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Pneumocyte injury and ubiquitin-positive pneumocytes in interstitial lung diseases.

Pneumocyte injury is a characteristic of pulmonary
interstitial pneumonias (IPs). Histological markers of
pneumocyte injury and inflammation include pneumo-
cyte necrosis, erosion, hyaline membrane and fibrin
exudation with subsequent intraluminal granulation
tissue formation. We found that intracytoplasmic
inclusions in pneumocytes are ubiquitin-positive (Ub+)
and that the number of Ub+ pneumocytes shows posi-
tive correlation with the extent of diffuse alveolar dam-
age (DAD). To determine the role of Ub+ pneumocytes
and inclusions in IPs, we studied their relationship
with pathological and clinical features of DAD, usual
interstitial pneumonia (UIP) and organizing pneumo-
nia (OP), including airspace enlargement with fibrosis

(AEF). We analysed Ub+ pneumocytes, inclusions, ero-
sions and intraluminal granulation tissue in relation to
pneumocyte injury. The numbers of immunohisto-
chemically identified Ub+ inclusions in each IP were
higher than the number of inclusions detected by light
microscopy. The inclusions detected by Ub+ immuno-
staining were identical to the inclusions observed by
light microscopy. UIP and DAD had many Ub+ inclu-
sions, while OP and AEF had fewer Ub+ inclusions.
These results suggest that the extent of Ub+ inclusions
reflects the severity of pneumocyte injury among IPs.
Thus, Ub+ inclusions are a histological marker of pneu-
mocyte injury that may be helpful in determining the
severity and prognosis of IPs.
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Introduction

Pneumocyte injury may induce pneumocyte necrosis,
exfoliation and erosion, followed by hyaline membrane

formation in a diffuse alveolar damage (DAD) pattern,
intra-alveolar fibrin exudation, and subsequent intra-
luminal granulation tissue formation. Pneumocyte
injury is induced by chemicals or drugs,1 irradiation,2
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oxidative stress3 and cobalt,4 among others.5 Pneumo-
cyte injury causes various types of interstitial pneumo-
nias (IPs) and other interstitial lung diseases (ILDs),
including airspace enlargement with fibrosis (AEF).
The major histological classifications of idiopathic

interstitial pneumonias (IIPs)6–9 are usual interstitial
pneumonia (UIP), non-specific interstitial pneumonia
(NSIP), organizing pneumonia (OP), DAD, respiratory
bronchiolitis (RB) and desquamative interstitial pneu-
monia (DIP).10 These IP patterns can also be caused
by drugs, collagen vascular diseases and hypersensi-
tivity pneumonia.
Biomarkers have been reported to be a sensitive mar-

ker for interstitial lung diseases.11–13 Epithelial necro-
sis, erosion, fibrin exudation and other characteristics
in the alveolar spaces are histological markers of pneu-
mocyte injury. Intracytoplasmic eosinophilic inclusion
bodies (inclusions) or Mallory bodies have been found
in the pneumocytes of patients with asbestosis,14 DAD
and other IPs.15–17 These inclusions were originally
termed hyaline globules or spherical intracytoplasmic
eosinophilic droplets. The inclusions contain aggrega-
tions of intermediate filament proteins (including cyto-
keratin), with a filamentous or granular amorphous
appearance.18

The presence of ubiquitin-positive (Ub+) pneumo-
cytes may represent another histological parameter of
pneumocyte injury in IPs with various clinical back-
grounds. We reviewed the roles of inclusions, Ub+

pneumocytes, pneumocyte injury and fibrosis in IPs
and the relationships among these factors.

Interstitial pneumonias and the ubiquitin-
proteasome system

The pathology of IPs is mediated by an inflammatory
process, including cellular injury with mediators in
the pulmonary interstitium as well as vessels outside
the alveolar spaces. The inflammatory process leads
to the development of interstitial fibrosis of variable
extent and localization in the lungs. The mixture of
inflammation and fibrosis with distorted lung struc-
ture complicates the entity of IPs through the long
course of the inflammatory process, with inflamma-
tory cell infiltration and release of chemical media-
tors. Cytokines and other substances are released by
inflammatory cells, stimulating the production of col-
lagen and subsequently leading to the development of
fibrosis.19 There are many factors in the inflamma-
tory process that cause pneumocyte injury.
The ubiquitin–proteasome system (UPS) was first

described by Ciechanover et al.,20,21 and has emerged

as a key pathway that defines cellular protein turn-
over and, consequently, the levels and activity of
numerous intracellular proteins. Ub is a small, ubiq-
uitously expressed protein that has been highly con-
served throughout evolution. The conjugation of Ub
to protein substrates involves a series of hierarchically
organized steps. The proteasome is located in both
the cytoplasm and the nucleus. Protein degradation
by the UPS modulates transforming growth factor
beta 1 (TGF-b1) signalling at multiple steps.22 Thus,
proteasomal inhibition could modulate TGF-b1 signal-
ling at several potential targets and might abrogate
the development of tissue fibrosis. The UPS plays a
key role in proteolysis through the ubiquitination of
target proteins,23,24 and the Ub gene is expressed in
all eukaryotic cells.25 In addition to its role in remov-
ing damaged proteins, the UPS has been shown to
play a critical role in the regulation of proteins that
affect inflammatory processes, cell growth and differ-
entiation. UPS inhibition caused by pneumocyte
injury results in the accumulation of unresolved ubiq-
uitinated proteins in the pneumocyte, which are
detected as inclusions by light microscopy. UPS inhi-
bition by pneumocyte injury may accelerate the pro-
gression of idiopathic pulmonary fibrosis (IPF).
Further research is needed to elucidate the detailed
relationship between UPS inhibition and IPF.

Characteristics of inclusions

Ub+ inclusions with a skein-like appearance were
identified initially in the nerve cells and other cells of
patients with diseases of the central nervous system
(CNS).26–28 Ub was found in the inclusions,29,30

which were induced with UPS inhibition.31 Inclusion-
like structures have also been found in some tumour
cells18,32 and in the macrophages of smokers.33

Pneumocyte injury inhibits the UPS pathway and
induces an accumulation of Ub proteins.4 Neverthe-
less, Ub+ inclusions have been found in only a few
patients with specific tumour types18 or alcoholic
liver damage,34,35 in addition to patients with dis-
eases of the CNS. The formation of ubiquitinated
intermediate filament/alphaB crystallin inclusions is
most probably a common cellular response to chronic
lethal injury, and is passively cytoprotective.36,37

Typically shaped inclusions with a distinct border
were observed in the cytoplasm of pneumocytes adja-
cent to areas of immature or mature organization (Fig-
ure 1). They stained with haematoxylin and eosin
(H&E), and were also weakly stained by periodic acid-
Schiff, both with and without diastase. The histological
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features of these inclusions by H&E staining were simi-
lar to the features of inclusions in the patients with IPs.
The inclusions varied in shape from eosinophilic fila-
mentous to globular with a distinct border in the cyto-
plasm (Figure 2). They could be differentiated from
viral-associated inclusion bodies (cytomegalovirus,
herpes simplex virus38 and varicella zoster virus39) by
in their size, shape and location.
Inclusions in the pneumocytes are immunohisto-

chemically positive for Ub.40 Furthermore, a granular
pattern of Ub, not representative of inclusions (Fig-
ure 3), was also found in some monocyte-derived mac-
rophages and pneumocytes (Table 1).41 Ub+ cells have
also been reported in patients with severe fibrosis in
ILD.42 The mechanisms of the UPS have been clarified,
and Ub+ inclusions can be a histological hallmark of
pneumocyte injury.36 We found a relationship between
Ub+ pneumocytes and the degree or severity of hyaline
membrane formation, based on analyses of the accu-
mulation of Ub+-reactive products in pneumocytes and

Figure 1. Localization of inclusions. Photomicrograph showing the

histology of interstitial fibrosis from a patient with non-specific

interstitial pneumonia (H&E staining), with an eosinophilic inclu-

sion at the interstitial fibrosis front (arrow); details of the inclusion

are unclear in this field due to the low magnification. Bar, 200 lm.

Figure 2. Histology of inclusions. H&E staining (left) shows eosinophilic inclusions (arrows) in pneumocytes. The image on the right shows

another pneumocyte containing a Ub-positive inclusion (arrow), with intense immunoreactivity and an irregularly-shaped border (Ub immu-

nostaining). Bar, 50 lm.
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inclusions from individuals with DAD.43 Next, various
IPs were studied to clarify the relationship between
Ub+ inclusions and pneumocyte injury among cases of
IP, AEF and centrilobular emphysema (CLE).9,44 Our
data indicated that the frequency of inclusions was
strongly suggestive of the severity of lung injury and/
or response to lung injury in ILDs (Table 2).
Inclusions contain different ubiquitinated proteins.

Major constituents of the inclusions include cytokera-
tins (CK8, 18), Ub and p62 protein/sequestosome 1
(SQSTM1).34 A marked increase of p62 is detected
following autophagy inhibition. Similarly, the inclu-
sions in our studies of diseased lungs were positive
for several molecular types of cytokeratins (CK5, 6, 8,
18).43 To compare the precise H&E and Ub staining
characteristics of the inclusions, we immunostained
the inclusions for Ub after de-staining of H&E-stained
sections, and all the inclusions were Ub+.43 Ultra-
structural observation of the Ub+ inclusions demon-
strated that they were composed of electron-dense,

bundle-like structures and innumerable filamentous
structures (15–20 nm in width),43 similar to the
inclusions described in previous studies.18,23–25 No
viral-associated inclusions in the IP specimens were
studied, although viral particles have been found pre-
viously in pneumocytes from these patients.45

Inclusions in the pneumocytes of interstitial
pneumonias

We performed histological and immunohistochemical
studies on lung tissue specimens from 165 patients
with ILD and other lung diseases. This cohort con-
sisted of: 54 patients with acute interstitial pneumo-
nia diagnosed as DAD;43 35 patients with IPF and
subclinical IPF showing UIP in lobectomy speci-
mens;46 17 primary NSIPs and 11 secondary NSIPs
in surgical lung biopsy specimens, which were
divided into 13 cases of fibrosing-NSIP (f-NSIP), nine
cases of cellular-NSIP (c-NSIP) and six cases of

Figure 3. Pneumocytes with granular Ub+ staining. The photomicrograph on the left with H&E staining shows fragmented inclusions in the

pneumocyte (arrows). That on the right shows a weakly Ub+ pneumocyte with a granular pattern of cytoplasmic staining, of non-inclusion

type (Ub immunostaining). Bar, 30 lm.
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fibrosing/cellular-NSIP (f/c-NSIP);47 34 patients with
a secondary OP found at the periphery of lobectom-
ized lung cancer;48 nine patients with AEF; and five
patients with CLE.49 Each type of IP was diagnosed
based on the criteria of the American Thoracic Soci-
ety/European Respiratory Society (ATS/ERS),6–9 and
the diagnosis of CLE was based on WHO criteria.50

Cases of cryptogenic organizing pneumonia were not
included in this study.
Variable percentages of patients with DAD, UIP,

NSIP, OP or AEF had inclusions in their pneumocytes,
as determined by light microscopy. Inclusions were
identified in pneumocytes in 40.7% of the DAD
patients, 74.3% of the UIP patients, 17.9% of the NSIP
patients and 5.9% of the OP patients. They were identi-

fied in only one case (11%) of AEF, and none were
found among patients with CLE. The mean number of
inclusions per slide that were identified by light micros-
copy was 27.0 cells for DAD, 11.8 for UIP, 2.3 for
NSIP, 1.5 for OP and 0.1 for AEF (Table 2). These
results suggest that each type of IP and AEF has a dif-
ferent degree of pneumocyte injury. Pneumocyte
injury from stimulants, bacteria and other causes may
inhibit the UPS, and an abnormal amount of target
proteins accumulate during the cell cycle. Poly-ubiqui-
tinated proteins then form inclusions in variable sizes
and shapes that can be identified microscopically.

Ub+ pneumocytes

All the inclusions evaluated in the IPs were Ub+ (Fig-
ures 2 and 4), and they were identical to the inclusions
identified by novel immunostaining. Ub+ granules were
also found in the cytoplasm of pneumocytes in DAD.43

Ub+ granules could also comprise part of a fragmented
inclusion, an inclusion precursor, or another form of
accumulation (Table 1). It was also found that Ub+

cells with a granular pattern (not representative of
inclusions) were increased in the patients with IPF.42

The mean number of Ub+ pneumocytes per slide was
67.4 cells in cases of DAD; 34.4 in UIPs; 10.9 in NSIPs;
4.6 in OPs; and 0.3 in AEF cases (Table 2). Ub+ pneu-
mocytes were not found in cases of CLE. The number of
Ub+ pneumocytes in each type of IP was higher than
the number of inclusions detected by light microscopy.
Ub immunostaining could detect most of the

Table 1. Inclusions and ubiquitin (Ub) positive pneumo-
cytes

Light microscope Ub immunostaining

1. Pneumocyte
with inclusion

Ub+ pneumocyte
(Ub+ inclusion)

(a) Typical inclusion form
(skein-like appearance)

Ub+

(b) Indistinct form
(fragmented inclusion)

Ub+ (fragmented or
granular staining pattern)

2. Pneumocyte without
inclusion (non-inclusion type)

Ub+ pneumocyte
(fine granular staining)

Ub– pneumocyte

Table 2. Summary of Ub+ inclusions and pneumocyte injury among interstitial pneumonias and other lung diseases

DAD UIP NSIP OP AEF CLE

Light microscope
Inclusions (no. of cases) 22/54 26/35 5/28 2/34 1/9 0/5

Mean numbers of inclusions/slide 27 11.8 2.3 1.5 0.1 0

Immunostaining
Ub+ inclusions (no. of cases) 26 28 11 5 2 0

Mean numbers of Ub+ cells/slide 67.4 34.4 10.9 4.6 0.3 0

Scores* for:
Erosion 1.8 1.6 1.1 0.9 0.01 0

Intraluminal granulation tissue 2.8 2.7 2.1 1.2 0.8 0

Interstitial fibrosis 2.0 2.8 2.2 1.1 1.0 0.1

DAD: diffuse alveolar damage; UIP: usual interstitial pneumonia; NSIP: non-specific interstitial pneumonia; OP: organizing
pneumonia; AEF, airspace enlargement with fibrosis; CLE: centrilobular emphysema.
*Scores 0–3 according to the severity or extent of the lesion.
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inclusions, as well as granules (non-inclusion-type), in
the lung fields, demonstrating that this is a useful, sen-
sitive assay for the detection of inclusions.
The differential diagnosis of acute interstitial pneu-

monia (DAD histology), IPF (UIP histology), NSIP and
OP is especially important for the determination of
prognosis among IIPs.6 We studied the histology of
these four major types of IPs. Ub+ inclusions were
confirmed in the same pneumocytes that were Ub+

(Figure 4). The patients with NSIP, and even the inci-
dental secondary OP groups, had Ub+ inclusions in
the pneumocytes, and characteristics of these inclu-
sions were similar to those found in the DAD and UIP
groups.43 The highest frequency of Ub+ cases was
found in the UIP group, while the DAD group had
the greatest number of Ub+ pneumocytes per slide
among the IPs.
The presence of Ub+ inclusions (i.e. the Ub+ pneumo-

cytes) revealed pneumocyte injury with greater sensi-

tivity than did the light microscopy detection of
inclusions (Table 2). Ub immunostaining revealed all
the inclusions in the lung fields; not only inclusions
with typical forms, but also those with indistinct forms
in H&E-stained sections (Figure 3). Our data also
showed that the number of Ub+ inclusions was corre-
lated with the severity of pneumocyte injury (erosions
and granulation tissue; Table 2), suggesting that the
presence of inclusions is a histological marker for pneu-
mocyte injury. Additionally, the variable intensity
and/or positivity of Ub+ pneumocytes may be of rele-
vance for the evaluation of the progression of ILD.

Erosions and granulation tissue subtypes in
interstitial pneumonias

In H&E sections, erosion is defined as a complete loss
of pneumocytes next to the alveolar interstitium with
inflammatory cell infiltration. Epithelial membrane

Figure 4. Inclusion detected by H&E staining and Ub immunostaining. H&E staining (left) shows an inclusion (arrow) in a pneumocyte from

a patient with DAD. Image (right) of the same pneumocyte with Ub immunostaining after removal of H&E staining shows a Ub+ inclusion

in the pneumocyte cytoplasm (from Yamada et al.43). Bar, 5 lm.

© 2014 The Authors. Histopathology published by John Wiley & Sons Ltd, Histopathology, 66, 161–172.

166 T Yamada & Y Kawabata



antigen (EMA) immunostaining confirms the presence
of erosions in tissue samples (Figure 5). The pattern
of intraluminal granulation tissue can be used to

classify the severity of pneumocyte injury; the classifi-
cation system developed by Basset et al.51 (Figure 6)
consists of an intraluminal bud (or polypoid) type, a
mural incorporation (or mural) type, and obliterative
changes (or occluded type).
The Ub+ NSIP subgroup showed significant increases

in the amount of pneumocyte erosion and granulation
tissue compared to the Ub– NSIP subgroup, and these
findings were unique to the histopathological features
in the NSIP group.47 The Ub+ OP subgroup also had a
greater amount of granulation tissue in comparison to
that of the Ub– OP subgroups.48 The Ub+ pneumocytes
tended to be located adjacent to the granulation tissue
in the lung fields.47 The histology of DAD, UIP or NSIP
cases was marked by severe pneumocyte injury (ero-
sion or granulation tissue), in contrast to the histology
of OP and AEF. Each type of IP has different localiza-
tions and distributions of inflammation and fibrosis in
the lung fields, and these differences among the pulmo-
nary diseases may determine the clinical manifestation
of each type of IP. Pneumocyte injury was detected
histologically by evaluating the erosions, granulation
tissue subtypes and inclusions by light microscopy,
and Ub+ pneumocytes were identified by immuno-
histochemistry. These features, which result from

Figure 5. Erosion of pneumocytes (arrow) in the alveolar wall:

defect of pneumocytes and inflammatory cell infiltration (EMA

immunostaining). No intracytoplasmic inclusions are noted. The

tissue sample is from a patient with non-specific interstitial

pneumonia. Bar, 100 lm.

Figure 6. Granulation tissue subtypes. These images show representative histological characteristics of intraluminal granulation tissue sub-

types, at the same magnification. The polypoid type is on the left (arrow, H&E staining), the mural type is in the middle (arrow, Weigert-

Van Gieson staining), and the occluded type is on the right (arrow, H&E staining). The subtypes are related to the extent and severity of

pneumocyte injury. Bar, 100 lm.
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pneumocyte injury, were observed in some of the
patients with OP, while cases of AEF had the least
pneumocyte injury among ILDs.49

The UPS plays a critical role in cellular damage
during the developmental course of IPs52–54 and dis-
orders in other organs.55,56 In addition to our studies,
there have been several other reports of the immuno-
histochemical detection of Ub in pulmonary dis-
eases,54 including discussions of the pathogenesis of
IPF (UIP histology) and NSIP.57,58 We found that the
amount of granulation tissue in the Ub+ NSIP sub-
group was greater than that observed in the Ub–

NSIP subgroup, with significant increases in the
mural type and the occluded type found in f-NSIP
compared to c-NSIP. It has been suggested that these
granulation tissue subtypes play an important role in
pulmonary remodelling.51 The mural and occluded
subtypes of granulation tissue reflected pneumocyte
injury that was more severe than the injury seen in
the polypoid type. Furthermore, even in the Ub+ OP
subgroup, the degree of mural and occluded subtypes
was greater than that of the Ub– OP subgroup.
Increases of these subtypes in the UIP, NSIP and OP
groups may correlate with the localization of Ub+

pneumocytes that were found frequently in front of
the granulation tissue (Figure 1). These findings sug-
gested that the severity of the pneumocyte injury
may affect the development of NSIP and OP, similar
to its effect in cases of DAD or UIP.

UPS and autophagy in interstitial
pneumonias

Recent studies have shown that autophagy plays an
important regulatory role in cellular senescence and
differentiation, helps to maintain homeostatic balance,
and also plays a regulatory role in IPF pathogenesis.22

Araya et al. reported that insufficient autophagy was
an underlying mechanism of both accelerated cellular
senescence and myofibroblast differentiation in a cell
type-specific manner and was a promising potential
component in providing a better understanding of the
pathogenesis of IPF.42,59 Although proteasome inhibi-
tion has an antifibrotic effect,59 autophagy inhibition
appears to play a larger role in fibrosis in IPF, as well
as in the accumulation of ubiquitinated proteins in
pneumocyte compared to proteasome inhibition.60

Both proteasomes and autophagy degrade ubiquitinat-
ed protein chains; however, while proteasomes only
degrade soluble proteins, autophagy degrades protein
aggregates and micro-organelles, including mitochon-
dria. Poly-ubiquitinated chains include different types
of proteins. Lys-48-linked poly-ubiquitin chains are

targeted for proteasomal degradation, whereas Lys-63-
linked chains provide a non-degradative signal in UPS.
Autophagy inhibition was reported to induce the
accumulation of ubiquitinated proteins not only in the
CNS but also in the respiratory epithelium.60 In our
analyses, UPS appears to be more important than auto-
phagy for pneumocyte injury in ILDs. However, further
studies are needed to elucidate whether proteasome or
autophagy predominantly degrades the accumulated
ubiquitinated proteins.

Ub+ pneumocyte and prognosis in
interstitial pneumonias

The severity of hyaline membrane formation (as deter-
mined by histological evaluation) correlates with an
increased number of Ub+ inclusions in patients with
acute interstitial pneumonia (DAD histology). Patients
with UIP have a poor prognosis and strict pathological
diagnosis, and surgical lung biopsy is required to dif-
ferentiate UIP from other types of IPs.61 Additionally,
many patients with acute clinical deterioration of an
unknown aetiology experience subsequent acute dete-
riorations in respiratory function.62 However, an
increase in the number of fibroblastic foci (i.e., mural
type granulation tissue in UIP) could be an important
histological marker for acceleration of UIP, or for pre-
dicting acute exacerbation.46,61,63 IP is complicated by
superimposed acute lung injury,64,65 and some reports
have suggested that viral infection may cause an
acute exacerbation of UIP. We performed a back-
ground study of acute exacerbation cases in patients
with UIP and found that Ub+ pneumocytes tended to
be increased in the acute exacerbation subgroup com-
pared to the stable subgroup of UIP cases. However,
there was no statistically significant correlation
between acute exacerbation and Ub+ pneumocytes as
a background factor.48

Although patients with NSIP have a relatively good
prognosis,8,47,66 some patients are resistant to ther-
apy.67–69 In our analyses, patients with NSIP were des-
ignated as therapy-resistant after a mean follow-up
period of 4.4 years following surgical lung biopsy. Fol-
low-up included patients with secondary NSIP, and
NSIP was classified as f-NSIP or c-NSIP based on the
proportions of interstitial inflammation and fibrosis.66

Some patients with NSIP had fibroblastic foci (mural-
type granulation tissue) attached to the interstitium,
confirmed by elastic Weigert-Van Gieson staining, but
no histological markers were clearly associated with
therapy resistance in patients with NSIP. The Ub+ NSIP
subgroup, as well as the f-NSIP and c-NSIP subtypes,
contained both responding and resistant cases (61% of
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NSIP). Ub+ pneumocytes were found in the patients
with f-, c- or f/c-NSIP, with variable proportions. Sub-
sequently, the presence of Ub+ pneumocytes did not
correlate with NSIP subtypes or clinical features. The
Ub+ pneumocyte was not a histological indicator of
resistance to therapy in the NSIP group.47

The OP group had fewer Ub+ pneumocytes in com-
parison to the NSIP group (Figure 7). The histological
characteristics of OP are heterogeneous with various
degrees of lung injury. Although cases of cryptogenic
organizing pneumonia (COP) were not included in
this study, the histological features of secondary OP
were identical with those of COP (mainly intralumi-
nal polypoid granulation tissue with mild alveolitis,
unpublished data). In fact, fibrin exudation (an occa-
sional feature in the alveolar spaces) and/or promi-
nent reactive pneumocytes are seen in lung biopsy
specimens from patients clinically diagnosed as COP
who showed amelioration with or without steroid
therapy. In the present study, no fibrosing variant of
an OP-like case was observed; by the ATS criteria,
COP is considered to be a benign disease without
severe damage or death,9 and we speculate that this
finding is consistent with the better prognosis of COP
among the IPs.

Airspace enlargement with fibrosis,
centrilobular emphysema and asbestosis

Asbestosis (another ILD) is characterised typically by
Mallory bodies, but we found very few inclusions in
our cases (unpublished data). AEF is characterized by
subpleural cystic lesions with a thickened fibrous wall,

and Kawabata et al.44 reported a close relationship
between this condition and smoking-related lung dis-
ease. AEF has been included in the update of the inter-
national multidisciplinary classification of IPs by ATS/
ERS,9 and other groups have categorized it simi-
larly.19,70,71 When compared to IPs, AEF is character-
ized by less inflammatory cell infiltration, minimal
intraluminal granulation tissues, few Ub+ pneumo-
cytes and low erosion scores. It has the least pneumo-
cyte injury among the ILDs, whereas CLE shows
neither intraluminal granulation tissue formation nor
erosion. Additionally, alphaB crystallin has been
detected immunohistochemically in the AEF group,
and a protective effect against pneumocyte injury was
suggested along with UPS.37 AEF has a different patho-
genesis from that of UIP and NSIP, and AEF frequently
accompanies CLE. AEF is suggested to be an intermedi-
ate condition between CLE and IPF (unpublished data).
The relationship between Ub positivity and pneumo-
cyte injury among ILDs is summarized in Figure 8.

Conclusion

IPs develop through an inflammatory process accom-
panied by pneumocyte injury with disordered UPS,
leading to the accumulation of ubiquitinated target
proteins in pneumocytes. Pneumocyte injury might
induce necrosis or erosion of pneumocytes, exudation
and the formation of intraluminal granulation tissue,
and the inclusions that are features of pneumocyte
degeneration due to the accumulation of ubiquitinat-
ed proteins in the pneumocyte cytoplasm. These
histological features were found in each type of IP.

Figure 7. Ub+ pneumocyte in organizing pneumonia. Ub+ pneumo-

cyte (fragmented form, arrow) is shown on the surface of intralu-

minal granulation tissue (polypoid type) from a patients with

organizing pneumonia (Ub immunostaining). Bar, 50 lm.

Ub+ pneumocyte

pneumocyte injury fibrosis

DAD

Normal
lung

OP f-NSIP
UIP

CLE AEF

Figure 8. Schematic relationship of interstitial lung disease based

on the degree of pneumocyte injury and numbers of Ub+ pneumo-

cytes. Ub+ pneumocytes are most numerous in the DAD group, and

interstitial fibrosis is most severe in the UIP group, (CLE: centrilobu-

lar emphysema; AEF: airspace enlargement with fibrosis; UIP: usual

interstitial pneumonia; f-NSIP: fibrosing non-specific interstitial

pneumonia; DAD: diffuse alveolar damage; OP: organizing

pneumonia).
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The Ub+ pneumocytes can be a marker of cellular
injury in a variety of organs, including the lung.
Additionally, pneumocyte injury caused by the disor-
dered UPS was observed adjacent to granulation tis-
sues during IP development. The presence of Ub+

pneumocytes is not an essential diagnostic criteria for
IPs; however, Ub immunostaining is more useful than
H&E staining for the detection of inclusions as a
result of pneumocyte injury. Our findings may help
to differentiate each type of IP by determining the
severity of the pneumocyte injury based on micros-
copy of surgical lung biopsy specimens.
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