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Tuberculosis (TB) remains a challenging global health concern and claims more than a
million lives every year. We lack an effective vaccine and understanding of what constitutes
protective immunity against TB to inform rational vaccine design. Moreover, treatment of
TB requires prolonged use of multi-drug regimens and is complicated by problems of
compliance and drug resistance. While mostMycobacterium tuberculosis (Mtb) bacilli are
quickly killed by the drugs, the prolonged course of treatment is required to clear
persistent drug-tolerant subpopulations. Mtb’s differential sensitivity to drugs is, at least
in part, determined by the interaction between the bacilli and different host macrophage
populations. Therefore, to design better treatment regimens for TB, we need to
understand and modulate the heterogeneity and divergent responses that Mtb bacilli
exhibit within macrophages. However, developing drugs de-novo is a long and expensive
process. An alternative approach to expedite the development of new TB treatments is to
repurpose existing drugs that were developed for other therapeutic purposes if they also
possess anti-tuberculosis activity. There is growing interest in the use of immune
modulators to supplement current anti-TB drugs by enhancing the host’s
antimycobacterial responses. Ion channel blocking agents are among the most
promising of the host-directed therapeutics. Some ion channel blockers also interfere
with the activity of mycobacterial efflux pumps. In this review, we discuss some of the ion
channel blockers that have shown promise as potential anti-TB agents.

Keywords: mycobacterium, tuberculosis, host-directed therapies, ion channel blocker, efflux pump,
drug-repurposing
INTRODUCTION

Tuberculosis (TB) is an airborne infection contracted by inhalation of droplet nuclei containing
viable Mycobacterium tuberculosis (Mtb) that are released into the air by a person with active
pulmonary TB. The disease has been a major cause of morbidity andmortality for several millennia (1).
In 2019 alone, 10 million people developed active TB and 1.4 million of them died of the disease (2).
org June 2021 | Volume 12 | Article 6657851

https://www.frontiersin.org/articles/10.3389/fimmu.2021.665785/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.665785/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.665785/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Henry.Mwandumba@lstmed.ac.uk
https://doi.org/10.3389/fimmu.2021.665785
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.665785
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.665785&domain=pdf&date_stamp=2021-06-24


Mitini-Nkhoma et al. Ion Channel Blockers for TB
Most of the TB cases in 2019 were in South-East Asia (44%), Africa
(25%) and western Pacific (18%) (2).

TB is challenging to treat even though there are now more
than 20 first- and second-line anti-TB drugs in clinical use (3).
Current anti-TB treatment regimens utilize combinations of no
less than 3 drugs that must be taken for at least 6 months (3). The
lengthy treatment duration and side effects of the drugs often
lead to poor compliance with treatment, unfavorable outcomes
and development of drug-resistant Mtb strains (4). In 2019, more
than 0.5 million people developed multidrug-resistant (MDR) or
rifampicin (RIF)-resistant (RR) TB worldwide (2). Treatment of
drug-resistant TB requires longer and more complex drug
regimens, and often causes more serious adverse effects than
treatment of drug-susceptible TB (5). Current TB drugs target
the pathogen and function by compromising the structural
integrity or metabolic machinery of Mtb. In the last few years,
host-directed therapy (HDT) targeting macrophages has
emerged as a promising therapeutic strategy for both drug-
susceptible TB and MDR-TB.

In the lung, alveolar macrophages (AMs) are among the most
important innate defenses against Mtb. They phagocytose and
eliminate bacteria through various pathways including
phagosome maturation, autophagy and apoptosis. However,
Mtb has evolved to survive inside macrophages by corrupting
macrophage antimicrobial responses. HDTs for TB aim to rectify
or circumvent the corrupted antimycobacterial responses.

Ion channel blockers are among the most promising potential
HDTs for TB (Table 1). They are a diverse group of compounds
that alter cell physiology by attenuating ion currents across
cellular and subcellular membranes, and are most commonly
used to treat noncommunicable diseases such as hypertension.
Several Food and Drug Administration (FDA)-approved ion
channel blocking agents have shown promise at both
enhancing Mtb clearance by the immune system and
Frontiers in Immunology | www.frontiersin.org 2
attenuating inflammation in vitro and in animal models of TB
(Figure 1). Additionally, some ion channel blocking agents have
direct antimycobacterial activity. Here we review ion channel
blocking agents that have demonstrated anti-tuberculosis activity
in Mtb-infected macrophages and/or in animal models of TB.
ION CHANNEL BLOCKERS WITH
POTENTIAL AS ANTI-TUBERCULOSIS
AGENTS

Calcium Channel Blockers
Calcium ions (Ca2+) act as second messengers in several signal
transduction pathways (24). Calcium is more abundant in the
extra cellular fluid (ECF) than in the cytosol (25). In the cell,
most of the Ca2+are sequestered in endoplasmic reticuli (ER)
(25). Cell activation signals induce the flow of Ca2+ from the ER
and ECF into the cytosol through channels such as inositol-1,4,5-
trisphosphate receptors (IP3Rs), ryanodine receptors (RyRs),
voltage-gated calcium channels (VGCC) and calcium release-
activated calcium (CRAC) channels.

Ca2+ signaling is important in antimycobacterial responses,
including autophagy, phagosome maturation and apoptosis. In
general, high cytosolic concentrations of Ca2+ promote
phagosome maturation and acidification of mycobacteria-
containing phagosomes, necrosis and apoptosis; while cell
autophagy can be both upregulated or downregulated by Ca2+

(26–28). Whether Ca2+ influx upregulates or downregulates
autophagy depends on factors such as the biological context
and the ion channel conducting the Ca2+ current. For example,
Ca2+ currents through the ATP-gated cation channel P2X7

receptor enhanced autophagy and intracellular killing of M.
bovis-BCG in human macrophages, while currents through
VGCCs inhibit autophagy (26, 28).
TABLE 1 | Progress towards clinical use of ion channel blockers as anti-tuberculosis agents.

Year Milestone Reference

1990 Crowle and May demonstrated that chloroquine inhibits Mtb growth in macrophage cultures and potentiates streptomycin, pyrazinamide and
isoniazid

(6)

1992 Crowle and colleagues observed that chlorpromazine was more active against Mtb in macrophage cultures than in broth (7)
1993 Klemens and colleagues reported that clofazimine was effective against an MDR-TB strain in mice (8)
1994 Gollapudi and colleagues demonstrated that verapamil improves accumulation of INH in Mtb-infected macrophages and promotes sensitivity of Mtb

to INH
(9)

1996 Grange and Snell demonstrated that ambroxol has antimycobacterial activity in macrophages (10)
2003 Esiobu and Hoosein observed that sodium valproate inhibits growth of Mycobacterium smegmatis in broth (11)
2007 Byrne and colleagues observed that ketoconazole was synergistic with rifampicin-isoniazid-pyrazinamide (12)
2010 van Deun and colleagues successfully used clofazimine as part of a 9-month MDR-TB treatment regimen in a clinical trial (13)
2013 Smolarz and colleagues demonstrated that resveratrol has antitubercular activity in broth (14)
2014 Stanley and colleagues demonstrated that fluoxetine promotes autophagic control of Mtb in macrophages (15)
2015 Schiebler and colleagues successfully reduced the bacteria burden in mice infected with MDR-TB using carbamazepine and valproic acid (16)
2016 Machado and colleagues successfully used verapamil, thioridazine and chlorpromazine to decrease bacteria burden in Mtb-infected macrophages (17)
2016 WHO conditionally recommended a short course MDR-TB treatment regimen containing clofazimine (18)
2018 Choi and colleagues demonstrated that ambroxol promotes autophagy and potentiates rifampicin in murine models of TB (19)
2018 Rao and colleagues demonstrated that sodium valproate has antimycobacterial activity in broth and in macrophages in culture, and enhances

activity of rifampicin and isoniazid
(20)

2019 Roca and colleagues demonstrated that dantrolene inhibits necrotic death and promotes Mtb control in Mtb-infected macrophages (21)
2019 Yang and colleagues demonstrated that resveratrol has antitubercular activity in mice (22)
2021 Lee and colleagues observed that the use of calcium channel blockers was associated with a 32% decrease in the risk of active tuberculosis (23)
June 2021 | Volume 12 | Art
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A recent population-based analysis investigated whether
the use of calcium channel blockers modifies the risk of active
TB among patients with heart failure or cerebrovascular
diseases in the clinical setting (23). The analysis included
8164 new active TB patients and 816,400 controls treated
with or without calcium channel blockers compared with b-
blockers or loop diuretics. Overall, the use of calcium channel
blockers was associated with a 32% decrease in the risk of
active TB [relative risk (RR), O.68 (95% CI, 0.58-0.78)] after
adjustment with disease risk score. Analysis of the effect of
different types of calcium channel blockers revealed that use of
dihydropyridine calcium channel blockers was associated with
a lower risk of TB [RR, 0.63 (95% CI, 0.53-0.79)] than non-
dihydropyridine calcium channel blockers [RR, 0.73 (95% CI,
0.54-0.94)]. b-blockers or loop diuretics were not associated
with lower risk of TB [RR, 0.99 (95% CI, 0.83-1.12)] and [RR,
0.88, (95% CI. 0.62-1.26)], respectively (23). This is the first
large population-based study to confirm that calcium channel
blockers modify and reduce the risk of active TB in humans.
Therefore, modulating Ca2+ signaling using calcium channel
blockers is an attractive host-directed therapeutic strategy for
TB. Dantrolene, resveratrol and verapamil are the calcium
channel blockers that have shown the most promise as
potential anti-TB agents.
Frontiers in Immunology | www.frontiersin.org 3
Dantrolene
Dantrolene is a RyR antagonist clinically approved for treatment
of malignant hyperthermia. RyRs are intracellular Ca2+ channels
that mediate the release of Ca2+ from the ER in response to
elevated cytosolic Ca2+ levels (29). They are important in
physiological and pathological processes, including necrosis
and apoptosis. Apoptosis involves enzymatic degradation of
intracellular contents including most of the phagocytosed
bacteria, and their packaging into fragments called apoptotic
bodies (30, 31). In contrast, necrosis involves swelling of
organelles, loss of plasma membrane integrity and release of
intracellular contents into the extracellular space (30). Mtb is
able to continue growing inside necrotic macrophages,
promoting lung inflammation and parenchymal injury (32).
Mtb inhibits apoptotic cell death and promotes death of
infected macrophages by necrosis (32). Roca et al .
demonstrated the importance of ER-mitochondria signaling
relay involving RyR and plasma membrane L-type Ca2+

channels for TNF-mediated necrosis of Mtb-infected
macrophages in a zebrafish model of TB. Dantrolene reduced
TNF-induced necrotic death of Mtb-infected macrophages by
more than 50% by attenuating RyR activity and the surge in
cytosolic Ca2+ that normally precedes necrosis, attesting to
its potential as a HDT for TB (21). Inhibition of RyR activity
A B C

FIGURE 1 | Mechanism of action of ion channel blockers. (A) Chloroquine, ketoconazole, phenothiazines and verapamil inhibit eukaryotic efflux systems, allowing
anti-TB drugs to achieve higher concentrations inside Mtb-infected host cells. Mtb promotes necrotic death of infected macrophages, leading to release of the
bacteria into the extracellular space, where the bacteria continue to proliferate in the necrotic cells or infect new cells. In contrast, apoptotic cell death leads to
enzymatic degradation of most of the bacteria. Dantrolene prevents necrotic death of Mtb-infected macrophages. (B) Phagocytosed Mtb (1) can also be eliminated
through phagosome maturation and autophagy. In autophagy, isolation membranes (2) elongate and engulf phagosomes. The autophagosome-sequestered
phagosomes (3) then fuse with lysosomes (4) to form autophagolysosomes (5), following which the lysosomal enzymes degrade the phagocytosed bacteria.
Ambroxol, resveratrol, verapamil, fluoxetine, carbamazepine and valproic acid promote autophagy. In phagosome maturation, Mtb phagosomes fuse with lysosomes
to form phagolysosomes (6). Phenothiazines promote acidification of phagolysosomes, thus enhancing activity of the lysosomal enzymes. In contrast, chloroquine
inhibits phagosome maturation, thus preventing redox-induced Mtb drug tolerance, making the bacteria more susceptible to anti-TB drugs. (C) Phenothiazines and
verapamil can also inhibit Mtb metabolism and efflux pump activity. Clofazimine, a second-line anti-TB agent, also inhibits Mtb metabolism. Created with
BioRender.com.
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with dantrolene has also been shown to promote autophagy
(33), although this has not been demonstrated in Mtb-
infected macrophages.

Resveratrol
Resveratrol (3, 5, 4′‐trihydroxystilbene) is a natural polyphenol
produced by plants including grapes and berries and widely used
as a food supplement (34, 35). It interacts with and modulates the
activity of at least 20 mammalian proteins including CRAC
channels and VGCCs (36). Resveratrol attenuates Mtb-induced
inflammatory responses and enhances elimination of Mtb in
macrophages, at least in part by upregulating the expression of
host sirtuin 1 (37–39). Sirtuin 1 is a nicotinamide adenine
dinucleotide (NAD+)-dependent deacetylase that deactivates
ReLA, the p65 subunit of nuclear factor kappa B (NF-kB) (40).
NF-kB is a transcription factor important in the maturation of
dendritic cells, M1 polarization of macrophages, differentiation
of Th0 cells to the Th1 phenotype and expression of pro-
inflammatory cytokines including IL-1, IL-8 and TNF-a (41,
42). Mtb down-regulates expression of host sirtuin 1 in
monocytes/macrophages, in mouse models of TB and in TB
patients with active disease, leading to overexpression of NF-kB
(40). While NF-kB expression is generally associated with anti-
TB responses, NF-kB also inhibits apoptosis and autophagy, two
of the pathways most effective at eliminating intracellular Mtb
(43). Recently, Cheng et al. reported a log fold decrease in
bacteria load after treating THP-1 cells infected with W148, an
MDR-TB strain, with resveratrol for 3 days (40).

Verapamil
Verapamil is an L-type calcium channel (LTCC) blocker widely
used for the treatment of hypertension, angina and abnormal
heart rhythms. LTCCs are a subfamily of VGCCs, and are
expressed on the plasma membrane of most cell types. Ca2+

currents through LTCCs inhibit release of ER calcium stores in
macrophages, thus attenuating Ca2+-dependent signaling
processes including macrophage activation (44). A previous
study demonstrated that Mtb induces up-regulation of VGCCs
in macrophages and dendritic cells to circumvent immune
responses (44). Inhibiting LTCC currents in Mtb-infected
macrophages with verapamil increases the concentration of
Ca2+ in the cytosol, leading to upregulation of autophagy and
Mtb killing (45–47).

The LTCC blockers verapamil and nifedipine also modulate
iron metabolism by mobilizing iron from tissues, reducing intra-
macrophage iron concentration and enhancing urinary iron
excretion (48, 49). Iron is a cofactor in numerous biochemical
reactions and is an essential nutrient for growth, replication and
pathogenicity of many intracellular pathogens including Mtb (50).
Further, prolonged iron overload promoted insulin resistance in
skeletal muscle cells in vitro and in vivo in a mouse model of iron
overload by inhibiting mTORC1 activation on autolysosomes and
interfering with autophagic lysosomal regeneration (51).
Therefore, by limiting iron availability, LTCC blockers promote
a key pathway to enhance host resistance and clearance of
intracellular pathogens such as Mtb.
Frontiers in Immunology | www.frontiersin.org 4
In addition to enhancing host mycobacterial responses,
Verapamil is bactericidal to both replicating and non-
replicating Mtb in broth (52). It also inhibits both host and
bacterial efflux pumps and is synergistic with RIF and isoniazid
(INH) in broth, in macrophage cultures and in mouse models of
TB (17, 52, 53). Gupta and colleagues reported that
supplementing standard TB therapy with verapamil yielded an
extra 1.15 log CFU reduction in pulmonary bacterial load in a
murine model of TB (54).

Progress Towards Clinical Use of Calcium Channel
Blockers as Anti-Tuberculosis Agents
While evidence from in vitro and animal models of TB indicates
that calcium channel blockers have anti-TB activity, there has
been no progress in transitioning from pre-clinical findings to
clinical practice. The use of dantrolene as an anti-TB agent could
prove challenging due to its numerous adverse effects which
include muscle weakness, sedation, visual disturbances and
hallucinations (55). Compared to dantrolene, verapamil and
resveratrol are generally well tolerated and would be the
preferred compounds for repurposing as anti-TB agents.
Therefore, there is need for human clinical trials to assess the
efficacy of verapamil and resveratrol as clinically relevant adjunct
HDTs for TB.

Potassium Channel Blockers
While Ca2+ directly modulate antimycobacterial responses,
potassium (K+), sodium (Na+) and chloride (Cl-) ions
primarily modulate macrophage responses by modulating
Ca2+ currents.

K+ currents promote autophagy and other anti-TB responses
in Mtb-infected macrophages (28). K+ is more abundant in the
cytosol than the ECF while Ca2+, Na+ and Cl- are more abundant
in the ECF than the cytosol. This creates an overall negative
charge inside the cell relative to the ECF. The electrochemical
gradient between the cytosol and ECF facilitates movement of
calcium into the cytosol during macrophage activation. Outward
K+ currents help sustain Ca2+ entry and macrophage activation
by preventing plasma membrane (PM) depolarization and
maintaining an electrical gradient between the ECF and cytosol
(56, 57). Several K+ channel antagonists have shown promise as
potential anti-TB drugs, but most appear to promote
macrophage anti-TB responses by mechanisms remote from
ion channel blockade. Such compounds include chloroquine,
ketoconazole and clofazimine.

Chloroquine
Chloroquine has been in use as an antimalarial agent for over 5
decades. It also suppresses the activity of mammalian delayed
rectifier K+ channels (Kv1.3) in leukocytes and lymphocyte
production of pro-inflammatory cytokines (58). Chloroquine
has anti-inflammatory and immunomodulatory properties and
is used to treat autoimmune diseases including rheumatoid
arthritis and systemic lupus erythematosus. In addition,
chloroquine has engendered interest as a potential HDT
against several viral diseases.
June 2021 | Volume 12 | Article 665785
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Mishra and colleagues observed a modest reduction in growth
of intracellular Mtb following exposure to chloroquine alone, but
a five-fold increase in the activity of INH when the two
compounds were used together (59). The combination of
chloroquine with INH eliminated Mtb within 8 weeks in a
murine model of TB, while INH alone only reduced bacterial
load by 2 logs during the same timeframe. Additionally,
chloroquine eradicated drug-tolerant Mtb, ameliorated lung
pathology and reduced post-treatment TB relapse in in vivo
mouse models of TB (59).

Chloroquine enhances the activity of INH through at least
two divergent pathways. First, it inhibits phagosome
acidification, thus reducing redox-induced Mtb drug tolerance
(59). Second, chloroquine increases the intramacrophage
concentration of INH by inhibiting the activity of p-
glycoprotein and breast cancer resistance protein-1 (BCRP-1)
(60, 61). P-glycoprotein and BCRP-1 are mammalian efflux
pumps that are overexpressed in Mtb infected macrophages,
where they extrude anti-TB drugs into the ECF, thus protecting
the intracellular bacteria from the antibiotics (62). Together,
these studies suggest potential for repurposing chloroquine to
shorten the duration of current TB treatment and to achieve
relapse-free cure.

Ketoconazole
Ketoconazole is an azole antifungal used to treat cutaneous and
systemic fungal infections. It kills fungi by inhibiting synthesis of
ergosterol, an essential component of the fungal PM (63).
Ketoconazole also inhibits the activity of voltage-gated
potassium channels (Kv1.5, Kv11.1) and other mammalian
proteins (63, 64).

The azole class of antifungals has been reported to possess
anti-TB activity. Byrne and colleagues reported that
ketoconazole inhibited growth of Mtb in broth (12).
Furthermore, they observed a 3.42 log CFU reduction in
bacterial load in lungs of Mtb-infected mice that were treated
with ketoconazole-RIF-INH-pyrazinamide (PZA), and a 3.08 log
CFU reduction in mice that were treated with RIF-INH-PZA,
indicating that ketoconazole is synergistic with current first-line
anti-TB drugs (12). Ketoconazole enhances the activity of anti-
TB drugs, at least in part, by inhibiting pregnane X receptor
(PXR), a promiscuous ligand-dependent transcriptional factor
that is activated by steroid and xenobiotic agents (65, 66). PXR
modulates expression of mammalian drug efflux and metabolism
genes and reduces the efficacy of rifamycins against intracellular
Mtb (67). The role of ketoconazole in the treatment of TB should
be explored further.

Clofazimine
Clofazimine is a riminophenazine dye that is used as a first line
agent in the treatment of leprosy, in combination with RIF and
dapsone (68). It kills mycobacteria by disrupting multiple
physiological processes, including respiration and K+ transport
across the PM (68). It was originally developed as an anti-TB
drug more than five decades ago, but proved to be inferior to RIF
and INH (68). The use of clofazimine to treat TB was revisited
recently, and clofazimine has been listed as a second line anti-TB
Frontiers in Immunology | www.frontiersin.org 5
agent (2). The efficacy of various clofazimine-containing
regiments against MDR-TB is currently being assessed in the
BEAT TB, endTB-Q and TB-PRACTECAL clinical trials (2).
Furthermore, pre-clinical studies show that clofazimine could
reduce the duration of treatment of drug-susceptible TB. Tyagi
and colleagues successfully sterilized Mtb-infected mice with a 3-
month course of clofazimine-RIF-INH-PZA-ethambutol (EMB),
but achieved a similar outcome with RIF-INH-PZA-EMB after
treatment for 5 months (69). CLO-FAST, a phase 2 clinical trial
is currently assessing the efficacy of a 3-month anti-TB regimen
containing clofazimine and rifapentine against drug-susceptible
TB (2).

In addition to its direct antimycobacterial activity,
clofazimine has recently been shown to enhance host
antimycobacterial responses by inhibiting mammalian Kv1.3
K+ channels, which are highly expressed on effector memory T
(Tem) lymphocytes (70, 71). Singh and colleagues demonstrated
that inhibition of Kv1.3 channels on Tem cells by clofazimine
during BCG vaccination in mice enhanced vaccine efficacy by
promoting selective expansion of central memory T (Tcm) cells,
a T-cell subset that is associated with protective anti-TB
responses. Mice that received clofazimine also exhibited
significantly enhanced resistance against TB (71). These
reports suggest Kv1.3 K+ channel blockade as a promising
approach to enhance BCG vaccine efficacy in humans.

Progress Towards Clinical Use of Potassium
Channel Blockers as Anti-Tuberculosis Agents
While clofazimine has now been adopted as an anti-TB agent,
there has been no progress towards bringing ketoconazole and
chloroquine into clinical use against TB. Azole antifungals such
as ketoconazole and fluconazole are commonly used to treat
concomitant candida or cryptococcal infections in HIV-infected
TB patients but the impact of azole treatment on TB outcomes
has not been assessed. Ketoconazole is generally well tolerated,
but can cause serious adverse effects such as hepatotoxicity (72).
Rifampicin, isoniazid and pyrazinamide can also cause drug-
induced hepatitis (73), therefore, concomitant use of these anti-
TB drugs with azole antifungals may increase the risk of
hepatotoxicity. The safety of ketoconazole when used as
adjunct treatment for TB requires further investigation.

Sodium Channel Blockers
There is paucity of data on the role of Na+ channels in anti-TB
responses. However, opening of PM Na+ channels leads to influx
of Na+ into the cytosol down its chemical gradient, thus reducing
the electrical gradient between the ECF and cytosol. This reduces
the driving force for Ca2+ entry. Most PM Na+ channels may
therefore inhibit host antimycobacterial responses, and several
Na+ channel antagonists including ambroxol, carbamazepine
and valproic acid promote host anti-TB responses (16, 19).

Ambroxol
Ambroxol is an inhibitor of voltage-gated sodium channel (Nav)
1.8 and is primarily used as a mucolytic agent (74). It is a potent
inducer of autophagy and has garnered interest as a potential
therapeutic agent to hasten degradation of misfolded proteins in
June 2021 | Volume 12 | Article 665785
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proteinopathies including Parkinson’s disease and primary
alveolar proteinosis (75, 76). It has no direct antimycobacterial
activity (19, 53), but it induces dose-dependent autophagic
control of Mtb in vitro and in vivo and promotes
mycobacterial killing in Mtb-infected primary mouse
macrophages (19). Additionally, Choi and colleagues observed
that ambroxol potentiated the antimycobacterial activity of
rifampicin in a murine TB model, resulting in a three-fold
decrease in bacterial load in mice treated with ambroxol and
RIF relative to mice treated with RIF alone (19). Ambroxol
warrants further evaluation as a HDT to augment and enhance
the efficacy of current chemotherapy for TB in humans.

Carbamazepine
Carbamazepine is used to treat epilepsy, schizophrenia and
bipolar disorder. It inhibits the activity of Nav 1.5, thus
indirectly inhibiting the uptake of inositol through Na+-
dependent inositol transporters on the PM (16). Inositol is a
carbocyclic sugar upstream to biosynthesis of inositol-1,4,5-
trisphosphate (IP3), a lipid second messenger that activates
IP3Rs on ER. Blockade of inositol uptake by carbamazepine
therefore reduces cytosolic levels of IP3, leading to decreased
Ca2+ release from the ER and upregulation of autophagy (16).
Treatment of MDR-TB-infected mice with carbamazepine for 30
days resulted in a ten-fold decrease in pulmonary bacterial load,
improved lung pathology and stimulated adaptive immunity.
This was achieved through induction of autophagic killing of
intracellular Mtb, mediated by cellular depletion of inositol and
independent of mTOR (16).

Valproic acid
Valproic acid is an inhibitor of Navs, and is used to treat epilepsy,
migraine and bipolar disorder (77, 78). It is active against Mtb in
broth through mechanisms that have not been fully elucidated
(20). Rao and colleagues observed a 1.5 log CFU reduction in
bacterial load following treatment of intracellular Mtb with
valproic acid or INH, and a 2 log CFU reduction when the two
drugs were used together (20). Like carbamazepine, valproic acid
promotes autophagy by interfering with biosynthesis of IP3 (79).
In addition, it inhibits host histone deacetylase 1 (HDAC1), a
protein that is usually upregulated in Mtb-infected macrophages
(80, 81). HDACs suppress gene expression by promoting
chromatin packaging, thus making a segment of DNA
inaccessible to the cellular transcription machinery (82).
Upregulating HDAC1 in Mtb-infected macrophages reduces
expression of IL-12b, a cytokine important in the initiation of
Th1 responses (80). Therefore, repurposing of carbamazepine
and valproic acid as adjunct HDTs to enhance intracellular
killing of Mtb by current anti-TB drugs should be explored as
a treatment option for human TB.

Progress Towards Clinical Use of Sodium Channel
Blockers as Anti-Tuberculosis Agents
The use of ambroxol, carbamazepine and valproic acid against
TB has not been tested in a clinical trial setting. Carbamazepine
and valproic acid are used widely as treatment for epilepsy in
low- and middle-income countries where the burden of TB is
Frontiers in Immunology | www.frontiersin.org 6
high. However, the impact of concomitant use of sodium channel
blockers and anti-TB treatment on TB outcomes has not been
evaluated. Furthermore, both carbamazepine and valproic acid
have been shown to cause hepatotoxicity in some individuals (83,
84), but there are no clinical trial data on the safety of
carbamazepine and valproic when used in combination with
existing anti-TB drugs.

Other Ion Channel Blockers
Fluoxetine
Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) and
is primarily used as an anti-depressant. However, fluoxetine also
has antiviral, antibacterial and immunomodulatory properties
(85–87). In addition to inhibiting the uptake of serotonin into
pre-synaptic neurons, fluoxetine modulates the activity of
VGCCs, K2P, Navs and 5-hydrotryptamine 3 (5-HT3) (88–90).

Schump and colleagues observed a 50% reduction in growth
of intracellular Mtb following treatment with fluoxetine, even
though it had limited activity against Mtb in broth (91). Several
mechanisms for this have been described, including
accumulation inside macrophages and induction of autophagy
(15, 91). In another study, Stanley and colleagues demonstrated
that fluoxetine promoted secretion of TNF-a, induced
autophagy and inhibited growth of intracellular Mtb by 75% in
J774 cells (15). These observations merit evaluation of the anti-
TB activity of fluoxetine in clinical studies of human TB.

Phenothiazines
Phenothiazines are a large group of heterocyclic molecules most
widely used as antipsychotics and antihistamines due to their
abil ity to modulate dopamine signaling (92). Most
phenothiazines bind to and modulate the activity of multiple
mammalian proteins, including ligand-gated ion channels, ion
pumps, G protein-coupled receptors and efflux pumps (92, 93).

The antimycobacterial properties of phenothiazines have
been known for decades, but they were overshadowed by the
current first line anti-TB compounds, to which they are inferior
(7). However, the rise of MDR-TB has rekindled interest in the
use of phenothiazines against Mtb. Most phenothiazines are
active against extracellular Mtb at concentrations that cannot
be achieved safely in vivo. However, they are generally active
against intracellular Mtb at much lower concentrations (94).
Some phenothiazines are concentrated by macrophages to at
least 10 times their plasma concentrations, which may partly
explain their potency against intracellular Mtb (94–96).
Thioridazine, chlorpromazine, promethazine, methyldiazine
and trifluoperazine are among the phenothiazines that have
shown the most promise as potential anti-TB agents.

Thioridazine was once a popular drug for schizophrenia and
psychosis but has largely been replaced by the newer generation
of neuroleptics. It kills extracellular Mtb by disrupting ATP
synthesis (17, 97). Machado and colleagues demonstrated that
thioridazine promotes acidification of Mtb phagosomes, and
reported an 88% increase in Mtb killing by thioridazine-treated
macrophages (17). As thioridazine has multiple eukaryotic
protein targets, the mechanism through which it promotes
phagosome acidification has not been elucidated. However, one
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possible explanation is that it inhibits the efflux of ions from the
phagolysosome, leading to indirect acidification (98).

In addition, thioridazine inhibits mycobacterial drug efflux
systems, reduces resistance levels of different strains of MDR-TB
to first and second-line anti-TB agents, and hastens clearance of
drug-susceptible Mtb by first-line anti-TB agents (17, 95, 99).
Dutta and colleagues were able to sterilize lungs of mice infected
with drug-susceptible Mtb with a 4 month course of
thioridazine-RIF-INH-PZA, but achieved the same with RIF-
INH-PZA in 5 months (95).

Progress Towards Clinical Use of Other Ion Channel
Blockers as Anti-Tuberculosis Agents
Fluoxetine and phenothiazines are currently not used as anti-TB
drugs in clinical practice. However, thioridazine is relatively well
tolerated, and has received more attention as a potential anti-TB
agent than any other phenothiazine. There is need for clinical
trials to determine the efficacy of thioridazine as part of anti-TB
treatment regimens in humans.
SUMMARY AND CONCLUDING REMARKS

Ion channel blockers have the potential to contribute to the
treatment of TB to reduce morbidity and mortality from the
disease. Their ability to enhance the activity of first-line anti-TB
drugs could help hasten clearance of Mtb from lungs of
individuals with pulmonary TB disease, reduce transmission of
infection, emergency of drug-resistant mutants and relapse rates.
The ideal host-directed therapeutics for TB should potentiate the
immune system’s antimycobacterial defenses while preventing
excessive inflammation and tissue injury. In addition to
Frontiers in Immunology | www.frontiersin.org 7
enhancing clearance of Mtb, ion channel blockers generally
attenuate host inflammatory responses and may reduce tissue
injury in TB patients. In the absence of a single agent that can
eliminate Mtb, combination therapy will remain the mainstay of
TB treatment. While current drug combinations are designed to
maximize clearance of Mtb by targeting the pathogen, ion
channel blockers could enhance bacillary clearance by targeting
both the pathogen and the host immune response. The reduction
in the risk of active TB associated with the use of dihydropyridine
calcium channel blockers is a cause for optimism and may pave
the way for clinical trials of ion channel blockers as adjunct
treatment for human TB.
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