. VICs have 4 subpopulations, as follows: pro-
genitor; quiescent; activated; and osteogenic.24 Progenitor
VICs may originate from endothelial and hematopoietic
lineages.24-27 Progenitors from an endothelial origin may
give rise to quiescent VICs, whereas those from a hemato-
poietic origin may give rise to activated VICs involved in
valve repair.24 Quiescent VICs (qVICs) maintain the bal-
ance between the synthesis and degradation of ECM com-
ponents in the valve under physiological conditions.21 In

mailto:Marie-Annick.Clavel@criucpq.ulaval.ca


Figure 1. Sex-related differences observed in aortic stenosis (AS). VECs, valvular endothelial cells; VICs, valvular interstitial cells. Figure created
with BioRender.com.
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response to physiological stimuli, qVICs may get activated
into myofibroblast cells, ensuring normal ECM remodelling
and function.21 This differentiation is thought to be
reversible when stimuli recede.21,28 Under pathologic con-
ditions, qVICs and progenitor VICs (from both endothelial
and hematopoietic origins) may transform into activated
VICs (aVICs) capable of repairing the valve.24 They may
evolve into preosteoblasts or myofibroblasts promoting
calcification.25 This transition is associated with ECM
remodelling and contributes to the fibro-calcific remodelling
of the AV.29 VICs might lose their pluripotency when AV
calcification develops. In vitro experiments show that VICs
extracted from normal valves can differentiate into myofi-
broblastic, osteoblastic, chondrogenic, or adipogenic line-
ages,30 whereas VICs from calcified valves are less prone to
differentiation into other cell types.31

Other studies provide complementary data that help in
understanding the molecular mechanisms associated with sex
differences in VICs. Male porcine VICs grown in osteogenic
medium form bigger and more-dense nodules of calcium than
do female VICs.32 Also, male, compared to female, rat VICs
express increased early osteogenic markers.32 Female porcine
VICs may have greater metabolic activity and collagen pro-
duction than do male VICs,33 but these later data seem
controversial.32 Altogether, these data suggest that stronger
and earlier calcifying events occur in male VICs, and that
more fibrotic events occur in female VICs. Thus, VICs may
be important protagonists in sex-specific calcification and/or
fibrosis processes.

An important finding is that VICs also may play a role in
angiogenesis in a sex-specific manner. Female porcine VICs
show a higher secretion level of vascular endothelial growth
factor A (VEGF-A) than do male VICs, but only in qVICs.
Basic fibroblast growth factor (also called FGF-2) production
also tends to be higher in female porcine VICs.23 However,
VEGF-A is increased in AVs from male patients with severe
AS, compared to that in female patients (Fig. 2).34 Female
porcine aVICs have more heparan sulfate proteoglycan-2,23 a
molecule that favours growth factor binding. All these studies
show discrepancies between male and female VICs in angio-
genesis, but further investigations are needed to clarify the
conflicting results.

Other cell populations in the AV

A recent transcriptomic study differentiated 14 cell sub-
types in stenotic AVs. Beside VIC and VEC subpopulations, 6
valve-derived stromal cell populations and 3 immune-derived
cell populations were identified.20 Macrophages, mast cells,
and lymphocytes have been found to promote inflammation
in stenotic AVs.35,36 Smooth muscle cells represent a small
proportion of AV cells and are found mostly in the ven-
tricularis layer. In AS, smooth muscle cells are found near the
calcified areas.37

Sex differences also may be present in these cell pop-
ulations. A study from Myasoedova et al. recently showed that
stenosed AVs from female individuals contain more mesen-
chymal cell signatures, whereas those from male individuals
have more signatures from macrophages, monocytes, T cells,
and B cells.38 Another study conducted on human VICs
shows that the osteogenic response induced by interferon-a
and/or lipopolysaccharide is counteracted by the Ak strain
transforming (Akt) pathway in female but not male VICs.39

This result indicates that not only valve composition but
also immune response may be sex specific in AS.
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Figure 2. Pathophysiology of aortic stenosis (AS) and possible impact of sex hormones and sex differences. An endothelial lesion induces the
infiltration of lipids, quickly followed by their oxidation, and inflammatory cells in the fibrosa. The renin-angiotensin-aldosterone system (RAAS)
regulates valvular inflammation and seems to be anti-inflammatory in female patients through the effect of estrogen, and proinflammatory in male
patients via testosterone. The transforming growth factor-b (TGF-b) pathway, upregulated in female patients, may promote the endothelial-
mesenchymal transition (EndoMT) observed in AS. Valvular interstitial cells (VICs) are activated by several factors, including oxidized lipids.
Their osteogenic transition seems to be inhibited by estrogen and promoted by testosterone, resulting in more calcification in stenotic aortic valves
in male patients than in female patients. Moreover, the Ak strain transforming (Akt) pathway inhibits calcification in female patients, whereas the
nuclear factor kappa beta (NFkB) pathway favours it through the receptor activator of nuclear factor k B, receptor activator of nuclear factor kappa-B
ligand, osteoprotegerin (RANK/RANKL/OPG) pathway in male patients. At the same time, chymase, produced by mast cells, and angiotensin-
converting enzyme (ACE) induce fibrosis through the RAAS. Deposition of fibrosis is favoured by TGF-b1/b2 and wingless-related integration site
(Wnt), a pathway upregulated by estrogen and potentially by testosterone. Vascular endothelial growth factor (VEGF) is an angiogenic factor secreted
by male and female VICs in AS. In female patients, basic fibroblast growth factor (bFGF) also seems to promote angiogenesis. Gla, Matrix Gla
protein ; ox, oxidized; PL, phospholipids; ROS, reactive oxygen species; VEC, valvular endothelial cells; VEGF, vascular endothelial growth factor;
oVIC, osteoblastic VICs ; qVIC, quiescent VICs. Figure created with BioRender.com.
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Extracellular matrix

The ECM differs in the 3 layers of aortic leaflets, as fol-
lows: the fibrosa is rich in collagen I and III; the spongiosa is
rich in glycosaminoglycans; and the ventricularis is rich in
elastin.40 All these molecules confer specific mechanical
properties to the AV.41 In pathologic conditions, collagen fi-
bers become degraded and disorganized, and they interact
with calcified vesicles.41 Several matrix metalloproteinases
(MMPs), such as MMP1, MMP7, MMP9, and MMP12, are
upregulated, whereas tissue inhibitor of metalloproteinase
(TIMP) 4 is downregulated.42

The composition of the ECM is important in AS because
its stiffness modifies the proliferation, differentiation, and
viability of porcine VICs cultured in osteogenic media.43 An
interesting finding is that in cell culture, ECM composition is
modulated by the sex of the VICs. In male individuals, the
levels of glycosaminoglycans, collagen I, and activated MMP2
are higher than those in female individuals.32 In female in-
dividuals, a higher level of expression and production of
MMP2, MMP3, and MMP9, and a lower activity level of
collagenase and gelatinase are observed, which is concordant
with an accumulation of ECM.33 It is important to note that
17b-estradiol inhibits the transcription of MMP2 through the
mitogen-activated protein kinase extracellular signal-regulated
kinase 1/2 (MAPK-ERK1/2) signalling pathway in cardiac
fibroblasts, suggesting that estrogens play a role in ECM
remodelling.44
Pathophysiology of Calcified AS
The causes of AS are mainly unknown, but several

mechanisms involved in the pathophysiology of the disease,
including shear stress due to pressure overload, inflammation,
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and oxidative stress, have been elucidated.45 AS
initiation appears when an endothelial lesion is observed.46

This initiation is followed by lipid infiltration, mainly of
low-density lipoproteins and lipoprotein (a), which triggers
the expression of Toll-like receptors on VICs.46 Reactive ox-
ygen species are produced, oxidizing lipoproteins, which in
turn induce the apoptosis of VICs and a cascade of immune
reactions.46 Many factors, such as the expression of cell
adhesion molecule,46 the recruitment of macrophages,
CD11b,47 and major histocompatibility complex (MHC)
class II dendritic cells, are observed.48 CD4þ and CD8þ T
lymphocytes are attracted, mostly near areas of calcification or
neovessels.49 Mast cells secrete chymase, an enzyme promot-
ing the production of angiotensin II and fibrosis in the AV.50

Other mediators of inflammation, such as interleukin (IL)-6,
cyclooxygenase 2, intracellular adhesion molecule 1 (ICAM1),
and transforming growth factor beta-1 (TGF-b1), participate
in the pathophysiology of AS (Fig. 2).25,46,51

Lipid infiltration, oxidative stress, and inflammation favour
the differentiation of VICs, VECs, and macrophages into
aVICs, a myofibroblast-like subpopulation of cells.52 Myofi-
broblasts produce collagen,53 a major constituent of fibrosis,
and aggregate in apoptotic nodules; calcium deposits are
produced around collagen fibers.25 Concomitantly, VICs
differentiate into osteoblasts responsible for the formation of
true bone inclusions25 and express markers of osteoblastic
differentiation, such as Runt-related transcription factor 2
(RUNX2), bone morphogenic protein (BMP), alkaline
phosphatase (ALP), and osteocalcin.25,46 For unknown rea-
sons, the pathophysiology of the disease shows a significant
imbalance between male and female patients.12 Male patients
develop more calcifications, whereas female patients develop
more fibrosis, for comparable hemodynamic parameters,12

regardless of the phenotype of the AV.54 An interesting
point to note is that the immune response system may in-
fluence the fibrotic and calcific phenotypes observed, because
immune cells such as monocytes, macrophages, T cells, and B
cells are enriched in male individuals, whereas mesenchymal
cells are enriched in female individuals.38

Signalling pathways

Various pathways are involved in AS. The renin-
angiotensin-aldosterone system (RAAS) regulates blood pres-
sure, and its chronic activation induces systemic hypertension,
which has been linked to calcification in AS.55 The receptor
activator of nuclear factor k B, receptor activator of nuclear
factor kappa-B ligand, osteoprotegerin (RANK/RANKL/
OPG) signalling pathway promotes the inflammatory response
and calcification observed in AS. The Notch signalling pathway
inhibits calcification, whereas the transforming growth factor-b
(TGF-b) pathway favours the accumulation of fibrosis. The role
of the wingless-related integration site (Wnt)/b-catenin
pathway in AS needs deeper research, but it seems to regulate
both fibrosis and calcification. These 5 pathways contribute to
the development of AS and may be sex-specific (Fig. 3).

RAAS

Systolic hypertension is often concomitant with AS and is
associated with faster progression of AV calcification.56

Aldosterone and angiotensin are 2 molecules in this pathway
that may be involved in AS in a sex-specific manner. In male
VICs, aldosterone increases the expression of calcification
markers, such as BMP2, BMP4, periostin, and osteopontin,
through the mineralocorticoid receptor. However, in female
VICs, aldosterone increases fibrosis markers (fibronectin,
lumican, tissue inhibitor of metalloproteinase [TIMP]-1) via
the same receptor.57

Under physiological conditions, angiotensin II regulates
several parameters through its receptors AT1 and AT2.58

Through AT1, it promotes vasoconstriction, fibrosis, inflam-
mation, and oxidative stress, whereas through AT2, it pro-
motes the opposite.58 An interesting finding is that the AT1-
receptor is the only receptor in the AV. Angiotensin II is
produced in the AV via 2 enzymesdchymase and
angiotensin-converting enzyme (ACE), both of which are
overexpressed in stenotic AVs.50,59 A recent study also showed
that, in mice, treatment with angiotensin II increases the
amount of collagen fibers (trend only).60 The same work
revealed that angiotensin II increases proliferation, activation,
fibrosis, and TGF-b1 expression in VICs, but no information
is given about the sex of the mice or the cells. Another study
in mesangial cells suggests that angiotensin II may have a
profibrotic effect by increasing the expression of ECM pro-
teins through the induction of TGF-b.61 At the physiological
level, patients with AS are known to present high plasma levels
of angiotensin II,55 which is associated with high expression of
inflammatory markers (IL-6 and tumour necrosis factor-a) in
the AV.62 These data suggest that RAAS may be involved in
promoting valvular inflammation and fibrosis.

Knowledge is lacking regarding the sex-specific action of
angiotensin II within the AV at the cellular level. Neverthe-
less, some data show that estrogen and testosterone may
modulate the RAAS and thus modulate AS pathophysiology
(Fig. 2). Estrogens promote high angiotensinogen levels (the
precursor of angiotensin), low renin levels, ACE activity,
aldosterone production, and angiotensin II type 1 receptor
(AT1R) expression.63 They downregulate the angiotensin I
receptor in vascular smooth muscle cells.64 In premenopausal
female individuals, the RAAS seems to be cardioprotective via
interactions with estrogens,65,66 but intriguingly, an increase
in the expression of angiotensinogen is observed in women
treated with either estrogen-replacement therapy or contra-
ceptive therapy.67 Moreover, some studies show that RAAS
may be influenced by hormonal changes during the menstrual
cycle and in postmenopausal women.68 In postmenopausal
women, estrogen deficiency also deregulates the RAAS and
leads to a proinflammatory state.69

In contrast, testosterone tends to increase renin levels and
ACE activity.70 In male individuals, testosterone can stimulate
both vasodilator and vasoconstrictor pathways.58,71 In contrast
to estrogen, testosterone seems to amplify the pathologic fea-
tures of the RAAS in cardiovascular diseases by favouring the
angiotensin II-ACE-AT1 receptor pathway.58 Estrogen and
testosterone could partially explain the sex-related differences in
the RAAS, but their effects seem to be tissue-specific and have
not yet been studied in the AV (Fig. 3).

RANK/RANKL/OPG

This pathway is a well known major contributor to bone
homeostasis. As calcification is an important feature of AS,



Figure 3. Sex differences in pathways involved in aortic stenosis (AS), and possible impact of sex hormones. Pathways leading to calcification and
fibrosis may be modulated by sex hormones. In female patients, fibrosis markers may be increased through the renin-angiotensin-aldosterone
system (RAAS), whereas in male patients, calcification markers may be upregulated. Estrogens may play a protective role in the calcification of
the aortic valve by inhibiting the receptor activator of nuclear factor k B (RANK) pathway. The Notch pathway may favour calcification processes and
may be regulated by sex hormones, but no evidence has been found regarding its sex-specific regulation in AS. Several pieces of evidence show that
transforming growth factor-b (TGF-b) may favour fibrosis in female patients. The wingless-related integration site (Wnt/b)-catenin pathway may favour
a pro-osteogenic response in AS, but the involvement of sex hormones in its regulation needs to be clarified. ACE, angiotensin-converting enzyme;
AT1R, angiotensin II type I receptor; BMP-2, bone morphogenic protein 2; IL-6, interleukine-6; OPG, osteoprotegerin; RANKL, receptor activator of
nuclear factor kappa-B ligand; RUNX2, runt-related transcription factor 2; TNF-a, tumour necrosis factor alpha. Figure created with BioRender.com.
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this pathway is of great interest. Studies in VICs show that the
RANK/RANKL/OPG pathway is a downstream effector of
tumour necrosis factor-a and IL-6, which promote
calcification.72-74 RANKL also promotes matrix calcification
in human VICs and their osteogenic differentiation.75 In
vascular smooth muscle cells, RANKL is induced by oxidative
stress and is under the control of RUNX2, a well known
marker of calcification.76

RANKL is enhanced in the stenosed AVs of male,
compared to female, individuals, suggesting that it has a role
in the calcification of the AV in male individuals.77 Even
though female stenosed AVs have more fibrosis, they still
exhibit some calcifications,12,78 so the study of calcification in
female AS is still of interest. In human aortic endothelial cells,
and human aortic smooth muscle cells, estrogen interacts with
estrogen receptor a and inhibits calcification through the
RANKL pathway,79,80 so the drop in estrogen in post-
menopausal female individuals may increase RANKL activity
and explain the limited calcifications observed in female pa-
tients with AS (Fig. 3). This modulation of the RANKL
pathway may explain the cardioprotective role of estrogen in
young female individuals, and the lack of calcification in
young bicuspid female patients with AS.54

Notch

Notch is a transmembrane receptor protein involved in
development, the differentiation of several cell types, and
cardiac valvulogenesis.81 NOTCH1 mutations can cause
developmental anomalies in the AV82,83 and are correlated
with serum levels of OPG and RANKL,81 suggesting that
Notch plays a role in valve calcification. Other studies suggest
that Notch1 expression is decreased around calcification in
AS, and that its downregulation in VICs increases calcifica-
tion.84,85 A surprising finding is that a high level of expression
of its ligand, Notch Delta-like 1, has been associated with
mortality in patients suffering from symptomatic AS and
osteogenic differentiation in myoblastic and osteoblastic cell
lines.86,87 In VICs, increasing the expression of Notch1 de-
creases the expression of BMP2 and RUNX2 and prevents
downstream mineralization (Fig. 3).88 Experiments in human
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endothelial kidney cells and osteoblastic lineages lead to the
hypothesis that Notch1 repression may favour calcification in
VECs and osteogenic differentiation in VICs.85,89,90 In regard
to sex differences, sex-specific modulation of the Notch
pathway in fibroblasts occurs in response to hyperoxia, but
more studies are needed to highlight these differences in AS.91

TGF-b

The TGF-b signalling pathway has 2 major roles in ASdit
is both proapoptotic and profibrotic.92-95 TGF-b1 attenuates
calcification and osteogenic differentiation of VICs in a 3-
dimensional model of AS,96 and it favours cellular
endothelial-mesenchymal transition.97 Very interesting data
show that TGF-b induces calcification in VICs if they are
grown on uncoated tissue culture plates, but calcification is
repressed when cells are grown on fibronectin surfaces.98

These data mean that the TGF-b pathway in VICs may be
sensitive to the microenvironment. BMPs belong to the TGF-
b superfamily,99 but they have opposing roles, as BMPs are
osteogenic growth factors promoting calcification in AS.
BMPs are upregulated in AS patients and in animal
models.100-102 For example, BMP-2 induces the expression of
2 pro-osteogenic factors, RUNX2 and SPP1, in human
VICs.103 IL-6 promotes osteogenic differentiation of VICs
and mineralization of the leaflets through the BMP-2 signal-
ling pathway. 104 Like Notch1, BMP-2 is involved in em-
bryonic cardiac valvular development.105

The balance between TGF-b and BMP signalling may
differ in female and male AVs, and it could explain, at least in
part, the sex-specific profibrotic and procalcific phenotypes
observed.106 Only a few studies have addressed this regulation
according to sex, but we know that the TGF-b signalling
pathway is upregulated in female, compared to male, patients
with AS. Three genes in this pathway, TGFb2, MXRA5, and
USP9X, are overexpressed in female individuals107: they may
contribute to the accumulation of fibrosis in female patients.
This hypothesis is corroborated by the fact that TGF-b2 has a
profibrotic effect through the Suppressor of Mothers Against
Decapentaplegic pathway and high levels of ECM pro-
teins.108,109 TGF-b1 could have a different mechanism of
action as it is overexpressed in calcifying conditions (male
VICs and male AVs; Fig. 3).33,34 Sex-related mechanisms
associated with TGF-b mainly are unknown, but genes
associated with the BMP and/or TGF-b have been shown to
regulate X-chromosome inactivation in female
individuals.106,110

Wnt/b-catenin

The Wnt/b-catenin signalling pathway is involved in
developmental processes, through regulation of cell prolifera-
tion and bone homeostasis.111 Low-density lipoprotein
receptor-related protein 5 (LRP5), a co-receptor of Wnt,
regulates the expression of bone matrix proteins in the AV and
could modulate endochondral ossification in valvular heart
diseases.102,112,113 b-catenin is overexpressed in stenotic AVs
and is correlated with the pro-osteogenic response induced by
MMP12 in VICs.114,115 The Wnt/b-catenin signalling
pathway has been identified in AS, especially in its severe
stages.115,116 This pathway also induces fibrosis in human
aortic VICs (Fig. 3).117
We demonstrated that 4 genes in the Wnt pathway
(DDX3X, GPC5, SFRP4, and LGR4) are upregulated in fe-
male patients with AS.107 An interesting finding is that es-
trogen receptor-1 modulates the expression of Wnt/b-catenin
pathway genes, and estrogen receptor-a colocalizes with b-
catenin in hepatocellular carcinoma.118 In adipocyte lineages,
testosterone regulates the Wnt/b-catenin signalling pathway,
suggesting a possible sex regulation of Wnt/b-catenin in
AS.119 More studies are needed to determine how Wnt/b-
catenin is regulated in female vs male individuals.

Sex hormones

Sex differences observed in AS may be associated with sex
hormones. Circulating levels of testosterone have been correlated
positively with vascular calcification, whereas serum levels of es-
trogen are associated negatively with vascular calcifica-
tion.80,120,121 Estrogen has a protective effect against cardiac
fibroblast proliferation, and testosterone attenuates myofibro-
blast activation.122,123 Androgen receptors and estrogen receptors
typea and b are expressed in the AV, so they could play a key role
in the sex differences found in AS.124

The underrepresentation of premenopausal female individuals
in clinical studies slows the development of an understanding of
estrogen’s effects on the cardiovascular system.80 Nevertheless,
some studies show that estrogens exert their cardioprotective effect
in premenopausal female individuals by modulating inflamma-
tion, lipoprotein metabolism, and vessel-wall properties.125,126 In
postmenopausal female individuals, a polymorphism in the es-
trogen receptor-a has been correlated with the development of
AS.127 Exposure to b-estradiol inhibits the proliferation of coro-
nary smooth muscle cells in female, but not male, pigs.128 The
influence of b-estradiol on VIC behaviour needs further study,
but it seems to inhibit the proliferation of VICs in female, but not
male, rats.32 An important finding is that 17b-estradiol inhibits
the transcription of MMP2 through the mitogen-activated pro-
tein kinase extracellular signal-regulated kinase½ (MAPK-ERK1/
2) signalling pathway in cardiac fibroblasts, suggesting that es-
trogens play a role in ECM remodelling.44 17b-estradiol reduces
fibrosis in female VICs only, but it does not affect calcification
markers (BMP-4, RUNX2, osteopontin).57

The mechanism of action of androgens is poorly under-
stood, but very interesting studies are emerging. First, Lauk-
kanen et al. observed a correlation between high levels of
testosterone and an increased risk of AS.129 Then, Fleury et al.
showed that testosterone increases procalcific genes and
worsens hemodynamic parameters in a male mouse model of
the disease,130 but the direct mechanism of action of testos-
terone in the AV still is unknown. Testosterone may promote
calcification of the AV via the androgen receptor, which is
increased in stenotic AVs compared to normal AVs and is
overexpressed in male, compared to female, individuals.124 An
important point to note is that testosterone induces calcifi-
cation in vascular smooth muscle cells through the androgen
receptor,131 suggesting a similar mechanism of action in the
AV, but the targeted cellular population still is unknown.
Genetic and Transcriptomic Studies Related to
AS

Genetic factors are well known to be involved in the
development of AS. Having a sibling with a history of AS
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increases the risk of having AS by a factor of 3, whereas having
a spouse diagnosed with AS increases the risk of developing AS
only slightly.132,133 Genetic factors seem to contribute more
than environmental ones to the development of AS.134,135

LPA, PALMD, IL6, ALPL, NAV1, and TEX41 have been
identified as susceptibility genes for AS, and single-nucleotide
polymorphisms located near PALMD and IL1F9 are associ-
ated with AS.133-139 AS pathophysiology differs according to
the sex of patients, so determining genetic risk factors specific
to sex is important. This determination has been done with
Lp(a), whose single-nucleotide variants are associated with
high serum levels of Lp(a) and a higher risk of AS in both male
and female individuals.140

AS also has been characterized at the transcriptomic level.
In 2009, Boss�e et al. showed that 715 genes were differently
expressed in normal vs stenotic human AV.42 In healthy and
stenotic valves, transcriptomic differences exist between male
and female VICs and could explain the distinct VIC behav-
iour according to sex.141,142 Indeed, profibrotic processes
seem to be upregulated in female individuals, whereas
proinflammatory pathways seem to be overrepresented in
male individuals.38 A recent study from our laboratory iden-
tified 190 genes that are expressed differently in female vs
male patients with AS.107 Genes correlated with fibrosis were
overexpressed in female patients (TGFb2, KIF1A, FRAS1 . .
.), whereas distinct genes linked to calcification were overex-
pressed in both female and male patients (female patients:
RCN2; male patients: CPAMD8 and STC2).

Epigenetics might also be involved in the sex differences
observed in AS, because sex is known to influence the
expression of microRNA.143 Analysis has shown that 92
microRNAs are expressed differently in healthy vs stenotic
AVs and may provide therapeutic targets for AS.144 Another
microRNA analysis revealed that thrombospondin 1 (THBS1)
and nuclear factor kappa beta (NFkB) inhibitor a (NFKBIA)
are shear stressesensitive genes in AV.145 However, this study
does not describe male vs female differences.
Therapeutic Options and Biomarkers
Currently, no medical treatment is available to prevent or

slow the progression of AS. When patients become symp-
tomatic with severe AS, their prognosis is poor if they do not
undergo surgical or transcatheter AV replacement.

The growing population with AS presents a critical need to
develop medical treatments for AS, to reduce the burden of
AV replacement and mortality. Several options have been
tested, without success. Statins were proposed for AS treat-
ment, owing to their efficacy in treating atherosclerosis.
Several randomized controlled clinical trials using statins were
conducted, but they did not slow the progression of AS.6,7,146

Thus, statins are not recommended for AS treatment.
High levels of Lp(a) are associated with AS progression and

may identify patients who need early AV replacement.147 A
therapy capable of reducing circulating Lp(a) levels may be
promising for slowing AS progression. Pelacarsen
(NCT05646381) and niacin (NCT02109614) currently are
being tested in randomized controlled trials. Inclisiran has been
shown to lower the low-density lipoprotein cholesterol level and
the volume of Lp(a)-containing lipoprotein particles in athero-
sclerosis, so itwouldbe interesting to test it in the context ofAS.148
The RAAS is involved in fibrosis and AS progression, and
it may be modulated in a sex-specific manner. In the Ramipril
in Aortic Stenosis (RIAS) trial, an ACE inhibitor (Ramipril)
led to a modest but progressive reduction of left ventricular
mass in asymptomatic patients with moderate to severe AS,
but it had no impact on AS progression.149 This result could
be explained by secondary production of angiotensin II by
chymase in the AV.50 The Angiotensin Receptor Blocker in
Aortic Stenosis (ARBAS) trial (NCT04913870) is currently
underway to test the efficacy of angiotensin-receptor blockers
in patients with mild-to-moderate AS. Whether the results
differ for treated female vs male patients will be interesting to
see; the study has been designed to provide sex-specific results.

As osteogenic pathways contribute to AS progression,
especially in male patients, therapies targeting these pathways
also have been tested. Denosumab and bisphosphonates are 2
pharmacologic agents targeting the procalcific nuclear factor
kappa beta (NFkB)/RANK/RANKL/OPG pathway. The
Scottish Aortic Stenosis and Lipid Lowering Trial: Impact on
Regression (SALTIRE) 2 trial showed no impact on reducing
AV calcification or slowing AS hemodynamic progression.8

Although AS diagnosis can be performed easily by mostly
noninvasive methods such as echocardiography, many patients
remain undiagnosed or are diagnosed late in the course of the
disease, especially female patients.11,12 Moreover, although
the diagnosis of the disease is straightforward, evaluating its
severity can be challenging,14 and predicting the progression
rate for a given patient is almost impossible. Therefore, blood
biomarkers associated with the valve lesions that are capable of
raising suspicion, improving diagnosis rates, or predicting
progression rates would be of major interest in identifying
patients at risk sooner, and tailoring the timing of follow up.
As Lp(a) is associated with the occurrence of AS, it is used to
identify patients at risk of AS, but it also could be used as a
biomarker to raise suspicion for AS. Unfortunately, studies
considering sex differences in blood biomarkers are lacking, in
terms of both sex-specific impact and sex-specific thresholds.

The only available biomarkers in current clinical practice,
in addition to Lp(a), are those associated with the impact of
AS on the ventricle, such as N-terminal pro-B type natriuretic
peptide (NT-proBNP) or high-sensitivity troponin T. These
biomarkers are useful in conducting risk stratification and
determining intervention timing.150-154
Conclusion
Female patients present a more profibrotic remodelling of

their stenosed AV, whereas male patients present more calci-
fication. The pathophysiology of the disease is a complex
phenomenon, orchestrated by several pathways in which
sex-related specificities are certainly involved, but major
knowledge gaps remain. However, the volume of evidence of
sex-specific regulation of pathways is currently increasing.

Aldosterone increases markers of calcification in both sexes
and fibrotic markers in female patients only. The RANK/
RANKL/OPG pathway, which promotes calcification, seems
to be upregulated in male patients with AS, compared to fe-
male patients. Regarding fibrosis, the TGF-b signalling
pathway is upregulated in female patients, compared to male
patients, with AS. Sex hormones seem to influence the
phenotype of the VICs, with estrogen possibly inhibiting

https://clinicaltrials.gov/study/NCT05646381
https://clinicaltrials.gov/study/NCT02109614
https://clinicaltrials.gov/study/NCT04913870
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fibrosis, and testosterone promoting calcification and pro-
gression of AS. All these specificities may favour the fibrotic
phenotype observed in female patients and the calcific
phenotype observed in male patients with AS.

Aging is a risk factor for AS and a global characteristic of
modern populations, so the need to develop medical therapies
to slow or prevent AS is urgent. Given that the pathophysi-
ology of AS differs according to sex, exploring sex-specific
molecular mechanisms in AS is essential to developing sex-
specific therapies.
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